CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 427

_id ecaade2011_086
id ecaade2011_086
authors Lassance, Guilherme; Libert, Cédric; Lassance, Patricia Figueira; Feghali, Maria Elisa
year 2011
title The sensitive tower: Architectural and urban design education faced with fragile metropolitan ecologies
doi https://doi.org/10.52842/conf.ecaade.2011.581
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.581-588
summary Neighborhoods that are still outside the market target can find alternative ways of re-development. Therefore, it is necessary to design architectures compatible with their fragile ecologies. This research benefits from a previous study where we tried to observe the evolution of the uses of buildings and ways of living faced with changes in environmental conditions in a given urban context. Increased automobile traffic has led to changes in the use of residential spaces whose function was gradually replaced by commercial activities. Making use of graphic-oriented interpretation of urban ambiance and landscape analysis methodology applied to the design of different floor levels, this paper aims to introduce the concept of sensitive tower defined on the basis of observations made in our post-occupancy survey as a teaching strategy for the design studio faced with the current challenges of the contemporary metropolis.
wos WOS:000335665500067
keywords Design process; design education; contemporary metropolis; urban environment
series eCAADe
email
last changed 2022/05/01 23:21

_id cf2011_p049
id cf2011_p049
authors Hii Jun Chung, Daniel; Chye Kiang Heng, Lai Choo Malone Lee, Ji Zhang
year 2011
title Analyzing the Ventilation Performance of Tropical High Density Residential Precincts using Computational Fluid Dynamics
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 351-366.
summary Major cities in the world are getting bigger as they continue to grow to cater for more population increase. These cities normally forced the urban planning to go high density. In the tropical context, high density cities like Singapore and Hong Kong do not have the luxury of space to go low rise and compact. These cities have to build to the floor area ratio of 4 and above to cater for the population. Their only solution is to go up, as high as possible, to the extent that the natural wind flow pattern will be altered, which brings environmental impact to the people. This is generally not good since wind flow helps to maintain the thermal comfort of the people as heat and pollutants are being channeled out of the city to avoid Urban Heat Island effect. In the tropical context, wind flow is crucial to maintain people’s comfort as the temperature is generally very high from the exposure of the sun for the entire year. Studies have shown that wind flow plays the most significant part in maintaining human comfort despite exposing to direct sunlight in the tropics. Therefore, wind flow analysis is extremely crucial to make the design sustainable and energy efficient, as people will not have to depend on mechanical ventilation to compensate for the lack of wind flow. Computational Fluid Dynamics (CFD) has always been used in the field of architecture, urban design and urban planning to understand the patterns of wind flow through the built environment apart from wind tunnel tests. The availability of more powerful hardware for the mainstream computer users as well as the lowering costs of these computers made CFD more possible to be adopted in the design world today. This also means using CFD in the design process, especially to analyze the impact of the design to the current site conditions and annual wind patterns will help the new design to be more responsive to the site. The interest of this paper is to analyze the high density typologies to see how well they respond to the local wind flow pattern. A typology is considered acceptable when the wind flow going through the site is still maintaining acceptable wind speed. This means it does not block off the wind and create stagnant spaces. Different designs generate different typologies which will respond differently to the wind pattern. The study aims at comparing the local high density typologies in terms of their response to the wind. Changes to a typology can be explored too to see if the performance will be different. For a typology which is considered a total failure in terms of response to wind, it may improve its performance if the orientation is altered. The CFD software can also parametrically respond to the changes of the typologies’ dimensions. This is helpful to see how much more a typology can still be performing well before failure by increasing the floor area index. The easiest way to do this is to pump up the building height. In conclusion, designing in response to wind is extremely important as it is more sustainable and responsive to Urban Heat Island effect. A design which responds well to the wind patterns will help save cost of cooling load and fan expenditure. The people will also be more willing to use the outdoor spaces which will as a whole generate more vibrant city spaces. As a result, a high density city with huge population count can still enjoy good thermal comfort if the general urban planning and design respond well to wind.
