CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 44

_id cf2011_p170
id cf2011_p170
authors Barros, Mário; Duarte José, Chaparro Bruno
year 2011
title Thonet Chairs Design Grammar: a Step Towards the Mass Customization of Furniture
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 181-200.
summary The paper presents the first phase of research currently under development that is focused on encoding Thonet design style into a generative design system using a shape grammar. The ultimate goal of the work is the design and production of customizable chairs using computer assisted tools, establishing a feasible practical model of the paradigm of mass customization (Davis, 1987). The current research step encompasses the following three steps: (1) codification of the rules describing Thonet design style into a shape grammar; (2) implementing the grammar into a computer tool as parametric design; and (3) rapid prototyping of customized chair designs within the style. Future phases will address the transformation of the Thonet’s grammar to create a new style and the production of real chair designs in this style using computer aided manufacturing. Beginning in the 1830’s, Austrian furniture designer Michael Thonet began experimenting with forming steam beech, in order to produce lighter furniture using fewer components, when compared with the standards of the time. Using the same construction principles and standardized elements, Thonet produced different chairs designs with a strong formal resemblance, creating his own design language. The kit assembly principle, the reduced number of elements, industrial efficiency, and the modular approach to furniture design as a system of interchangeable elements that may be used to assemble different objects enable him to become a pioneer of mass production (Noblet, 1993). The most paradigmatic example of the described vision of furniture design is the chair No. 14 produced in 1858, composed of six structural elements. Due to its simplicity, lightness, ability to be stored in flat and cubic packaging for individual of collective transportation, respectively, No. 14 became one of the most sold chairs worldwide, and it is still in production nowadays. Iconic examples of mass production are formally studied to provide insights to mass customization studies. The study of the shape grammar for the generation of Thonet chairs aimed to ensure rules that would make possible the reproduction of the selected corpus, as well as allow for the generation of new chairs within the developed grammar. Due to the wide variety of Thonet chairs, six chairs were randomly chosen to infer the grammar and then this was fine tuned by checking whether it could account for the generation of other designs not in the original corpus. Shape grammars (Stiny and Gips, 1972) have been used with sucesss both in the analysis as in the synthesis of designs at different scales, from product design to building and urban design. In particular, the use of shape grammars has been efficient in the characterization of objects’ styles and in the generation of new designs within the analyzed style, and it makes design rules amenable to computers implementation (Duarte, 2005). The literature includes one other example of a grammar for chair design by Knight (1980). In the second step of the current research phase, the outlined shape grammar was implemented into a computer program, to assist the designer in conceiving and producing customized chairs using a digital design process. This implementation was developed in Catia by converting the grammar into an equivalent parametric design model. In the third phase, physical models of existing and new chair designs were produced using rapid prototyping. The paper describes the grammar, its computer implementation as a parametric model, and the rapid prototyping of physical models. The generative potential of the proposed digital process is discussed in the context of enabling the mass customization of furniture. The role of the furniture designer in the new paradigm and ideas for further work also are discussed.
keywords Thonet; furniture design; chair; digital design process; parametric design; shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia11_138
id acadia11_138
authors Buell, Samantha; Shaban, Ryan; Corte, Daniel; Beorkrem, Christopher
year 2011
title Zero-waste, Flat Pack Truss Work: An Investigation of Responsive Structuralism
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 138-143
doi https://doi.org/10.52842/conf.acadia.2011.138
summary The direct and rapid connections between scripting, modeling and prototyping allow for investigations of computation in fabrication. The manipulation of planar materials with two-dimensional CNC cuts can easily create complex and varied forms, volumes, and surfaces. However, the bulk of research on folding using CNC fabrication tools is focused upon surfaces, self-supporting walls and shell structures, which do not integrate well into more conventional building construction models.This paper attempts to explain the potential for using folding methodologies to develop structural members through a design-build process. Conventional building practice consists of the assembly of off-the-shelf parts. Many times, the plinth, skeleton, and skin are independently designed and fabricated, integrating multiple industries. Using this method of construction as an operative status quo, this investigation focused on a single structural component: the truss. A truss is defined as: “A triangulated arrangement of structural members that reduces nonaxial external forces to a set of axial forces in its members.” (Allen and Iano 2004)Using folding methodologies and sheet steel to create a truss, this design investigation employed a recyclable and prolific building material to redefine the fabrication of a conventional structural member. The potential for using digital design and two-dimensional CNC fabrication tools in the design of a foldable truss from sheet steel is viable in the creation of a flat-packed, minimal waste structural member that can adapt to a variety of aesthetic and structural conditions. Applying new methods to a component of the conventional ‘kit of parts’ allowed for a novel investigation that recombines zero waste goals, flat-packing potential, structural expression and computational processes.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id sigradi2011_194
id sigradi2011_194
authors Garagnani, Simone; Manferdini, Anna Maria
year 2011
title Virtual and augmented reality applications for Cultural Heritage
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 556-559
summary The purpose of this paper is to show the results of a research aimed at investigating the potential of digital technologies in order to provide instruments that allow to share information about the Cultural Heritage, which Museums and Institutions are called to preserve and promote. Our project's aim is finding the most suitable procedure to acquire archaeological artefacts, build their digital replica together with 3D printed prototypes and derive simplified models to be visualized through stereoscopic devices, allowing the simultaneous viewing of real and digital 3D data through an augmented reality environment, portable to mobile devices as well.
keywords 3D recontructions; stereoscopic visualization; augmented reality; virtual museum; rapid prototyping
series SIGRADI
email
last changed 2016/03/10 09:52

