CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 554

_id ecaade2012_261
id ecaade2012_261
authors Feringa, Jelle; Sondergaard, Asbjorn
year 2012
title Design and Fabrication of Topologically Optimized Structures; An Integral Approach - A Close Coupling Form Generation and Fabrication
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 495-500
doi https://doi.org/10.52842/conf.ecaade.2012.2.495
wos WOS:000330320600052
summary Integral structural optimization and fabrication seeks the synthesis of two original approaches; that of topological optimization (TO) and robotic hotwire cutting (HWC) (Mcgee 2011). TO allows for the reduction of up to 70% of the volume of concrete to support a given structure (Sondergaard & Dombernowsky 2011). A strength of the method is that it allows to come up with structural designs that lie beyond the grasp of traditional means of design. A design space is a discretized volume, delimiting where the optimization will take place. The number of cells used to discretize the design space thus sets the resolution of the TO. While the approach of the application of TO as a constitutive design tool centers on structural aspects in the design phase (Xie 2010), the outcome of this process are structures that cannot be realized within a conventional budget. As such the ensuing design is optimal in a narrow sense; whilst optimal structurally though, construction can be prove to be prohibitively expensive.
keywords Topology optimization; robotics; hotwire cutting; EPS formwork; concrete structures
series eCAADe
email
last changed 2022/06/07 07:50

_id ijac201310105
id ijac201310105
authors Agkathidis, Asterios and Andre_ Brown
year 2013
title Tree-Structure Canopy:A Case Study in Design and Fabrication of Complex Steel Structures using Digital Tools
source International Journal of Architectural Computing vol. 11 - no. 1, 87-104
summary This paper describes and reflects on the design and manufacturing process of the Tree-Structure canopy for the WestendGate Tower in Frankfurt upon Main, completed early 2011.The project investigated fabrication and assembly principles of complex steel structures as well as the integration of contemporary computational design, engineering, optimization and simulation techniques in a collaborative design approach. This paper focuses on the notion of modular standardization as opposed to non standard customized components. It also engages with issues relating to digital production tools and their impact on construction cost, material performance and tolerances. In addition it examines the reconfiguration of liability during a planning and construction process, an aspect which can be strongly determined by fabrication companies rather than the architect or designer.This paper is written as a reflection on the complete building process when contemporary digital tools are used from design through to fabrication. It studies both the generation of the steel structure as well the ETFE cushion skin. It reports on a collaborative project, where the main author was responsible for the canopies design, parameterization, digitalization and fabrication, as well as for the dissemination of the outcomes and findings during the design and realization process.As such it represents an example of research through design in a contemporary and evolving field.The canopy received a design award by the Hellenic Architecture Association.
series journal
last changed 2019/05/24 09:55

_id acadia11_272
id acadia11_272
authors Dimcic, Milos; Knippers, Jan
year 2011
title Free-form Grid Shell Design Based on Genetic Algorithms
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 272-277
doi https://doi.org/10.52842/conf.acadia.2011.272
summary In the 21st century, as free-form design grows in popularity, grid shells are becoming a universal structural solution, enabling the conflation of structure and skin (façade) into one single element (Kolarevic 2003). This paper presents some of the results of a comprehensive research project focused on the automated design and optimization of grid structures over some predefined free form shape, with the goal of generating a stable and statically efficient structure. It shows that by combining design and FEM software in an iterative, Genetic Algorithms-based optimization process, stress and deformation in grid shell structures can be significantly reduced, material can be saved and stability enhanced.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id caadria2011_017
id caadria2011_017
authors Hanafin, Stuart; Sambit Datta and Bernard Rolfe
year 2011
title Tree facades: Generative modelling with an axial branch rewriting system
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 175-184
doi https://doi.org/10.52842/conf.caadria.2011.175
summary The methods and algorithms of generative modelling can be improved when representing organic structures by the study of computational models of natural processes and their application to architectural design. In this paper, we present a study of the generation of branching structures and their application to the development of façade support systems. We investigate two types of branching structures, a recursive bifurcation model and an axial tree based L-system for the generation of façades. The aim of the paper is to capture not only the form but also the underlying principles of biomimicry found in branching. This is then tested, by their application to develop experimental façade support systems. The developed algorithms implement parametric variations for façade generation based on natural tree-like branching. The benefits of such a model are: ease of structural optimization, variations of support and digital fabrication of façade components.
keywords Parametric Modelling; Biomimicry; Lindenmayer Systems; Branching Structures
series CAADRIA
email
last changed 2022/06/07 07:50

