CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 555

_id cf2011_p019
id cf2011_p019
authors Haeusler, Matthias Hank; Beilharz Kirsty
year 2011
title Architecture = Computer‚ from Computational to Computing Environments
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 217-232.
summary Drawing on architecture, urban digital media, engineering, IT and interaction design, the research presented in this paper outlines a possible shift from architecture designed through computation (any type of process, algorithm or measurement done in a computational matter) towards architecture capable of computing (developing, using and improving computer technology, computer hardware and software as a space-defining element). The research is driven by recent developments in four fields, as follows: (a) Architecture in its recent development has shifted from a planar box, as was the ideal in the modernist movement, towards complex and non-standard forms. (b) The design concepts of non-standard surfaces have been adopted into media facades and media architecture by liberating the pixel from its planar position on a screen [1]. (c) Advancements in pervasive computing applications are now able both to receive information from the environment in which they are used and to detect other devices that enter this environment [2]. (d) Developments in advanced autonomous systems such as Human Computer Interaction (HCI) or Human Robot Interaction (HRI), have produced intelligent systems capable of observing human cues and using these cues as the basis for intelligent decision-making [3]. Media fa_ßade developments work in the direction of the above-mentioned four fields, but often come with limitations in architectural integration; they need additional components to interact with their environment and their interactions are both often limited to visual interactions and require the user to act first. The researched system, Polymedia Pixel [4] discussed in this paper, can overcome these limitations and fulfil the need for a space-defining material capable of computing, thus enabling a shift from architecture designed by computation towards architecture capable of active computing. The Polymedia Pixel architecture merges digital technology with ubiquitous computing. This allows the built environment and its relation with digital technology to develop from (a) architecture being represented by computer to (b) computation being used to develop architecture and then further to where (c) architecture and the space-defining objects have computing attributes. Hence the study presented aims to consider and answer this key question: ‚ÄòWhen building components with computing capacity can define space and function as a computer at the same time, what are the constraints for the building components and what are the possible advantages for the built environment?‚Äô The conceptual framework, design and methods used in this research combine three fields: (a) hardware (architecture and design, electronic engineering) (b) software (content design and IT) and (c) interaction design (HCI and HRI). Architecture and urban design determinates the field of application. Media architecture and computer science provide the technological foundation, while the field of interaction design defines the methodology to link space and computing [5]. The conceptual starting point is to rethink the application of computers in architecture and, if architecture is capable of computing, what kind of methodology and structure would find an answer to the above core research question, and what are the implications of the question itself? The case study discusses opportunities for applying the Polymedia Pixel as an architectural component by testing it on: (a) constraint testing ‚Äì applying computational design methodologies to design space (b) singular testing - discussing the advantages for an individual building, and (c) plural testing ‚Äì investigating the potential for an urban context. The research aims to contribute to the field of knowledge through presenting first steps of a System < - > System mode where buildings can possibly watch and monitor each other, additional to the four primary interactive modes of operation. This investigation, its proposed hypothesis, methodology, implications, significance and evaluation are presented in the paper.
keywords media architecture, computational environments, ubiquitous computing, interaction design, computer science
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ijac201310105
id ijac201310105
authors Agkathidis, Asterios and Andre_ Brown
year 2013
title Tree-Structure Canopy:A Case Study in Design and Fabrication of Complex Steel Structures using Digital Tools
source International Journal of Architectural Computing vol. 11 - no. 1, 87-104
summary This paper describes and reflects on the design and manufacturing process of the Tree-Structure canopy for the WestendGate Tower in Frankfurt upon Main, completed early 2011.The project investigated fabrication and assembly principles of complex steel structures as well as the integration of contemporary computational design, engineering, optimization and simulation techniques in a collaborative design approach. This paper focuses on the notion of modular standardization as opposed to non standard customized components. It also engages with issues relating to digital production tools and their impact on construction cost, material performance and tolerances. In addition it examines the reconfiguration of liability during a planning and construction process, an aspect which can be strongly determined by fabrication companies rather than the architect or designer.This paper is written as a reflection on the complete building process when contemporary digital tools are used from design through to fabrication. It studies both the generation of the steel structure as well the ETFE cushion skin. It reports on a collaborative project, where the main author was responsible for the canopies design, parameterization, digitalization and fabrication, as well as for the dissemination of the outcomes and findings during the design and realization process.As such it represents an example of research through design in a contemporary and evolving field.The canopy received a design award by the Hellenic Architecture Association.