_id sigradi2011_092
id sigradi2011_092
authors Hemmerling, Marco
year 2011
title Informed Material
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 339-342
summary Next to the possibilities of digital form-finding strategies, parametric design and computational visualization techniques, which lead to an increasing virtualization of our society - rapid technologies allow today for the direct translation of the digital model into the physical world. As a result of this process the experience of digital realities, driven by virtual environment gets an interesting shift back to the physical world. Against this background the paper points out that it is a question of design to define contemporary and intended matters, processes and strategies of interaction, in other words: to inform the design.
keywords Rapid Prototyping; Materialization; Perception; Digital Design Tools; Human-Centered Design
series SIGRADI
email
last changed 2016/03/10 09:53

_id ecaade2011_046
id ecaade2011_046
authors Kudumovi_, Lana; Taso, Amra; Hasanbegovi_, Omer
year 2011
title Digital design and fabrication: Case study: seashell
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.779-787
doi https://doi.org/10.52842/conf.ecaade.2011.779
wos WOS:000335665500090
summary Computational aspects of architectural design have revolutionized actual process, and have made a new platform for cooperation that spans across all disciplines. The focus of this study is to understand how the seashell form can be applicable in design process of human architectures. Our approach will show the act of choosing an inspirational natural form and its application into the virtual world, then digitalization, transformation, and evaluation of the form that are suitable for human architecture. 3D model generating would be performed by doing the scan of a selected seashell form. Further action would be to import the object as a tool in the Zbrush application, and continued modeling transformations. This phase would include other parameters that need to be integrated during the architectural design process since architecture usually exists in a radically different environment in comparison with the seashell.
keywords Complexity; architectural form; generative design; digital design fabrication; rapid prototyping
series eCAADe
email
last changed 2022/05/01 23:21

_id sigradi2011_065
id sigradi2011_065
authors Moreno Sperling, David; Rodrigues de Oliveira, Marina
year 2011
title Experimentação projetual no ensino de arquitetura apoiada por tecnologia de fabricação digital [Design Experimentation in the teaching of architecture supported by digital manufacturing technology]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 398-401
summary This article presents and discusses a teaching experience carried out with the first class of the course of Architecture and Urbanism of the Institute of Architecture and Urbanism, University of Sao Paulo (Sao Carlos, Brazil), with the initial goal of learning the software Rhinoceros. "Forms in motion" was structured in four key questions: conceptual investigation, design experimentation, use of digital devices of modeling and prototyping, relationships between spatial creation and the city.
keywords Formal emergence; design investigation; Rhinoceros; rapid prototyping
series SIGRADI
email
last changed 2016/03/10 09:55