keywords computational fluid dynamics, sustainability, high density, urban design, airflow, ventilation
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadiaregional2011_020
id acadiaregional2011_020
authors Hudson, Roly; Drew MacDonald, Mark Humphreys
year 2011
title Race track modeler. Developing an Iterative Design Workflow Combining a Game Engine and Parametric Design
doi https://doi.org/10.52842/conf.acadia.2011.x.v2b
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
summary This paper documents the continuing development and testing of a novel digital work flow established and implemented for the design and redevelopment of formula one racing tracks. The Race Track Modeler (RTM) tool uses a game engine to simulate driving around proposed track designs. Performance data from the simulation is combined with real data acquired from analysis of vehicle mounted accident data recorders (ADRs). The output of the tool is a graphical representation of simulated stopping positions of vehicles that have lost control and left the track. This information directly informs the design of motor racing facilities; the zoning of spectator facilities, position and specification of crash barriers (if required), and surface material selection for the run-off zones (the area where vehicles are expected to stop after losing control and leaving the track). The RTM can suggest further design changes to the track geometry which are then fed back into the game engine. The project involves methods of binding analysis of design directly to geometry together with input from interactive controls. The RTM has been developed and tested during the redevelopment of Silverstone race track in the United Kingdom (figure 1) this paper documents the current state of the tool and concludes with proposed future developments.
series ACADIA
last changed 2022/06/07 07:49

_id caadria2011_028
id caadria2011_028
authors Lesage, Annemarie and Tomás Dorta
year 2011
title Two conceptual design tools and an immersive experience: Beyond the pragmatic-pleasurable split in UX
doi https://doi.org/10.52842/conf.caadria.2011.291
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 291-300
summary In a recent study, we compared two conceptual design tools supporting collaboration, a whiteboard software accessed through Internet, and a hybrid immersive system, the Hybrid Ideation Space (HIS). The result of the study appeared to favour the HIS because of its immersive qualities. In this paper, we seek possible explanations as to why immersion delivered a better experience, by looking at the mental workload in relationship to the experience. For the workload we rely on Wickens’ four-dimensional multiple resource model, specifically processing codes (verbal/spatial) and visual channels; and for the experience, Csikszentmihalyi’s concept of flow and our own concept of Design Flow. The designers seemed to be responding to different styles of information processing required of them by each tool, one being more experiential and the other requiring a heavier mental workload. Insight in the cognitive underpinning of a strictly pragmatic immersive experience suggests that UX has also to do with how the information is received and processed by users, without isolating the functional from the rest of the experience.
keywords User experience; immersion; flow; mental workload; Hybrid Ideation Space
series CAADRIA
email
last changed 2022/06/07 07:52

_id eaea2009_ohno_wada
id eaea2009_ohno_wada
authors Ohno, Ryuzo; Yohei Wada
year 2011
title Visibility of Guide Signs for Pedestrians in Motion: An Application of an Immersive Visual Simulation System
source Projecting Spaces [Proceedings of the 9th European Architectural Endoscopy Association Conference / ISBN 978-3-942411-31-8 ], pp. 107-114
summary When we visit a complex railway station or a large shopping mall, we rely on guide signs to find our destination. These are not always helpful, however, since the sheer number of signs around us may distract us from picking up the necessary information. The presence of other pedestrians also adds to the difficulty by blocking our view. In crowded situations where we cannot disturb pedestrian flow, we must moreover be able to read signs while walking and paying attention to the people ahead. With the above in mind, the present study uses an immersive visual simulation system to examine the influence of observation conditions on sign detection and recognition by pedestrians in motion. Two experiments were performed for the present study. The first examined the readable range (readability threshold) of three types of sign lettering in motion. This served to determine conditions for the second experiment as well as to test the performance of the immersive visual simulation system. The system displays wide-angle images (180 degrees both vertically and horizontally) capable of filling viewers’ peripheral vision; viewers may also gain stereoscopic vision through the use of polarizing glasses. The second experiment examined the influence of various observation conditions on sign detection and recognition while in motion. The virtual experimental space, made to resemble a concourse in a large railway station, was 15 m wide and 3.5 m high. The subjects, nine university students, were asked to detect the target that was assigned one of the eight figures while moving through the virtual space at a walking speed (1.5m/s) and to tap a keyboard at hand when the target was detected. At the moment of the subject’s response, the distance between the observation point and the target in the virtual space was recorded. The factors tested were sign layout (density, aggregation, alignment) and presence of other pedestrians. The degree of influence of a factor was determined by analyzing the detection distance for a comparison stimulus versus for a standard stimulus as well as the ratio of targets detected. The experiments revealed that the readability of figures viewed in motion may differ from when they are viewed under static conditions. The following factors were found to be relevant to sign detection and recognition while in motion: 1) density of signs (amount of visual information), 2) smoothness of eye movement from one sign to another, and 3) allocation of visual attention. Although the results were obtained in virtual experimental settings, and the absolute numerical values therefore have limited meaning, the results nonetheless empirically clarify some of the mechanisms involved in the detection and recognition of guide signs by pedestrians.