series journal
last changed 2019/05/24 09:55

_id ijac20109201
id ijac20109201
authors Ramsgard Thomsen, Mette; Martin Tamke, Jacob Riiber Nielsen
year 2011
title Generating a scalar logic: producing the "it's a SMALL world" exhibition
source International Journal of Architectural Computing vol. 9 - no. 2, 115-132
summary This paper presents the design project “it’s a SMALL world”, an exhibition design developed for the Danish Design Centre in 2009.The project investigates the making of a generative design environment by which multiple design parameters as from program, site or the subsequent digital fabrication and assembly process can be negotiated. In this paper we discuss methods for understanding the emergent interrelationships between encoded parameters, how to manage these and their impact on design.The implementation of the design necessitated a novel design method that allowed to blend the qualities of a generative design approach, that can adapt through recursion gradually to local requirements, with explicit definitions.The project showcases with its new developed manufacturing system for non- standard element how customized digital design and production tools allow for a novel nearness to material and new ways of production and collaboration of architects, engineers and the crafts.
series journal
last changed 2019/05/24 09:55

_id ijac20109302
id ijac20109302
authors Williams, Nicholas; Hanno Stehling, Fabian Scheurer, Silvan Oesterle, Matthias Kohler, Fabio Gramazio
year 2011
title A Case Study of a Collaborative Digital Workflow in the Design and Production of Formwork for ‘Non-Standard’ Concrete Structures
source International Journal of Architectural Computing vol. 9 - no. 3, 223-240
summary This paper presents an overview of ongoing research from within the Tailorcrete research project into the development of CAD tools for the design and realization of ‘non-standard’ concrete structures. The focus is on concrete formwork, a significant factor affecting cost, logistics and aesthetics. With a process spanning a broad range of expertise, collaboration through an effective digital workflow is vital to the successful execution of such structures. As a concept for this workflow, a working model of a Design System is described and its development discussed. This focuses on three aspects: (1) the identification of key Use-Cases; (2) the definition of Formwork Systems; and (3) the definition of communication between software elements to provide relevant means of collaboration for expert users. An implementation as a package of software prototypes is also briefly presented. This includes a Base Framework, tools targeting Use-Cases and components relating to specific formwork systems.
series journal
last changed 2019/05/24 09:55

_id cf2011_p170
id cf2011_p170
authors Barros, Mário; Duarte José, Chaparro Bruno
year 2011
title Thonet Chairs Design Grammar: a Step Towards the Mass Customization of Furniture
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 181-200.