_id sigradi2011_337
id sigradi2011_337
authors Pupo, Regiane; Teixeira Mendes, Leticia; Andrade De Martino, Jarryer
year 2011
title Da parametrização à fabricação digital [From parametrization to digital fabrication]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 163-166
summary The impact of new technologies as rapid prototyping and digital fabrication used throughout the design process has been a very discussed subject mainly in architecture teaching. Together with this discussion, the introduction of parametric software has a great importance in getting new perspectives and design innovation. In attempting the association of these two lines, the development of a roof project was one of the results of a subject in the postgraduate program at State University of Campinas, Brasil. The design process used those technologies, which allowed the analysis of the impacts they might have during each phase of the design process.
series SIGRADI
email
last changed 2016/03/10 09:58

_id acadia11_152
id acadia11_152
authors Rael, Ronald; San Fratello, Virginia
year 2011
title Developing Concrete Polymer Building Components for 3D Printing
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 152-157
doi https://doi.org/10.52842/conf.acadia.2011.152
summary The creation of building components that can be seen as sustainable, inexpensive, stronger, recyclable, customizable and perhaps even reparable to the environment is an urgent, and critical focus of architectural research. In the U.S. alone, the construction industry produced 143.5 million tons of building-related construction and demolition debris in 2008, and buildings, in their consumption of energy produce more greenhouse gasses than automobiles or industry.Because the inherent nature of 3D printing opens new possibilities for shaping materials, the process will reshape the way we think about architectural building components. Digital materiality, a term coined by Italian and Swiss architects Fabio Gramazio and Matthias Kohler, describes materiality increasingly enriched with digital characteristics where data, material, programming and construction are interwoven (Gramazio and Kohler, 2008). The research aspires towards this classification through the use of parametric modeling tools, analytic software and quantitative and qualitative analysis. Rapid prototyping, which is the automatic construction of physical objects using additive manufacturing technology, typically employs materials intended for the immediate analysis of form, scale, and tactility. Rarely do the materials used in this process have any long-term value, nor does the process - except in rare cases with expensive metal prototyping - have the ability to create actual and sustainable working products. This research intends to alter this state of affairs by developing methods for 3D printing using concrete for the production of long-lasting performance-based components.
series ACADIA
type work in progress
email
last changed 2022/06/07 08:00

_id ecaade2011_159
id ecaade2011_159
authors Sdegno, Alberto
year 2011
title The Masieri Memorial by Frank L. Wright in Venice: Reconstructing an Unbuilt project on the Canal Grande
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.960-966
doi https://doi.org/10.52842/conf.ecaade.2011.960
wos WOS:000335665500110
summary The research that is presented here was developed to understand the impact of a new building in a very delicate context, such as the venetian one. The case study was a very important project for the history of architecture, because it is the only design by Frank L. Wright for an Italian customer. The Masieri Memorial was projected by the author on Canal Grande and near the Rialto bridge. The very detailed drawings and notes helped us to reconstruct in digital form the architecture, to study the representation of it in Venice and to verify the effect with the other ancient venetian palaces, such as Palazzo Balbi. The simulation was taken to the photorealistic perception, applying all the textures and materials as found in the sketches and reserved notes of the architect. The final step was the realization of a video to simulate the perception from a boat and the materialization of a maquette using the Rapid Prototyping techniques, in nylon powder.
keywords Digital reconstruction; simulation; rendering; video animation; Rapid Prototyping
series eCAADe
email
last changed 2022/05/01 23:21