series other
more http://info.tuwien.ac.at/eaea
last changed 2011/03/04 08:45

_id caadria2011_047
id caadria2011_047
authors Ostwald, Michael J.; Josephine Vaughan and Stephan K. Chalup
year 2011
title Data flow and processing in the computational fractal analysis method
doi https://doi.org/10.52842/conf.caadria.2011.493
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 493-502
summary One of the few quantitative methods available for the consistent analysis of architectural form is the ‘box-counting’ approach to determining the approximate fractal dimension of a plan or elevation. In its computational form this method has been used to analyze the plans and facades of a wide range of buildings. The data points produced are synthesized by the software into a series of fractal dimension (D) values that are in turn compiled in various ways to produce a series of composite results describing a complete building. Once this process is complete the data may be coded with additional information producing a set of mathematical results that describe the form of a building. This paper offers the first complete description of this important analytical process from the point of view of information flow, algorithmic operations, review options and data magnitude. No previous paper has detailed the full scope of the data used in the computational method, or the way in which various stages produce different types of outcomes. The purpose of this paper is to elucidate the way in which this particular computational method, drawing its inspiration from the complexity in natural systems, may be used to process different types of information and produce various forms of quantitative data to support architectural design and analysis.
keywords Fractal analysis; computational analysis
series CAADRIA
email
last changed 2022/06/07 08:00

_id acadia11_162
id acadia11_162
authors Payne, Andrew
year 2011
title A Five-axis Robotic Motion Controller for Designers
doi https://doi.org/10.52842/conf.acadia.2011.162
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 162-169
summary This paper proposes the use of a new set of software tools, called Firefly, paired with a low-cost five-axis robotic motion controller. This serves as a new means for customized tool path creation, realtime evaluation of parametric designs using forward kinematic robotic simulations, and direct output of the programming language (RAPID code) used to control ABB industrial robots. Firefly bridges the gap between Grasshopper, a visual programming editor that runs within the Rhinoceros 3D CAD application, and physical programmable microcontrollers like the Arduino; enabling realtime data flow between the digital and physical worlds. The custom-made robotic motion controller is a portable digitizing arm designed to have the same joint and axis configuration as the ABB-IRB 140 industrial robot, enabling direct conversion of the digitized information into robotic movements. Using this tangible controller and the underlying parametric interface, this paper presents an improved workflow which directly addresses the shortfalls of multifunctional robots and enables wider adoption of the tools by architects and designers.