summary The paper presents the first phase of research currently under development that is focused on encoding Thonet design style into a generative design system using a shape grammar. The ultimate goal of the work is the design and production of customizable chairs using computer assisted tools, establishing a feasible practical model of the paradigm of mass customization (Davis, 1987). The current research step encompasses the following three steps: (1) codification of the rules describing Thonet design style into a shape grammar; (2) implementing the grammar into a computer tool as parametric design; and (3) rapid prototyping of customized chair designs within the style. Future phases will address the transformation of the Thonet’s grammar to create a new style and the production of real chair designs in this style using computer aided manufacturing. Beginning in the 1830’s, Austrian furniture designer Michael Thonet began experimenting with forming steam beech, in order to produce lighter furniture using fewer components, when compared with the standards of the time. Using the same construction principles and standardized elements, Thonet produced different chairs designs with a strong formal resemblance, creating his own design language. The kit assembly principle, the reduced number of elements, industrial efficiency, and the modular approach to furniture design as a system of interchangeable elements that may be used to assemble different objects enable him to become a pioneer of mass production (Noblet, 1993). The most paradigmatic example of the described vision of furniture design is the chair No. 14 produced in 1858, composed of six structural elements. Due to its simplicity, lightness, ability to be stored in flat and cubic packaging for individual of collective transportation, respectively, No. 14 became one of the most sold chairs worldwide, and it is still in production nowadays. Iconic examples of mass production are formally studied to provide insights to mass customization studies. The study of the shape grammar for the generation of Thonet chairs aimed to ensure rules that would make possible the reproduction of the selected corpus, as well as allow for the generation of new chairs within the developed grammar. Due to the wide variety of Thonet chairs, six chairs were randomly chosen to infer the grammar and then this was fine tuned by checking whether it could account for the generation of other designs not in the original corpus. Shape grammars (Stiny and Gips, 1972) have been used with sucesss both in the analysis as in the synthesis of designs at different scales, from product design to building and urban design. In particular, the use of shape grammars has been efficient in the characterization of objects’ styles and in the generation of new designs within the analyzed style, and it makes design rules amenable to computers implementation (Duarte, 2005). The literature includes one other example of a grammar for chair design by Knight (1980). In the second step of the current research phase, the outlined shape grammar was implemented into a computer program, to assist the designer in conceiving and producing customized chairs using a digital design process. This implementation was developed in Catia by converting the grammar into an equivalent parametric design model. In the third phase, physical models of existing and new chair designs were produced using rapid prototyping. The paper describes the grammar, its computer implementation as a parametric model, and the rapid prototyping of physical models. The generative potential of the proposed digital process is discussed in the context of enabling the mass customization of furniture. The role of the furniture designer in the new paradigm and ideas for further work also are discussed.
keywords Thonet; furniture design; chair; digital design process; parametric design; shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p043
id cf2011_p043
authors Boeykens, Stefan
year 2011
title Using 3D Design Software, BIM and Game Engines for Architectural Historical Reconstruction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 493-509.
summary The use of digital tools has become a tremendous aid in the creation of digital, historical reconstructions of architectural projects. Regular visualization techniques have been used for quite some time and they still pose interesting approaches, such as following cinematic techniques [1]. While common visualizations focus on pre-rendered graphics, it is possible to apply Game Engines [2] for real-time architectural visualization, as witnessed by [3] and [4]. In the course of our teaching and research efforts, we have collected experience with several visualization and modeling techniques, including the use of gaming engines. While the modeling of qualitative geometry for use in regular visualization already poses an elaborate effort, the preparation of models for different uses is often not trivial. Most modeling systems only support the creation of models for a single amount of detail, whereas an optimized model for a real-time system will have fairly different constraints when compared to non-real-time models for photorealistic rendering and animation. The use of parametric methods is one usable approach to tackle this complexity, as illustrated in [4]. One of the major advantages of using parametric approaches lies precisely in the possibility of using a single model to generate different geometry with control over the amount of detail. We explicitly tackle this in a Building Information Modeling (BIM) context, as to support much more than purely 3D geometry and visualization purposes. An integrated approach allows the same model to be used for technical drawings in 2D and an optimized 3D model in varying levels of detail for different visualization purposes. However, while most Building Information Modeling applications are targeted to current architectural practice, they seldom provide sufficient content for the recreation of historical models. This thus requires an extensive library of parametric, custom objects to be used and re-used for historically accurate models, which can serve multiple purposes. Finally, the approach towards the historical resources also poses interpretation problems, which we tackled using a reasonably straightforward set up of an information database, collecting facts and accuracies. This helps in the visualization of color-coded 3D models, depicting the accuracy of the model, which is a valuable graphical approach to discuss and communicate information about the historical study in an appealing format. This article will present the results of different reconstruction case studies, using a variety of design applications and discuss the inherent complexity and limitations in the process of translating an active, evolving model into an environment suitable for use in a real-time system. Especially workflow issues are identified, as the translation of the model into the game engine should be repeated several times, when the model is further refined and adapted. This used to involve a large amount of repetitive work, but the current crop of game engines have much better approaches to manage the updating of the geometry.