_id cf2011_p020
id cf2011_p020
authors Kabre, Chitrarekha
year 2011
title A Computer Aided Design Model for Climate Responsive Dwelling Roof
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 315-332.
summary Computer-Aided Design models have generated new possibilities in the sustainable design of buildings. Computer models assisting different aspects of architectural design have been developed and used for several decades. A review of contributions of computing to architectural design is given by Gero. Most of the conventional simulation computer programs do not actively support design development and optimization, specially at the formative design stages. It is well established that most decisions that affect comfort and building energy use occur during the formative design stages of the project. Furthermore, the efforts required to implement those decisions at the beginning of the design process are small compared to the effort that would be necessary later on in the design process. Therefore, if sustainable design issues are going to receive an appropriate level of consideration at the beginning of the design process, they must be presented in a way which is useful to the architect and fits with other things the architect is considering at that time. Design is seen as a problem-solving process of searching through a space of design solutions. The process of finding a solution to a design problem involves, identifying one or more objectives, making design decisions based on the objectives, predicting and evaluating the performance to find the acceptable decisions. Each of these activities can be performed inside or outside the formal model. In designing a roof, an architect or building designer has to make many decisions on the materials. The arrangement of these materials determines the aesthetic appearance of the roof and the house. Other considerations that affect the choice of roofing materials are thermal performance, rain, fire protection, cost, availability and maintenance. Recyclability of materials, hazardous materials, life-cycle expectancy, solutions, and design options as they relate to the environment also need to be considered. Consequently, the design of roof has become quite a complex and multifaceted problem. The principal need is for a direct design aid which can generate feasible solutions and tradeoff performance in conflicting requirements and prescribe the optimum solution. This paper presents a conceptual Computer Aided Design model for dwelling roof. It is based on generation and optimization paradigms of Computer Aided Design; which is diametrically opposite to conventional simulation. The design of roof (design goal) can be defined in terms of design objective as "control radiant and conduction heat." This objective must be satisfied to achieve the design goal. The performance variables, such as roof ceiling surface temperature or new thermal performance index (TPI*) must acquire values within certain ranges which will satisfy the objective. Given the required inputs, this computer model automatically generates prescriptive quantitative information to design roof to achieve optimum thermal comfort in warm humid tropics. The model first generates feasible solutions based on the decision rules; next it evaluates the thermal performance of the roof taking into account design variables related to the building’s roof and finally it applies numerical optimization techniques to automatically determine the optimum design variables, which achieve the best thermal performance. The rational and methodology used to develop the proposed model is outlined and the implementation of model is described with examples for climatic and technological contexts of India and Australia.
keywords Computer aided design, sustainable design, generation, optimization, dwelling roof, thermal performance
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2011_005
id caadria2011_005
authors Okabe, Aya and Tsukasa Takenaka
year 2011
title Computational landscape design with the seed scattering system: A case study in the Sony forest project
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 49-58
summary This paper proposes a computational landscape design method, called the seeds scattering system (SS system), which enables us to manage various environmental parameters in design processes, to create the ‘natural forest’ in urban environments. First, this paper discusses the drawbacks of the conventional methods for landscape design. Second, the paper outlines the components of the SS system together with the design process of the SONY forest project in Tokyo, and shows its advantages, including broad applicability to conceptual design, and capability of environmental simulations and spatial optimizations. Last, the paper summarizes the effectiveness of the SS system. By managing fundamental rules behind geometries in forest growth processes, the SS system showed us capability for constructing interactive relationships between design and their surrounding environments to produce design inherent in its site.
keywords Computational landscape design, parameter, tool customization, optimization, sensor network system
series CAADRIA
email
last changed 2012/05/30 21:29