keywords robotics; CAD/CAM; firefly; direct fabrication; digitizing arm
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id acadia11_40
id acadia11_40
authors Weinstock, Michael
year 2011
title The Architecture of Flows: Integrated Infrastructures and the ‘Metasystem’ of Urban Metabolism
doi https://doi.org/10.52842/conf.acadia.2011.040
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 40-43
summary The traditional approach to urban design studies has been based on what can be described as a generalised anatomical model, e.g., functional zoning coupled to metaphors such as green areas serving as the ‘lungs’ of cities. Despite the frequent use of biological metaphors, urban design has generally proceeded from an understanding of cities as static arrays of buildings and infrastructures that exist in, but are distinct from, stable environments. But this approach does not reflect the dynamic systems of cities throughout history, nor their close coupling to the dynamics of their local environment, climate and ecology, and now the global dynamics of culture and economy. The limitations of this approach, in which cities are treated as discrete artefacts, rather than nodes interconnected by multiple networks, are compounded by the legal and regulatory boundary of the city usually being defined as an older core, so that cities are regarded as something quite separate from their surrounding territory. All cities have administrative boundaries, but cities are very rarely either physically or energetically contained within those administrative boundaries. In the past, cities gathered most of the energy and materials they needed from their immediate local territory, and trade linked systems of cities across whole regions. The growth and vitality of many cities are no longer dependent on the spatial relationship with their immediate environs but on the regional and global flows of resources. The flow of materials, information and energy through cities comes from far outside their physical and regulatory (municipal) boundaries. Cities now extend their metabolic systems over very great distances, so that the extended territory of the urban metabolism of a city and its geographical ‘place’ are often completely decoupled.
series ACADIA
type keynote paper
email
last changed 2022/06/07 07:58

_id cf2011_p092
id cf2011_p092
authors Bittermann, Michael S.
year 2011
title Sustainable Conceptual Building Design using a Cognitive System
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 297-314.
summary A cognitive system for conceptual building design is presented. It is based on an adaptive multi-objective evolutionary algorithm. The adaptive approach is novel and, in contrast with conventional multi-objective evolutionary algorithms, it explores the solution space effectively, while maintaining diversity among the solutions. The suitability of the approach for conceptual design of a multi-purpose building complex is demonstrated in an application. In the application, the goal of maximizing sustainability is treated by means of a model, which is established using neural computations. The approach is found to be suitable for treating the soft nature of the sustainability concept. Also, the capability of the approach to compare the performance of alternative solutions from an unbiased viewpoint, i.e. without committing a-priori to a relative importance among the performance aspects, is demonstrated.
keywords computational design, sustainable design, adaptive evolutionary algorithm, Pareto optimality, neural computation
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2011_130
id ecaade2011_130
authors Güngör, Özge; Ça_da_, Gülen; Balaban, Özgün
year 2011
title A Mass Customization Oriented Housing Design Model Based on Genetic Algorithm
doi https://doi.org/10.52842/conf.ecaade.2011.325
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.325-331
summary Today, right along with the products marketed and manufactured by the mass production techniques, continuously developing computing and technology have an undeniable impact on customized design, in which the users have a say on the products design and manufacturing. Mass customization is slowly settling down in architectural design concepts as well, like housing which is one of the best areas where users can reflect their living habits and preferences. In this study, user centric mass customization based model is developed, which creates housing floor plan combining the user-supplied data with the best possible creations generated by the genetic algorithms.
wos WOS:000335665500037
keywords Architectural Design Computing; Housing Design; Genetic Algorithm; Mass Customization
series eCAADe
email
last changed 2022/05/01 23:21

_id cf2011_p019
id cf2011_p019
authors Haeusler, Matthias Hank; Beilharz Kirsty
year 2011
title Architecture = Computer‚ from Computational to Computing Environments
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 217-232.