keywords Real-time architecture, game engines, cultural heritage, digital reconstruction, parametric modeling, Building Information Modeling
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p027
id cf2011_p027
authors Herssens, Jasmien; Heylighen Ann
year 2011
title A Framework of Haptic Design Parameters for Architects: Sensory Paradox Between Content and Representation
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 685-700.
summary Architects—like other designers—tend to think, know and work in a visual way. In design research, this way of knowing and working is highly valued as paramount to design expertise (Cross 1982, 2006). In case of architecture, however, it is not only a particular strength, but may as well be regarded as a serious weakness. The absence of non-visual features in traditional architectural spatial representations indicates how these are disregarded as important elements in conceiving space (Dischinger 2006). This bias towards vision, and the suppression of other senses—in the way architecture is conceived, taught and critiqued—results in a disappearance of sensory qualities (Pallasmaa 2005). Nevertheless, if architects design with more attention to non visual senses, they are able to contribute to more inclusive environments. Indeed if an environment offers a range of sensory triggers, people with different sensory capacities are able to navigate and enjoy it. Rather than implementing as many sensory triggers as possible, the intention is to make buildings and spaces accessible and enjoyable for more people, in line with the objective of inclusive design (Clarkson et al. 2007), also called Design for All or Universal Design (Ostroff 2001). Within this overall objective, the aim of our study is to develop haptic design parameters that support architects during design in paying more attention to the role of haptics, i.e. the sense of touch, in the built environment by informing them about the haptic implications of their design decisions. In the context of our study, haptic design parameters are defined as variables that can be decided upon by designers throughout the design process, and the value of which determines the haptic characteristics of the resulting design. These characteristics are based on the expertise of people who are congenitally blind, as they are more attentive to non visual information, and of professional caregivers working with them. The parameters do not intend to be prescriptive, nor to impose a particular method. Instead they seek to facilitate a more inclusive design attitude by informing designers and helping them to think differently. As the insights from the empirical studies with people born blind and caregivers have been reported elsewhere (Authors 2010), this paper starts by outlining the haptic design parameters resulting from them. Following the classification of haptics into active, dynamic and passive touch, the built environment unfolds into surfaces that can act as “movement”, “guiding” and/or “rest” plane. Furthermore design techniques are suggested to check the haptic qualities during the design process. Subsequently, the paper reports on a focus group interview/workshop with professional architects to assess the usability of the haptic design parameters for design practice. The architects were then asked to try out the parameters in the context of a concrete design project. The reactions suggest that the participating architects immediately picked up the underlying idea of the parameters, and recognized their relevance in relation to the design project at stake, but that their representation confronts us with a sensory paradox: although the parameters question the impact of the visual in architectural design, they are meant to be used by designers, who are used to think, know and work in a visual way.
keywords blindness, design parameters, haptics, inclusive design, vision
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2012_113
id ecaade2012_113
authors Jutraz, Anja ; Zupancic, Tadeja
year 2012
title Digital system of tools for public participation and education in urban design: Exploring 3D ICC
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 383-392
doi https://doi.org/10.52842/conf.ecaade.2012.1.383
wos WOS:000330322400039
summary This article is a starting point for the development of experiential urban co-design interfaces to enhance public participation in local urban projects and to be also used as a communication and collaboration tool in urban design. It is based on the previous research involving 3D city models utilized as understandable design interfaces for the non-technical public (Jutraz, Zupancic, 2011), where we have already explored different views (pedestrian, intermediate and bird’s-eye view), as well as the means by which the information obtained from these different views may be combined by shifting between viewpoints. Previous work was conducted in the “street lab” as well as the Urban Experimental Lab, which was developed specifi cally for the public’s participation in urban planning (Voigt, Kieferle, Wössner, 2009). Presented in this article is the next step that explores the immersive collaboration environment 3D ICC [1], formerly known as Teleplace. The environment was developed for effi cient collaboration and remote communication and shifts the research focus towards questions regarding how to employ both labs as interfaces between the non-technical public and design professionals. As we are facing the lack of digital systems for public participation and education in urban design, different digital tools for communication and collaboration should be combined into a new holistic platform for design. A digital system of tools needs to be developed that supports the urban design decision-making process and focuses on improved final solutions and increased satisfaction amongst all participants. In this article the system of digital tools for public participation, which include communication, collaboration and education, will be also defi ned, with its basic characteristics and its elements.