_id ecaade2011_023
id ecaade2011_023
authors Schneider, Sven; König, Reinhard; Pohle, Robert
year 2011
title Who cares about right angles?: Overcoming barriers in creating rectangularity in layout structures
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.361-367
doi https://doi.org/10.52842/conf.ecaade.2011.361
wos WOS:000335665500041
summary This paper examines methods for the generation of structures that exhibit rectangularity. Rectangularity in architectural and urban structures can be traced to various reasons, including facilitating the design process, since the use of rectangular geometry limits both the space of possible solutions and the operations necessary to search the solution space. With the help of computer-based methods it becomes possible to explore huge solution spaces, however most existing methods stick to traditional concepts for the generation of geometric structures, such as the use of predefined elements (rectangles). These approaches do not take into account geometric irregularities which the structure to be generated may be subject to. In this paper we present a method that makes it possible to create a nearly rectangular structure within a freely definable boundary.
keywords Rectangularity; Structures; Design Tool; Design Process; Evolutionary Optimization
series eCAADe
email
last changed 2022/05/01 23:21

_id ijac20109202
id ijac20109202
authors van Embden, Maria Vera; Andres, Michela Turrin, Peter von Buelow
year 2011
title ARCHITECTURAL DNA: A genetic exploration of complex structures
source International Journal of Architectural Computing vol. 9 - no. 2, 133-150
summary The approach demonstrated in this paper uses Evolutionary Computation (EC) to enhance and modify structural form based on biological micro structures.The forms are modified to conform to new boundary conditions associated with architectural structures.The process is based on a Genetic Algorithm (GA) which visually exposes for the designer a range of good performing solutions within thedesign space. The application of the GA is combined with parametric software, in this case Generative Components (GC). The program described here as ParaGen (Parametric Genetic Algorithm), uses a Finite Element Analysis (FEA) to determine the structural performance of the forms.This allows the designer to manipulate and optimize a parametrically defined model based on predefined criteria and parameters.The opportunities and limitations of this design process are explored and evaluated based on an experimental case study using topologies based on radiolarian skeletons.The design procedure described includes user interaction in the exploration of solutions that perform well both for the explicitly defined programmatic criteria (structural) as well as for the implicit criteria provided by the designer (visual aesthetic).
keywords structural morphology, parametric design, genetic algorithm, structural optimization.
series journal
last changed 2019/05/24 09:55

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia11_318
id acadia11_318
authors Doumpioti,Christina
year 2011
title Responsive and Autonomous Material Interfaces
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 318-325
doi https://doi.org/10.52842/conf.acadia.2011.318
summary This paper presents continuing research on responsive systems in architecture; the ability of architectural systems to change certain properties in response to their surrounding environmental pressures. While doing so, it shifts from current and past examples of mechanical approaches of adaptation, towards biological paradigms of seamless material integration. Looking at biological mechanisms of growth and focusing on the material make-up behind them, the research proposes the exploration of material systems in a two-fold interrelated manner: firstly, through passive material systems of variable elasticity, and secondly through the embedment of smart materials with shape-changing properties. The combination of the two is aiming at architectural systems of functional versatility.Through an interdisciplinary approach, the paper examines the following questions: Is it possible to envisage structures that share the principles of adaptation and response of living organisms? What are the technological challenges faced when designing self-actuated responsive interfaces? Which is the conceptual framework for understanding and investigating complex adaptive and responsive systems? By exploring and synthesizing theories and tools from material science, bioengineering and cybernetics the aim is to inform architectural interfaces able to enhance interconnectivity between the man-made and the natural. Focusing on the self-organization of material systems the intention is to suggest architectural interventions, which become sub-systems of their ecological milieu. The emphasis therefore is placed not on architectural formalism, but on how we can define synthetic environments through constant exchanges of energy, matter and information.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadia11_56
id acadia11_56
authors Hoberman, Chuck; Schwitter, Craig
year 2011
title Adaptive Structures: Building for performance and sustainability
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 56-59
doi https://doi.org/10.52842/conf.acadia.2011.056
summary For most architects and engineers, the idea of optimizing a building’s design in relation to its location is so ingrained as to be a reflex. Still, most building professionals have a difficult time making the conceptual and practical leap to the notion of performance-based or “adaptive” buildings. We call these adaptive buildings because they can adapt their shape and function in realtime to environmental changes. This field remains far less developed than other areas of practice, but the logic of adaptive performance — which is time-based, responsive, and dynamic — is compelling. Buildings that continuously attune their configurations in accordance with changing environmental conditions use less energy, offer more occupant comfort, and feature better overall space efficiency than static buildings.
series ACADIA
type keynote paper
email
last changed 2022/06/07 07:50