_id sigradi2011_347
id sigradi2011_347
authors Trevisan Pupo, Regiane; Aranda, Isadora Magdalena
year 2011
title Sentir um quadro [Feeling a painting]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 281-284
summary Since 2007, LAPAC - Laboratory of Automation and Prototyping for Architecture and Construction, FEC, UNICAMP, has developed scientific researches in rapid prototyping. With the recent acquisition of a numerical control machine (CNC), LAPAC starts a new line of research, the digital fabrication, which gives the production possibility of real scale objects and its moulds. It is also possible to produce relief surfaces using a wide range of materials. This research?s purpose is to reproduce pictures in relief (2.5D) so that visually impaired and people with subnormal vision can experience art by touch and will reckon on LAB (Laboratory of Accessibility) of UNICAMP.
series SIGRADI
email
last changed 2016/03/10 10:01

_id caadria2011_052
id caadria2011_052
authors Al-Kazzaz, Dhuha A. and Alan Bridges
year 2011
title Assessing innovation in hybrid designs using shape grammars
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 545-554
doi https://doi.org/10.52842/conf.caadria.2011.545
summary Al-kazzaz et al (2010) described hybrid adaption technique to generate innovative designs from heterogeneous precedents using shape grammars. An evaluation of the degree of innovation in the hybrid designs gave feedback to grammar users before and after applying a rule. Innovation was assessed using variables derived from the internal structure of the grammar such as: the number of antecedents in the corpus having the same rule; the number of rules in a subclass rule set having the same geometry; etc. However, the validity of the innovation assessment was unclear and the use of the feedback measures was not demonstrated. Accordingly, this study aims to verify the credibility of the innovation measures and to identify the independent variables that a user can control to achieve a significant impact on each innovation measure as a dependent variable.
keywords Shape grammars; hybrid design; innovation assessment
series CAADRIA
email
last changed 2022/06/07 07:54