keywords Digital system of tools; collaboration; 3D model; public participation; urban design
series eCAADe
email
last changed 2022/06/07 07:52

_id eaea2009_martens_peter
id eaea2009_martens_peter
authors Martens, Bob; Herbert Peter
year 2011
title Potemkin Village, reloaded Visualization of Destroyed Synagogues within the Cityscape of Vienna
source Projecting Spaces [Proceedings of the 9th European Architectural Endoscopy Association Conference / ISBN 978-3-942411-31-8 ], pp. 53-58
summary In our everyday life experience the use of projection media is ever present. The theme of this EAEA-conference seems at a first glance to be in favour of the projected view in a timeline, directed towards to the future. However, a re-reading of the thematic direction does suggest a relative consideration and viewing of both past and future. This contribution will elaborate on the virtual reconstruction of synagogues in the City of Vienna. On one hand, the use of fac_ade projections will be presented as a means to recreate a previous (non-existing) situation over a given time span in a manner which does not change the physical condition of the current building stock as such. Given that interior photography of the synagogues is very limited or non-existent, the possibility of recreating a set of endoscopic representations will be examined.
series other
more http://info.tuwien.ac.at/eaea
last changed 2011/03/04 08:45

_id ecaade2011_070
id ecaade2011_070
authors Montenegro, Nuno; Beirão, José N.; Duarte, José P.
year 2011
title Public Space Patterns: Towards a CIM standard for urban public space
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.79-86
doi https://doi.org/10.52842/conf.ecaade.2011.079
wos WOS:000335665500008
summary This paper describes public space patterns (PSP) used as basic elements of the City Information Modelling (CIM) model proposed within a larger research project that aims to develop an urban design support tool.
keywords Urban Patterns; CIM; Description Grammars; Ontologies
series eCAADe
email
last changed 2022/05/01 23:21

_id ecaade2017_265
id ecaade2017_265
authors Motalebi, Nasim and Duarte, José Pinto
year 2017
title A Shape Grammar of Emotional Postures - An approach towards encoding the analogue qualities of bodily expressions of emotions
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 485-492
doi https://doi.org/10.52842/conf.ecaade.2017.2.485
summary This paper is concerned with the translation of analogue qualities of human emotions into digital readings. Human body postures are considered as one of the main behavioral conduits for non-verbal communication and emotional expressions (Shan et.al., 2007). This research is the first step towards identifying and detecting emotions through posture analysis of users moving through space; leading towards generating real time responses in the form of spatial configurations to users' emotions. Such spatial configurations would then help inhabitants reach certain emotional states that would enhance their life quality. In order to achieve this goal, we propose a methodology for developing a comprehensive shape grammar algorithm that could evaluate and predict bodily expressions of emotions. The importance of this study lies under the embodied interactions (Streech et.al., 2011) in space. As the circumfixed space impacts the embodied mind, the body impacts its surrounding including the architectural space.