_id acadia11_260
id acadia11_260
authors Pak, Burak; Vrouwe, Ivo; Verbeke,Johan
year 2011
title Design and Development of Low-cost Portable Immersive Spaces
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 260-267
doi https://doi.org/10.52842/conf.acadia.2011.260
summary In this paper, we will explore the potentials of low-cost portable immersive environments that combine textile structures, gesture-based interfaces and multiple projections. Our aim is to develop affordable, easy to set up, portable and inviting immersive spaces that can serve as an interface between a web-based geographic virtual environment, experts and lay people. In this context, after the introduction, we will review a variety of methods, conceptual tools and materials related to textile tectonics and techniques which can be individually used or combined for the development and construction of portable immersive spaces. In the next section, we will discuss the opportunities and challenges of using a low-cost gesture-based interface (Kinect) to support “touchless” interactions. Consequently, we will present the design alternatives of low-cost portable immersive spaces that we have synthesized from our background studies. This will be followed by the observations and findings from our prototype development, implementation and preliminary testing processes. In conclusion, we will discuss our conclusions and recommendations regarding the future development of low-cost portable immersive spaces.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id ijac20109302
id ijac20109302
authors Williams, Nicholas; Hanno Stehling, Fabian Scheurer, Silvan Oesterle, Matthias Kohler, Fabio Gramazio
year 2011
title A Case Study of a Collaborative Digital Workflow in the Design and Production of Formwork for ‘Non-Standard’ Concrete Structures
source International Journal of Architectural Computing vol. 9 - no. 3, 223-240
summary This paper presents an overview of ongoing research from within the Tailorcrete research project into the development of CAD tools for the design and realization of ‘non-standard’ concrete structures. The focus is on concrete formwork, a significant factor affecting cost, logistics and aesthetics. With a process spanning a broad range of expertise, collaboration through an effective digital workflow is vital to the successful execution of such structures. As a concept for this workflow, a working model of a Design System is described and its development discussed. This focuses on three aspects: (1) the identification of key Use-Cases; (2) the definition of Formwork Systems; and (3) the definition of communication between software elements to provide relevant means of collaboration for expert users. An implementation as a package of software prototypes is also briefly presented. This includes a Base Framework, tools targeting Use-Cases and components relating to specific formwork systems.
series journal
last changed 2019/05/24 09:55

_id ascaad2016_013
id ascaad2016_013
authors Belkis Öksüz, Elif
year 2016
title Parametricism for Urban Aesthetics - A flawless order behind chaos or an over-design of complexity
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 105-112
summary Over the last decade, paradigm shifts in the philosophy of space-time relations, the change from space-time to spatio-temporality, caused significant changes in the design field, and introduced new variations and discourses for parametric approaches in architecture. Among all the discourses, parametricism is likely the most spectacular one. The founder of parametricism, Patrik Schumacher (2009) describes it as “a new style,” which has “the superior capacity to articulate programmatic complexity;” and “aesthetically, it is the elegance of ordered complexity in the sense of seamless fluidity.” In its theoretical background, Schumacher (2011) affiliates this style with the philosophy of autopoiesis, the philosophy that stands between making and becoming. Additionally, parametricism concerns not only the physical geometry in making of form; but also discusses the relational and causal aspects in becoming of form. In other words, it brings the aesthetic qualities in making through the topological intelligence behind becoming. Regarding that, parametricism seems an effective way of managing /creating complex topologies in form-related issues. However, when it comes to practice, there are some challenging points of parametricism in large-scale design studies. Thus, this work underlines that the dominance of elegance for urban planning has the potential of limiting the flexible and dynamic topology of the urban context, and objectifying the whole complex urban form as an over-designed product. For an aesthetic inquiry into urban parametricism, this paper highlights the challenging issues behind the aesthetic premises of parametricism at the urban design scale. For that, Kartal Master Plan Design Proposal by Zaha Hadid Architects (2006) will be discussed as an exemplary work.
series ASCAAD
email
last changed 2017/05/25 13:31