summary Drawing on architecture, urban digital media, engineering, IT and interaction design, the research presented in this paper outlines a possible shift from architecture designed through computation (any type of process, algorithm or measurement done in a computational matter) towards architecture capable of computing (developing, using and improving computer technology, computer hardware and software as a space-defining element). The research is driven by recent developments in four fields, as follows: (a) Architecture in its recent development has shifted from a planar box, as was the ideal in the modernist movement, towards complex and non-standard forms. (b) The design concepts of non-standard surfaces have been adopted into media facades and media architecture by liberating the pixel from its planar position on a screen [1]. (c) Advancements in pervasive computing applications are now able both to receive information from the environment in which they are used and to detect other devices that enter this environment [2]. (d) Developments in advanced autonomous systems such as Human Computer Interaction (HCI) or Human Robot Interaction (HRI), have produced intelligent systems capable of observing human cues and using these cues as the basis for intelligent decision-making [3]. Media fa_ßade developments work in the direction of the above-mentioned four fields, but often come with limitations in architectural integration; they need additional components to interact with their environment and their interactions are both often limited to visual interactions and require the user to act first. The researched system, Polymedia Pixel [4] discussed in this paper, can overcome these limitations and fulfil the need for a space-defining material capable of computing, thus enabling a shift from architecture designed by computation towards architecture capable of active computing. The Polymedia Pixel architecture merges digital technology with ubiquitous computing. This allows the built environment and its relation with digital technology to develop from (a) architecture being represented by computer to (b) computation being used to develop architecture and then further to where (c) architecture and the space-defining objects have computing attributes. Hence the study presented aims to consider and answer this key question: ‚ÄòWhen building components with computing capacity can define space and function as a computer at the same time, what are the constraints for the building components and what are the possible advantages for the built environment?‚Äô The conceptual framework, design and methods used in this research combine three fields: (a) hardware (architecture and design, electronic engineering) (b) software (content design and IT) and (c) interaction design (HCI and HRI). Architecture and urban design determinates the field of application. Media architecture and computer science provide the technological foundation, while the field of interaction design defines the methodology to link space and computing [5]. The conceptual starting point is to rethink the application of computers in architecture and, if architecture is capable of computing, what kind of methodology and structure would find an answer to the above core research question, and what are the implications of the question itself? The case study discusses opportunities for applying the Polymedia Pixel as an architectural component by testing it on: (a) constraint testing ‚Äì applying computational design methodologies to design space (b) singular testing - discussing the advantages for an individual building, and (c) plural testing ‚Äì investigating the potential for an urban context. The research aims to contribute to the field of knowledge through presenting first steps of a System < - > System mode where buildings can possibly watch and monitor each other, additional to the four primary interactive modes of operation. This investigation, its proposed hypothesis, methodology, implications, significance and evaluation are presented in the paper.
keywords media architecture, computational environments, ubiquitous computing, interaction design, computer science
series CAAD Futures
email
last changed 2012/02/11 19:21

_id eaea2009_kardos_plachtinska
id eaea2009_kardos_plachtinska
authors Kardos, Peter; Petra Plachtinska
year 2011
title Spatial Experience in Real & Virtual Environment as an Urban Design Tool
source Projecting Spaces [Proceedings of the 9th European Architectural Endoscopy Association Conference / ISBN 978-3-942411-31-8 ], pp. 59-64
summary The innovations of information technologies and the new possibilities of multimedia exploitation in the realm of architectural design and education are supporting the development of image communication methods on the basis of interactivity. The creative process of searching and decision-making in the urban design studio of our Faculty is supported by spatial modeling methods. The draft is sketched in modeling material on a working model. From the didactic point of view, relevant are mainly those phases, in which is possible, in the imaginative way, to support the searching and decision making process with the aim to test, compare and continuously evaluate the fulfillment of the hypothetic intentions of the solution responsibilities. The model becomes an interactive medium of cooperation between teacher and the working group of students. From the view of design crystallization, the dominant phases, in the creative process, are examining, verification, and simulation. The alternatives of material-compositional content and the spatial performance charts of modeled physical structure are verifying and the visual experience of the anticipated urban environment is simulated by the author, but also through the future client’s eyes. The alternation of the composition’s spatial configurations is generally appreciated by the static visual verification in the endoscopic horizon like the architectural spatial studies. The effective method of the progress generates a creative atmosphere for the generative thinking and design. The laboratory simulation of spatial experiences and their evaluation is performed following the perception psychology relations. The simulation of digestion of the new spatial reality intervenes the customer’s identification and guides to subjective approaches towards the quality and complexity of the formed environment. The simulation is performed in motion in order to be able to anticipate the dynamic continuity of subjective spatial imagination. The induced atmosphere will direct the evaluational attitudes of authors on comparison and selection of the successful alternatives. In our fee, we will present the demonstrations of selected static and dynamic notations of image sequences prepared in our laboratory. The presentations have been created in order to analyze, verify and offer imaginative support to creative findings in result of fulfilling the studio design tasks in the educational process. The main one is the design of urban spatial structures. The laboratory methodology is in the first place oriented on the analogue-digital procedures of "endoscope" model simulation. At the same time it also explores and looks for new unconventional forms of visual communication or archiving as imagination support to specialist and laymen participants in creative, valorization and approval processes.