keywords Shape Grammar; Computation; Emotion; Posture; Interactive Architecture
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia11_152
id acadia11_152
authors Rael, Ronald; San Fratello, Virginia
year 2011
title Developing Concrete Polymer Building Components for 3D Printing
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 152-157
doi https://doi.org/10.52842/conf.acadia.2011.152
summary The creation of building components that can be seen as sustainable, inexpensive, stronger, recyclable, customizable and perhaps even reparable to the environment is an urgent, and critical focus of architectural research. In the U.S. alone, the construction industry produced 143.5 million tons of building-related construction and demolition debris in 2008, and buildings, in their consumption of energy produce more greenhouse gasses than automobiles or industry.Because the inherent nature of 3D printing opens new possibilities for shaping materials, the process will reshape the way we think about architectural building components. Digital materiality, a term coined by Italian and Swiss architects Fabio Gramazio and Matthias Kohler, describes materiality increasingly enriched with digital characteristics where data, material, programming and construction are interwoven (Gramazio and Kohler, 2008). The research aspires towards this classification through the use of parametric modeling tools, analytic software and quantitative and qualitative analysis. Rapid prototyping, which is the automatic construction of physical objects using additive manufacturing technology, typically employs materials intended for the immediate analysis of form, scale, and tactility. Rarely do the materials used in this process have any long-term value, nor does the process - except in rare cases with expensive metal prototyping - have the ability to create actual and sustainable working products. This research intends to alter this state of affairs by developing methods for 3D printing using concrete for the production of long-lasting performance-based components.
series ACADIA
type work in progress
email
last changed 2022/06/07 08:00

_id cf2011_p024
id cf2011_p024
authors Tidafi, Temy; Charbonneau Nathalie, Khalili-Araghi Salman
year 2011
title Backtracking Decisions within a Design Process: a Way of Enhancing the Designer's Thought Process and Creativity
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 573-587.
summary This paper proposes a way computer sciences could contribute to stimulate the designer’s reflexive thought. We explore the possibility of making use of backtracking devices in order to formalize the designer’s thought process. Design, as a process of creating an object, cannot be represented by means of a linear timeline. Accordingly, the backtracking processes we are discussing here are not based on a linear model but rather on a non-linear structure. Beyond the notion of undoing and redoing commands within CAD packages, the backtracking process is seen as a way to explore and record several alternate options. The branches of the non-linear model can be seen as pathways made of sequential decisions. The designer creates and explores these pathways while making tentative moves towards an architectural solution. Within the design process, backtracking enables the designer to establish and act on a network of interrelated decisions. This notion is fundamental. It is quite obvious that information, in order to be meaningful, must occupy a specific place within an informational network. A data, separated from its context, is devoid of interest. By the same token, a decision takes on significance solely in combination with other decisions. In this paper, we examine what kinds of decisions are involved within a design process, how they are connected, and what could be the best ways to formalize the relationships. Our goal is to experiment ways that could enable the designer and his/her collaborators to get a clearer mental picture of the network of decisions aforementioned. The non-linear model can be seen as a graph structure. The user moves wherever he/she wants through the branches of the structure to establish the network of decisions or to get reacquainted with a previous design process. As a matter of fact, it can act in both ways: to reassess or to confirm a decision. On the one hand, the designer can go back to previous states, reconsider past choices, and eventually modify them. On the other hand, he/she can move forward and revisit a given sequence of decisions, so as to recapture the essence of a previous design process. It goes without saying that knowledge regarding the design process is constructed by the designer from his/her own experiences. Since the designer’s perception evolves as time goes by, the network of decisions constitutes a model that is continuously questioned and restructured. The designer does not elaborate solely an architectural object, but also an evolving model formalizing the way he/she achieved his/her aim. As Le Moigne (1995) pointed out, the model itself produces knowledge; afterwards, the designer can examine it so as to get a clearer mental picture of his/her own cognitive processes. Furthermore, it can be used by his/her collaborators in order to understand which thread of ideas led the designer to a given visual result, and eventually resume or reorient the design process. In addition to reflecting on the ideological implications inherent to this questioning, we take into account the feasibility of such a research project. From a more technical point of view, in this paper we will describe how we plane to take up the challenge of elaborating a digital environment enabling backtracking processes within graph structures. Furthermore, we will explain how we plane to test the first trial version of the new environment with potential users so as to observe how they respond to it. These experiments will be conducted in order to verify to what extend the methods we are proposing are able to i) enhance the designer’s creativity and ii) increase our understanding of designer’s thought process.
keywords backtracking, design process, digital environments, problem space, network of decisions, graph structure.