_id acadia11_278
id acadia11_278
authors Kobayashi, Yoshihiro
year 2011
title Irregular Vertex Editing and Pattern Design on Mesh
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 278-283
doi https://doi.org/10.52842/conf.acadia.2011.278
summary This paper introduces an innovative computational design tool used to edit architectural geometry by addressing the problem of irregular vertices. An irregular vertex is a special kind of vertex which is connected with fewer or greater less or more edges than regular vertices on a mesh object. Irregular vertices create problems with further surface rationalization, as well as structural analysis and constructability of the surface. Geometry created using other tools can also be remeshed upon import. Using the developed tool, the user is able to identify irregular vertices, interactively change the type, and then move or remove these irregular vertices. Additionally, a computational tool to make various design patterns on the mesh after the topology has been edited is also developed. The workflow is illustrated step by step in the pipeline. The advantages and disadvantages of editing mesh topology on architectural geometry design including the limitations are discussed at the end.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id caadria2011_051
id caadria2011_051
authors Lin, Chieh-Jen
year 2011
title Topology pattern mining: A visual approach for representing and retrieving design patterns of spatial topology in a case library
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 535-544
doi https://doi.org/10.52842/conf.caadria.2011.535
summary This paper aims to apply the clustering analysis algorithm to analyze and classify the pattern of spatial topology of floor plans within a case library named “Open Case Study (OCS)”. Based on the results of classifications, this paper proposes a visual interface named “Topology Pattern Mining (TPM)” to present and rank searching results in response to user’s queries. The purpose of TPM is to extend the capacity of OCS for representing implicit knowledge of spatial topology. TPM can retrieve and classify design patterns of spatial topology, and thereby helps users to learn the design knowledge within relevant cases.
keywords Case-based design; case library; knowledge representation; spatial topology; data mining
series CAADRIA
email
last changed 2022/06/07 07:59

_id ijac20109301
id ijac20109301
authors Biloria, Nimish
year 2011
title InfoMatters, a multi-agent systems approach for generating performative architectural formations
source International Journal of Architectural Computing vol. 9 - no. 3, 205-222
summary The research paper exemplifies upon a computationally intensive inter-disciplinary research driven design investigation into spatializing the relationship between digital information and physical matter. Focusing on the development of architectural scale urban inserts, the design-research work operates on the intersection of information technology, environmental design, architecture, and computer aided manufacturing domains.The research framework revolves around developing a seamless integration of the aforementioned disciplines in order to establish iterative simulation driven methodologies for generating bottom-up sustainable architectural formations. This is achieved by establishing parametrically driven relational linkages between differential data sets (environmental, social, topological, material etc), which formulate the context (both global and local) within which the proposed project has to be designed. A selforganizing multi-agent system based simulation methodology for generating resultant spatial formations, in time, based on the impacts of the parametric relationships between the aforementioned data sets is eventually embarked upon. This implies, understanding the site as a dynamic information field within which interdependent ecology of agents (representing typology of people, program, structure, speed, desired social interaction etc) with multi-level relational affinities amongst each other as well as the dynamic urban information field. The resultant self-organized multi-agent formations are iteratively mined for identifying logical three-dimensional structural patterns or subjected to programmatic and environmental need driven additional layer of structural simulation with pre-embedded material restraints. An optimized system of multi-performative components that not only populates but also serves as an integrated structural + skin system of the results obtained from the agent based simulations (based upon the degree of inclusion/exclusion of parameters such as the amount of light, sound, wind etc) is subsequently generated. These experimental projects attained the status of self-evolving ecologies of multi-dimensional agents with embodied behavioural profiles, thus providing engaged, highly interdependent design by simulation outputs. The outputs showcase a dynamic system's driven approach towards sustainable design by stressing upon the idea of cohesively binding information and material systems from the very beginning of the design process. Such approaches help in reducing post-optimization of built form and consequently allow for rational understanding of performance criteria and its impact on formal articulations throughout the design process.
series journal
last changed 2019/05/24 09:55