series other
more http://info.tuwien.ac.at/eaea
last changed 2011/03/04 08:45

_id ecaade2011_008
id ecaade2011_008
authors Kolovou, Eleni
year 2011
title Sensitive skin design: a generative approach
doi https://doi.org/10.52842/conf.ecaade.2011.453
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.453-460
summary This paper presents a framework of study of an iterative evolution of a modular component designed in an attempt to simulate material constraints and motional response with the perspective to be multiplied into a dynamic system. The main scope of this project was to investigate the process that maps a territory of possibilities, among which lies the potential architectural solution. In order to explore this field a parametric model has been developed. The simulation of the materials nature has been embedded in the algorithm on a geometry constraint basis in an attempt to simulate the behavior of the system comprised by elements in tension and torsion. A multiplication process of the module was introduced at a following stage of the research focusing on regular tessellations and circle packing on the plane. Responsive performance has been studied on a selected specimen of the evolution given a hypothetic context scenario according to which the scale of the design was set at a façade component level. The resulting responsive permeable skin was presented as a potential design solution among the successive approximations of this algorithm. Along the course of the research the parametric tools were used not only as a medium of synchronous output visualization but also as a mechanism to simulate material properties, structural constrains, environmental data, and worked as stimuli of inspiration driving the overall design process.
wos WOS:000335665500052
keywords Parametric design; generative design; simulation and visualization; responsive skin
series eCAADe
email
last changed 2022/05/01 23:21

_id caadria2011_001
id caadria2011_001
authors Muslimin, Rizal
year 2011
title One-piece weaving: Reconfiguring folding and knotting algorithm in computational design
doi https://doi.org/10.52842/conf.caadria.2011.009
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 9-18
summary A beneficial symbiotic relationship between traditional crafts and new technologies may be achieved when computational designers view the existing traditional art and craft as partners to collaborate with and when traditional cultures are willing to accept new technologies in an enthusiastic yet critical manner. This research aims to reconfigure computational design paradigm at the intersection of traditional and digital technology by evaluating a series of relatively recent computational design experiments aimed at reconceptualizing weaving as a combination of folding algorithm and knot theory with respect to the apparent dialectical tension between traditional context and computational theories in architectural design.
keywords Weaving; folding; knot
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadiaregional2011_019
id acadiaregional2011_019
authors Peters, Troy
year 2011
title Simulation by Design: A Parametric Design Tool for Zero Energy Buildings
doi https://doi.org/10.52842/conf.acadia.2011.x.q2q
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
summary To address the shortcomings of integrating building simulation in architectural design and to make it more appealing to students, a simple interface to Energyplus was created. This interface models a simple rectangular building that is passively heated by direct gain and cooled by ventilation. A simple photovoltaic interface has also been added to supply fan energy. This tool has an OpenGL modeler for visualization and uses Energyplus for calculations. The interface will run a full year simulation and graph the results. The results are reported in a yearly graph that shows the outdoor and indoor temperature. The indoor temperature range is based on adaptive comfort level. The interface was tested and used in an introductory design studio in order to comply with the 2010 imperative. The students simulated a simple box and changed the buildings parameters until the building fell within the adaptive comfort zone for most of the year. The climate simulated was Chicago, IL. Using these parameters the students then designed the building. The resulting designs show that even though the students were restricted in parameters, such as window percentage, they were still able to creatively design unique buildings that use zero to negative net energy for heating and cooling in a climate such as Chicago.