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2011_136
id ecaade2011_136
authors Bohnenberger, Sascha; de Rycke, Klaas; Weilandt, Agnes
year 2011
title Lattice Spaces: Form optimisation throgh customization of non developable 3d wood surfaces
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.751-758
doi https://doi.org/10.52842/conf.ecaade.2011.751
wos WOS:000335665500087
summary This paper discusses a collaborative project by RDAI architects, Bollinger+Grohmann and the timber construction company Holzbau Amann. The project is located in a former swimming pool in Paris and it is part of the new interior of a flagship store of the French fashion label Hermes. In late 2009, Rena Duma Architects, asked Bollinger+Grohmann to collaborate as structural engineers on a challenging design proposal within a very short timeframe. Three wooden lattice structures, the so-called “bulle” and one monumental staircase with a similar design approach characterize the interior of the new flagship store. The lattice structures are dividing the basement into different retail spaces. They vary in height (8-9 m) and diameter (8-12 m) and have a free-form shaped wicker basket appearance. Wood was the chosen material for these structures to strengthen the idea of the wickerbaskets and to create an interior space with a sustainable and innovative material.
keywords Digital production; parametric design; mass customization; wood; digital crafting
series eCAADe
email
last changed 2022/05/01 23:21

_id acadia11_242
id acadia11_242
authors Braumann, Johannes; Brell-Cokcan, Sigrid
year 2011
title Parametric Robot Control: Integrated CAD/CAM for Architectural Design
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 242-251
doi https://doi.org/10.52842/conf.acadia.2011.242
summary Robots are gaining popularity in architecture. Snøhetta has recently purchased their own industrial robot, becoming one of the first architectural offices to adopt robot technology. As more and more architects are exposed to robotic fabrication, the need for easy interoperability, integration into architectural design tools and general accessibility will increase. Architects are discovering that industrial robots are much more than kinematic machines for stacking bricks, welding or milling - they are highly multifunctional and can be used for a huge variety of tasks. However, industry standard software does not provide easy solutions for allowing direct robot control right from CAAD (Computer Aided Architectural Design) systems. In this paper we will discuss existing methods of programming industrial robots, published architectural results (Gramazio and Kohler 2008) and the design of a new user interface that allows intuitive control of parametric designs and customized robotic mass production, by integrating CAM (Computer Aided Manufacturing) functions into CAAD.
keywords robot programming; parametric design; mass customization; grasshopper component design; fabrication; robot milling; digital architecture
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id cf2011_p168
id cf2011_p168
authors Ciblac, Thierry
year 2011
title Parametric Design with Standard Elements for Non-Standard Architecture
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 119-132.
summary The development of non-standard architecture is often combined with the use of non-standard elements. But for economical or sustainable reasons, the use of standard elements may be particularly useful. The introduction of standard elements adapted to geometries far from parallelepipeds and freely designed raises a specific problem. The aim of this paper is to explore some ways offered by computing tools in order to help architects in the design process of non-standard shapes using standard elements. An approach is proposed for a specific typology of systems composed of constant length elements. The method used herein is based on parametric modeling associated with constraint resolution algorithms. (short abstract because full paper already written)
keywords parametric modeling, non-standard architecture, standardization, form finding
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia11_48
id acadia11_48
authors Novak, Marcos
year 2011
title AlloPolis and Kami: Manifesto toward the computational composition of the new polis
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 48-51
doi https://doi.org/10.52842/conf.acadia.2011.048
summary Much of what computers allow us to do is spectacular. Indeed, much of current architectural production is better than before if considered objectively — better engineered, more efficient, more ergonomic — and yet, much is also curiously devoid of meaning. Like the spectacular display of ergonomically designed and computer manufactured shoes at a “lifestyle” shoe store, the designs are advanced, clever, and inventive — but to what end? Let me quickly underscore that this is not just a problem for architecture, indeed, the same can be said for just about every mode of production; there is more of everything — and less absorption of anything significant — and less to absorb, even.