_id cf2011_p098
id cf2011_p098
authors Bernal, Marcelo; Eastman Charles
year 2011
title Top-down Approach for Interaction of Knowledge-Based Parametric Objects and Preliminary Massing Studies for Decision Making in Early Design Stages
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 149-164.
summary Design activities vary from high-degree of freedom in early concept design stages to highly constrained solution spaces in late ones. Such late developments entail large amount of expertise from technical domains. Multiple parallel models handle different aspects of a project, from geometric master models to specific building components. This variety of models must keep consistency with the design intent while they are dealing with specific domains of knowledge such as architectural design, structure, HVAC, MEP, or plumbing systems. Most of the expertise embedded within the above domains can be translated into parametric objects by capturing design and engineering knowledge through parameters, constraints, or conditionals. The aim of this research is capturing such expertise into knowledge-based parametric objects (KPO) for re-usability along the design process. The proposed case study ‚Äì provided by SOM New York‚ is the interaction between a massing study of a high-rise and its building service core, which at the same time handles elevators, restrooms, emergency stairs, and space for technical systems. This project is focused on capturing design expertise, involved in the definition of a building service core, from a high-rise senior designer, and re-using this object for interaction in real-time with a preliminary massing study model of a building, which will drive the adaption process of the service core. This interaction attempts to provide an integrated design environment for feedback from technical domains to early design stages for decision-making, and generate a well-defined first building draft. The challenges addressed to drive the instantiation of the service core according to the shifting characteristics of the high-rise are automatic instantiation and adaptation of objects based on decision rules, and updating in real-time shared parameters and information derived from the high-rise massing study. The interaction between both models facilitates the process from the designer‚Äôs perspective of reusing previous design solutions in new projects. The massing study model is the component that handles information from the perspective of the outer shape design intent. Variations at this massing study model level drive the behavior of the service core model, which must adapt its configuration to the shifting geometry of the building during design exploration in early concept design stages. These variations depend on a list of inputs derived from multiple sources such as variable lot sizes, building type, variable square footage of the building, considerations about modularity, number of stories, floor-to-floor height, total building height, or total building square footage. The shifting combination of this set of parameters determines the final aspect of the building and, consequently, the final configuration of the service core. The service core is the second component involved in the automatic generation of a building draft. In the context of BIM, it is an assembly of objects, which contains other objects representing elevators, restrooms, emergency stairs, and space for several technical systems. This assembly is driven by different layouts depending on the building type, a drop-off sequence, which is the process of continuous reduction of elevators along the building, and how this reduction affects the re-arrangement of the service core layout. Results from this research involves a methodology for capturing design knowledge, a methodology for defining the architecture of smart parametric objects, and a method for real-time-feedback for decision making in early design stages. The project also wants to demonstrate the feasibility of continuous growth on top of existing parametric objects allowing the creation of libraries of smart re-usable objects for automation in design.
keywords design automation, parametric modeling, design rules, knowledge-based design
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p157
id cf2011_p157
authors Boton, Conrad; Kubicki Sylvain, Halin Gilles
year 2011
title Understanding Pre-Construction Simulation Activities to Adapt Visualization in 4D CAD Collaborative Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 477-492.
summary Increasing productivity and efficiency is an important issue in the AEC field. This area is mainly characterized by fragmentation, heterogeneous teams with low lifetimes and many uncertainties. 4D CAD is one of the greatest innovations in recent years. It consists in linking a 3D model of the building with the works planning in order to simulate the construction evolution over time. 4D CAD can fill several needs from design to project management through constructivity analysis and tasks planning (Tommelein 2003). The literature shows that several applications have been proposed to improve the 4D CAD use (Chau et al. 2004; Lu et al. 2007; Seok & al. 2009). In addition, studies have shown the real impact of 4D CAD use in construction projects (Staub-French & Khanzode 2007; Dawood & Sika 2007). More recently, Mahalingam et al. (2010) showed that the collaborative use of 4D CAD is particularly useful during the pre-construction phase for comparing the constructability of working methods, for visually identifying conflicts and clashes (overlaps), and as visual tool for practitioners to discuss and to plan project progress. So the advantage of the 4D CAD collaborative use is demonstrated. Moreover, several studies have been conducted both in the scientific community and in the industrial world to improve it (Zhou et al. 2009; Kang et al. 2007). But an important need that remains in collaborative 4D CAD use in construction projects is about the adaptation of visualization to the users business needs. Indeed, construction projects have very specific characteristics (fragmentation, variable team, different roles from one project to another). Moreover, in the AEC field several visualization techniques can represent the same concept and actors choose one or another of these techniques according to their specific needs related to the task they have to perform. For example, the tasks planning may be represented by a Gantt chart or by a PERT network and the building elements can be depicted with a 3D model or a 2D plan. The classical view (3D + Gantt) proposed to all practitioners in the available 4D tools seems therefore not suiting the needs of all. So, our research is based on the hypothesis that adapting the visualization to individual business needs could significantly improve the collaboration. This work relies on previous ones and aim to develop a method 1) to choose the best suited views for performed tasks and 2) to compose adapted multiple views for each actor, that we call “business views”. We propose a 4 steps-method to compose business views. The first step identifies the users’ business needs, defining the individual practices performed by each actor, identifying his business tasks and his information needs. The second step identifies the visualization needs related to the identified business needs. For this purpose, the user’s interactions and visualization tasks are described. This enables choosing the most appropriate visualization techniques for each need (step 3). At this step, it is important to describe the visualization techniques and to be able to compare them. Therefore, we proposed a business view metamodel. The final step (step 4) selects the adapted views, defines the coordination mechanisms and the interaction principles in order to compose coordinated visualizations. A final step consists in a validation work to ensure that the composed views really match to the described business needs. This paper presents the latest version of the method and especially presents our latest works about its first and second steps. These include making more generic the business tasks description in order to be applicable within most of construction projects and enabling to make correspondence with visualization tasks.
keywords Pre-construction, Simulation, 4D CAD, Collaboration, Computer Supported Cooperative Work, Human-Computer Interface, Information visualization, Business view, Model driven engineering
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadiaregional2011_032
id acadiaregional2011_032
authors Castellano, Devan
year 2011
title Humanizing Parametricism
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
doi https://doi.org/10.52842/conf.acadia.2011.x.d3g
summary As we increase the complexity and correlations of variables that are critical to the design of a project, we are becoming increasingly aware of the possibilities emerging from a computer integrated design process. There is such great opportunity to use these tools to manage and analyze multi variable design information, yet there is still much criticism of the design solutions created from computational design. These design solutions have been said to be “lacking any character, cultural influence, human engagement, or communication” and that “most of our contemporary architecture has forsaken this dimension of architectural discourse and it’s potential for exceptional spaces.” The current focus of computational investigation is primarily limited to building performance and optimization. Buildings that are designed from a purely optimizational construct without acknowledging the users desires and needs are falling short in creating “places”. Optimization can be the end result, but the constructs that are being optimized must be broadened to address all facets of a project. Computational design has emerged because it has the capacity to resolve multiple constraints and deal with extreme complexity of variables. By optimizing a more holistic set of constraints, computational architecture can truly provide comprehensive design solutions.
series ACADIA
last changed 2022/06/07 07:49