series ACADIA
last changed 2022/06/07 07:49

_id cf2011_p104
id cf2011_p104
authors Sherif, Ahmed; El Zafarany Abbas
year 2011
title Designing the Window to Fit a Shading Device, A Reversed Method for Optimizing Energy Efficient Fenestration
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 383-399.
summary Solar radiation passing through a window contributes significantly to cooling loads and energy consumption, especially in hot climates. Most CAAD tools handling energy efficient design help designers to define the optimal shading device to protect a window of a certain shape, usually a rectangle, but some parts of the rectangular window (such as lower corners) are typically difficult to protect. Usually the whole shading device becomes bigger to shade these corners, which over-shades the rest of the window, increasing artificial lighting and heating loads. It also increases the complexity, visual impact and cost of the shading device. Changing the shape of the window by cutting these corners may reduce the size of the shading device considerably, which opens way to a different –or even a reversed- approach: “Designing the window to fit a shading device instead of designing the shading device to fit the window!” This approach has several potential applications. The building form itself sometimes works implicitly as a shading device. For example, if the building plan shape is a U or L shape, some parts of the walls become shaded, the windows can be placed in these shaded parts, and the window shape can be designed to fit the shadow pattern caused by the building form, changes in the building profile gives similar chances to design windows that fit the shadow pattern. Conceptually, this approach makes energy efficiency a form giving attribute, helping to create innovative facades, while giving an energy efficient configuration for both window and its shading device. CAAD tools can help the designer adopt such an innovative approach, by proposing the window shape that suits an arbitrary shading device created by the designer or a building mass. This paper examines the validity of the approach and introduces the approach required for developing a software module that can be integrated with other CAAD tools such as the Ecotect software. This would enable the designers to use this approach. The method handles the complexity of time-dependent solar geometry and radiation intensity, the geometry of both the window and shading device, and the designers set of objectives, enabling the designer to define the required configuration of window and shading device.
keywords Energy Efficiency, Low Energy Architecture, Windows, Shading Devices, Algorithm, Oprimization
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ijac20109202
id ijac20109202
authors van Embden, Maria Vera; Andres, Michela Turrin, Peter von Buelow
year 2011
title ARCHITECTURAL DNA: A genetic exploration of complex structures
source International Journal of Architectural Computing vol. 9 - no. 2, 133-150
summary The approach demonstrated in this paper uses Evolutionary Computation (EC) to enhance and modify structural form based on biological micro structures.The forms are modified to conform to new boundary conditions associated with architectural structures.The process is based on a Genetic Algorithm (GA) which visually exposes for the designer a range of good performing solutions within thedesign space. The application of the GA is combined with parametric software, in this case Generative Components (GC). The program described here as ParaGen (Parametric Genetic Algorithm), uses a Finite Element Analysis (FEA) to determine the structural performance of the forms.This allows the designer to manipulate and optimize a parametrically defined model based on predefined criteria and parameters.The opportunities and limitations of this design process are explored and evaluated based on an experimental case study using topologies based on radiolarian skeletons.The design procedure described includes user interaction in the exploration of solutions that perform well both for the explicitly defined programmatic criteria (structural) as well as for the implicit criteria provided by the designer (visual aesthetic).
keywords structural morphology, parametric design, genetic algorithm, structural optimization.