series ACADIA
type keynote paper
email
last changed 2022/06/07 08:00

_id cf2011_p081
id cf2011_p081
authors Shadkhou, Shaghayegh; Bignon Jean Claude
year 2011
title Cooperative Design to Construction: A sharable Model for Non-Standard Timber Construction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 603-618.
summary Abstract Architectural design is confronted to a renewal of formal vocabulary regarding the advancements on computational techniques. Non-standard architecture demands a hybrid approach regarding design and construction. It revives common borders between architectural and technical design. However, the respective digital assistance is confronted to discontinuity. This paper reports on part of a research activity aiming at elaborating a sharable model which by integrating construction knowledge assists the emergence of constructible geometry for timber construction.
keywords digital design, CAD/CAM chain, parametric modeling, timber construction
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p116
id cf2011_p116
authors Stavric, Milena; Wiltsche Albert
year 2011
title Ornamental Plate Shell Structures
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 817-832.
summary The development of digital technologies in the last twenty years has led to an unprecedented formal freedom in design and in the representation in virtual space. Combining non-standard geometry with CAD tools enables a new way of expression and realization of architectural ideas and conceptions. The transformation of a virtual double-curved surface into a buildable physical structure and object is always accompanied by huge costs and big problems like geometric and statical ones. Our structure is a type of shell structure consisting of plane panels. The load bearing system is organized in a way so that the forces are distributed along the edges of the plane elements. A structure with plane elements supports a high stiffness in combination with a relatively small overall weight. This is due to smooth curved shape of the geometry. We show geometric methods how to control the construction of curved surfaces out of planar building elements. The approach is based on the discretization of the surfaces by plane elements derived from tangent planes. The novel process in this work is that we take the surface curvature at local points into account. This solves former problems which occurred when intersecting the planes. The fact that there is an infinite number of possibilities when selecting tangent planes on a surface raises the issue of the way and conditions which make it possible to select specific tangent planes whose intersection would produce a desired three-dimensional shape. In order to satisfy also aesthetical requirements we engage plane geometrical patterns and ornaments and transfer them into spatial shape. So a three-dimensional ornamental shape is deduced from a two-dimensional ornament. Another task which will be showed is how to limit the infinite range of possibilities to generate a preferred spatial ornament and on what conditions surface tessellation would be ornamental in character, i.e. it would generate not only the functional, but also the aesthetic component of a free-form surface.
keywords ornament, discretization, free-form surfaces
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2011_022
id ecaade2011_022
authors Achten, Henri
year 2011
title Degrees of Interaction: Towards a Classification
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.565-572
doi https://doi.org/10.52842/conf.ecaade.2011.565
wos WOS:000335665500065
summary In architecture various approaches have been developed do deal with changing demands on the building. The most recent development is interactive architecture. In this paper we aim to outline what interactive architecture is. First we define the type of performance behavior that an interactive building or environment has. Following, we consider the relation between the system and the user. We derive four types of relations, characterized as “perfect butler,” “partner,” “environmental,” and “wizard.” Interactive systems are composed of sensors, controllers, actuators, and materials. Various degrees of interactivity can be achieved with such systems, ranging from passive, reactive, autonomous, to agent systems. Complete with earlier discussion of design methods this provides the range of aspects that should be considered when designing interactive architecture.
keywords Interactive architecture; Human-Computer interaction; design theory
series eCAADe
email
last changed 2022/05/01 23:21

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_797635 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002