_id acadiaregional2011_032
id acadiaregional2011_032
authors Castellano, Devan
year 2011
title Humanizing Parametricism
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
doi https://doi.org/10.52842/conf.acadia.2011.x.d3g
summary As we increase the complexity and correlations of variables that are critical to the design of a project, we are becoming increasingly aware of the possibilities emerging from a computer integrated design process. There is such great opportunity to use these tools to manage and analyze multi variable design information, yet there is still much criticism of the design solutions created from computational design. These design solutions have been said to be “lacking any character, cultural influence, human engagement, or communication” and that “most of our contemporary architecture has forsaken this dimension of architectural discourse and it’s potential for exceptional spaces.” The current focus of computational investigation is primarily limited to building performance and optimization. Buildings that are designed from a purely optimizational construct without acknowledging the users desires and needs are falling short in creating “places”. Optimization can be the end result, but the constructs that are being optimized must be broadened to address all facets of a project. Computational design has emerged because it has the capacity to resolve multiple constraints and deal with extreme complexity of variables. By optimizing a more holistic set of constraints, computational architecture can truly provide comprehensive design solutions.
series ACADIA
last changed 2022/06/07 07:49

_id caadria2011_031
id caadria2011_031
authors Fukuda, Tomohiro; Kensuke Kitagawa and Nobuyoshi Yabuki
year 2011
title A study of variation of normal of polygons created by point cloud data for architectural renovation field
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 321-330
doi https://doi.org/10.52842/conf.caadria.2011.321
summary Acquiring current 3D space data of cities, buildings, and rooms rapidly and in detail has become indispensable. When the point cloud data of an object or space scanned by a 3D laser scanner is converted into polygons, it is an accumulation of small polygons. When object or space is a closed flat plane, it is necessary to merge small polygons to reduce the volume of data, and to convert them into one polygon. When an object or space is a closed flat plane, each normal vector of small polygons theoretically has the same angle. However, in practise, these angles are not the same. Therefore, the purpose of this study is to clarify the variation of the angle of a small polygon group that should become one polygon based on actual data. As a result of experimentation, no small polygons are converted by the point cloud data scanned with the 3D laser scanner even if the group of small polygons is a closed flat plane lying in the same plane. When the standard deviation of the extracted number of polygons is assumed to be less than 100, the variation of the angle of the normal vector is roughly 7 degrees.
keywords Point cloud; 3D laser scanner; physical space; virtual reality; polygon optimization
series CAADRIA
email
last changed 2022/06/07 07:50

_id sigradi2011_405
id sigradi2011_405
authors García Alvarado, Rodrigo; Lyon Gottlieb, Arturo
year 2011
title De la Optimización Estructural Evolutiva al Diseño Paramétrico basado en desempeño; experiencias en plataformas integradas para estrategias de diseño multidisciplinares [From Evolutionary Structural Optimization to performance driven Parametric Design; experiences on integrated platforms for multidisciplinary design strategies]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 201-205
summary This paper presents a research developed by a multidisciplinary team looking into the use of Topological Optimization and its integration to collaborative design platforms in early stages of design processes. The interest of the experience is focused on how Evolutionary Structural Optimization (ESO) models can be further integrated into parametric design software for the definition of adaptable components in response to environmental and architectural criteria. This research explores platforms and processes for the collaboration between software development, structural engineers and architects in early stages of design as a possibility to relate the potential of computational processes with the definition of design criteria involving architectural, structural and environmental parameters.
keywords Evolutionary Structural Optimization; Topological Analysis; Parametric Design; Performance Driven Design
series SIGRADI
email
last changed 2016/03/10 09:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_869826 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002