_id sigradi2011_423
id sigradi2011_423
authors Chiarella, Mauro; Dalla Costa, Matias
year 2011
title Patrones Generativos Dinámicos (URDIR.Lab). Estrategias proyectuales paramétricas simples para el ejercicio profesional cotidiano [Dynamic Generative Patterns (URDIR.Lab). Simple Parametric Design Strategies for Everyday Practice]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 210-214
summary The international architecture of the past decade adds parametric design to the project as a new variable dynamic strategy in the design process. Generative patterns meet a way of achieving parameterization from the computational geometry. The experimental developments of URDIR.Lab (FADU-UNL) group, ranges from: the current projective exercises with dynamic materials and forms to the development of simple formulas applied to everyday practice. The proposed challenge is to merge the local available technological resources - pre-industrial and industrial - with the ideation systems of post-industrial technologies.
series SIGRADI
email
last changed 2016/03/10 09:48

_id acadia11_318
id acadia11_318
authors Doumpioti,Christina
year 2011
title Responsive and Autonomous Material Interfaces
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 318-325
doi https://doi.org/10.52842/conf.acadia.2011.318
summary This paper presents continuing research on responsive systems in architecture; the ability of architectural systems to change certain properties in response to their surrounding environmental pressures. While doing so, it shifts from current and past examples of mechanical approaches of adaptation, towards biological paradigms of seamless material integration. Looking at biological mechanisms of growth and focusing on the material make-up behind them, the research proposes the exploration of material systems in a two-fold interrelated manner: firstly, through passive material systems of variable elasticity, and secondly through the embedment of smart materials with shape-changing properties. The combination of the two is aiming at architectural systems of functional versatility.Through an interdisciplinary approach, the paper examines the following questions: Is it possible to envisage structures that share the principles of adaptation and response of living organisms? What are the technological challenges faced when designing self-actuated responsive interfaces? Which is the conceptual framework for understanding and investigating complex adaptive and responsive systems? By exploring and synthesizing theories and tools from material science, bioengineering and cybernetics the aim is to inform architectural interfaces able to enhance interconnectivity between the man-made and the natural. Focusing on the self-organization of material systems the intention is to suggest architectural interventions, which become sub-systems of their ecological milieu. The emphasis therefore is placed not on architectural formalism, but on how we can define synthetic environments through constant exchanges of energy, matter and information.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadia11_90
id acadia11_90
authors Fure, Adam
year 2011
title Digital Materiallurgy: On the productive force of deep codes and vital matter
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 90-97
doi https://doi.org/10.52842/conf.acadia.2011.090
summary This paper expands the discourse surrounding digital forms of making by scrutinizing the role of materials within computation, ultimately proposing a speculative working model that charts new territory. The growing importance of materials within technological research makes this an appropriate time to consider the nuance of their role within it. Currently, material innovation is happening along two central tracks: the customized cutting, sculpting, and forming of conventional materials with Computer Numerically Controlled (CNC) fabrication equipment and the development of new materials through innovations in material science. Both tracks rely on a limited set of material protocols which enable process-based control and eliminate the intrusion of any unpredictable material variable. Although efficient, such an approach limits architecture’s ability to procure novel material engagements. A few designers are developing an alternative model where computational codes are coupled with eccentric materials to produce unusual results. Digital materiallurgy, as I have called it, is part technique and part attitude; it relies on intentionally ceding limited design control to unpredictable matter—thus capitalizing on matter’s innate ability to produce unexpected formal and material complexity. Digital materiallurgy identifies the intersection of computation and eccentric materiality as a departure point for architectural innovation. By purposefully inserting material heterogeneity and inconsistency into computational means and methods, this work pries apart the apparently seamless relationship between digital design and physical production. By blurring the distinction between physical material and digital form, this work offers an integrated aesthetic experience, one that fetishizes neither the virtual nor the vintage but fuses both into a richer, wilder present.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:50