series journal
last changed 2019/05/24 09:55

_id acadia10_327
id acadia10_327
authors Vassigh, Shahin; Herrera, Silvana
year 2010
title Interactive Teaching through Simulation Environments
doi https://doi.org/10.52842/conf.acadia.2010.327
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 327-332
summary Spurring new and innovative building design will be critical to the urban energy and economic future of the nation. The operation of completed buildings account for 48% of the nation’s annual greenhouse gas emissions, and 76% of all electricity generated by U.S. power plants goes to supply the building sector. Therefore developing and applying new and innovative sustainable building design will have a measurable impact on the environment. Recent studies show sustainable building design is closely linked to system integration, where various components of a building work in confluence to produce synergetic benefits. As a result, a critical component of sustainable design involves a clear understanding of building systems operation, interaction, and the selection parameters. A consideration of suitable building systems, gauging their interaction, and proposing well integrated systems can lead to producing efficient models of sustainable buildings with minimal impact on the environment. The following paper outlines the progress on a project entitled “Building Literacy: the Integration of Building Technology and Design in Architectural Education.” The project develops a digital tool for teaching/learning architectural technology from an integrated systems perspective. The project attempts to immerse students in a simulated environment that is based on the real life practice of architecture. The project accomplishes this by harnessing the capabilities of simulation and dynamic modeling programs, as well as the state of art graphic media, to create compelling and rewarding reasons for students’ engagement in the lear ning process. The project involves a multidisciplinary team of faculty from Florida International University, University at Buffalo the State University of New York, and Iowa State University and is funded by the US Department of Education for the period of 2007-2011.
keywords educational software, interactive learning, interactive teaching, simulation programs, building performance, building integrated systems,
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id cf2011_p033
id cf2011_p033
authors Dorta, Tomas; Kalay Yehuda, Lesage Annemarie, Perez Edgar
year 2011
title Comparing Immersion in Remote and Local Collaborative Ideation Through Sketches: a Case Study
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 25-40.
summary Sketches are used in design to support ideation, communication, and collaboration because of their intuitiveness, abstraction, ambiguity and inaccuracy. Design collaboration using freehand sketches is possible through whiteboard software on the Internet. Designers can co-design and share design referents through these tools while adding gestures and expressions using web cams. Freehand sketching using whiteboard software retains the same proportion and scale problems as traditional sketching on paper, but adds digital behaviour (pen tablet display, undo, etc.) and the ability to share sketches in real time with a remote design team. Still, designers are not immersed in their representations. Moreover, such representations can include errors because designers work without reference to real-life perspective views. We developed a system, called the Hybrid Ideation Space (HIS) that allows designers to be immersed in their freehand sketches. The system supports local and remote collaboration, allowing designers to be literally inside their life sized, real time representations, while sharing them with remote collaborators who use another HIS. This paper presents a case study comparing the HIS to conventional whiteboard software (Vyew™) in a context of local and remote design collaboration on two landscape architecture projects. Two multidisciplinary teams worked on the first steps of two ad-hoc projects. The goal was to make an initial observation of the impact of immersion and see if it delivers benefits to collaborative ideation. Two methodological tools supported the study: the Design Flow for the experience that includes the NASA TLX to measure the workload, and the Collaborative Ideation Loop (CI-Loop) for design collaboration.
keywords Collaboration, ideation, immersion, sketches, whiteboard
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia11_216
id acadia11_216
authors Dorta, Tomás; Kalay, Yehuda; Lesage, Annemarie; Pérez, Edgar
year 2011
title Comparing Immersion in Collaborative Ideation through Design Conversations, Workload and Experience
doi https://doi.org/10.52842/conf.acadia.2011.216
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 216-225
summary This paper presents a case study comparing the HIS (Hybrid Ideation Space), a system allowing designers to be physically immersed in their sketches and physical models, and Vyew™, a whiteboard software, in local and remote design collaboration; aiming to see if immersion benefits collaborative ideation. Three methodological tools were used: Design Conversations (Collaborative Ideation Loop “CI-Loop”, Collaborative Conversations “CC” and Collaborative Moving “CM”), Workload using NASA TLX and Design Flow for the designers’ experience. Local collaboration results appear to have benefited from immersion while remote results were mitigated by participant issues. However, looking deeper into users’ experience explains the impact of immersion.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 21HOMELOGIN (you are user _anon_876351 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002