_id acadia11_52
id acadia11_52
authors Iwamoto, Lisa; Scott, Craig
year 2011
title Material Computation: Voussoir cloud
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 52-55
doi https://doi.org/10.52842/conf.acadia.2011.052
summary In contrast to such structurally pure models, the power of computation has opened possibilities for at once muddying and synthesizing geometry, structure and material performance. Where the earlier twentieth century experiments employed a more or less uniform tectonic based on symmetrical structural diagrams, contemporary analysis and design techniques can efficiently adapt a material system to address variable, localized, and non-symmetrical loading conditions. This has resulted in projects characterized by non-optimized structural forms that register the impacts of geometry on material behavior with a deviated tectonic system.
series ACADIA
type keynote paper
email
last changed 2022/06/07 07:50

_id acadia11_112
id acadia11_112
authors Klinger, Kevin
year 2011
title Informing Design through Production Formulations
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 112-113
doi https://doi.org/10.52842/conf.acadia.2011.112
summary Over the decade of the aughts, architectural discourse has charted a new course, and in the wake of the digital effect on mainstream architectural thinking, we find ourselves in a great age of exploration. Research in digital fabrication has moved from the general to the specific, in that it aims to focus efforts related to technological impact on particular cases and variable parameters which contribute to even larger ideas, such as manufacturing, the social impact, sustainable practices, etc. Specific work on building components, coupled with a pragmatic rigor about durability, strength, and production have provided concrete examples of work that spin out of these design-through-production investigations. To be certain, each new design-through-production project explores unique territory and contributes to the knowledge map by adding to a matrix of possible applications. Still, we align our work with the age-old discipline of architectural thinking, while privileging “Making, Materials, Performance, Form, and Function.” Indeed, form is informed by performance! The principles that govern the human decision-making, in light of this new kind of digitally generated work have yet to be clearly articulated, but techniques and methods have expanded to create new opportunities for making architecture. In fact, research has tended to be less about framing the new principles for making digital architecture and more about adding specific cases to the knowledge base, as each new project helps to define the collective body.
series ACADIA
type moderator overview
email
last changed 2022/06/07 07:51

_id acadia11_144
id acadia11_144
authors Lavallee, Justin; Vroman, Rachel; Keshet, Yair
year 2011
title Automated Folding of Sheet Metal Components with a Six-axis Industrial Robot
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 144-151
doi https://doi.org/10.52842/conf.acadia.2011.144
summary Through the automation of folding of sheet metal components by a six-axis industrial robot we explored the integration of parametrically-driven design and fabrication tools and its real-world implementation. Developed out of research into new possibilities presented by direct programming of flexible, digitally-driven, industrial tools, this project intends to speculate about the future implementation of parametric modeling tools in the field of design, and associated new, parametrically variable, fabrication processes. We explored the relationship between designer and machine, between data and craft, and tested conjectures about scale of production, through the digital creation, physical cutting, mental tracking, robotic folding, manual riveting, and sometimes painful installation of five hundred and thirty two unique sheet metal components. Such evaluations give insight into possible trajectories for development of new models of fabrication processes, questioning the scale and intellectual scope appropriate for custom fabrication environments, and the implicit need to then evaluate the incorporation of digital craft in design pedagogy.
series ACADIA
type work in progress
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2HOMELOGIN (you are user _anon_216505 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002