CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 107

_id cf2011_p075
id cf2011_p075
authors Janssen, Patrick; Chen Kian Wee
year 2011
title Visual Dataflow Modelling: A Comparison of Three Systems
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 801-816.
summary Visual programming languages enable users to create computer programs by manipulating graphical elements rather than by entering text. The difference between textual languages and visual languages is that most textual languages use a procedural programming model, while most visual languages use a dataflow programming model. When visual programming is applied to design, it results in a new modelling approach that we refer to 'visual dataflow modelling' (VDM). Recently, VDM has becoming increasingly popular within the design community, as it can accelerate the iterative design process, thereby allowing larger numbers of design possibilities to be explored. Furthermore, it is now also becoming an important tool in performance-based design approaches, since it may potentially enable the closing of the loop between design development and design evaluation. A number of CAD systems now provide VDM interfaces, allowing designers to define form generating procedures without having to resort to scripting or programming. However, these environments have certain weaknesses that limit their usability. This paper will analyse these weaknesses by comparing and contrasting three VDM environments: McNeel Grasshopper, Bentley Generative Components, and Sidefx Houdini. The paper will focus on five key areas: * Conditional logic allow rules to be applied to geometric entities that control how they behave. Such rules will typically be defined as if-then-else conditions, where an action will be executed if a particular condition is true. A more advanced version of this is the while loop, where the action within the loop will be repeatedly executed while a certain condition remains true. * Local coordinate systems allow geometric entities to be manipulated relative to some convenient local point of reference. These systems may be either two-dimensional or three-dimensional, using either Cartesian, cylindrical, or spherical systems. Techniques for mapping geometric entities from one coordinate system to another also need to be considered. * Duplication includes three types: simple duplication, endogenous duplication, and exogenous duplication. Simple duplication consists of copying some geometric entity a certain number of times, producing identical copies of the original. Endogenous duplication consist of copying some geometric entity by applying a set of transformations that are defined as part of the duplication process. Lastly, exogenous duplication consists of copying some geometric entity by applying a set of transformations that are defined by some other external geometry. * Part-whole relationships allow geometric entities to be grouped in various ways, based on the fundamental set-theoretic concept that entities can be members of sets, and sets can be members of other sets. Ways of aggregating data into both hierarchical and non-hierarchical structures, and ways of filtering data based on these structures need to be considered. * Spatial queries include relationships between geometric entities such as touching, crossing, overlapping, or containing. More advanced spatial queries include various distance based queries and various sorting queries (e.g. sorting all entities based on position) and filtering queries (e.g. finding all entities with a certain distance from a point). For each of these five areas, a simple benchmarking test case has been developed. For example, for conditional logic, the test case consists of a simple room with a single window with a condition: the window should always be in the longest north-facing wall. If the room is rotated or its dimensions changed, then the window must re-evaluate itself and possibly change position to a different wall. For each benchmarking test-case, visual programs are implemented in each of the three VDM environments. The visual programs are then compared and contrasted, focusing on two areas. First, the type of constructs used in each of these environments are compared and contrasted. Second, the cognitive complexity of the visual programming task in each of these environments are compared and contrasted.
keywords visual, dataflow, programming, parametric, modelling
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p165
id cf2011_p165
authors Chasznar, Andre
year 2011
title Navigating Complex Models in Collaborative Work for (Sustainably) Integrated Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 619-636.
summary Increasingly intensive use of computational techniques such as parametric-associative modeling, algorithmic design, performance simulations and generative design in architecture, engineering and construction are leading to increasingly large and complex 3D building models which in turn require increasingly powerful techniques in order to be manipulated and interpreted effectively. Further complexities are of course due also to the multi-disciplinary nature of building projects, in which there can be significant variation and even conflict among the aims of architects, engineers and builders, as well as owners, occupants and other stakeholders in the process. Effective use of model information depends to a large extent on sense-making, which can in some ways be helped but also hindered by schemes for organizing the information contained. Common techniques such as layering, labeling (aka ‘tagging’) and assignment of various other attributes to model objects have significant limitations – especially those arising from general problems of language, ontology and standardization, as well as but distinct from issues of interoperability – both with respect to locating the desired items in a 3D building model and also with respect to displaying the objects in informative ways which effectively assist collaborative design and decision-making. Sustainable design in particular is an area generally requiring a high level of inter-disciplinary collaboration to achieve highly integrated designs which make multiple use of the elements and systems incorporated (though integrated design may also be pursued without explicit aims of sustainability). The proposed paper describes ongoing research concerning alternatives to the currently common techniques for locating and displaying information in 3D building models in support of sense-making to promote collaborative and integrated design. These alternatives comprise on the one hand interactive geometric-content-based methods for search and classification of model objects – as an alternative or complement to common assigned-attribute-based methods – and on the other hand visual analytic techniques – in contrast to existing, relatively static tabular and "physical" views – which can help to increase the informativeness of the geometric data within the model, as well as the non-geometric data that is attached to geometric objects (e.g. as in the cases of BIM and various types of CAE performance simulations). Tests undertaken with architects and engineers in practice and academia to evaluate the proposed methods are also described. Finally conclusions are drawn regarding these methods’ positive present performance and some of their shortcomings, as well as indicating directions for future research concerning the methods’ refinement and extension to help 3D building models become more effective components of the design process than they are at present, both with respect to these models’ present levels of complexity and especially with respect to their anticipated increasing complexity in future.
keywords CAD/CAE/BIM, content-based search, visual analytics
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaadesigradi2019_397
id ecaadesigradi2019_397
authors Cristie, Verina and Joyce, Sam Conrad
year 2019
title 'GHShot': a collaborative and distributed visual version control for Grasshopper parametric programming
doi https://doi.org/10.52842/conf.ecaade.2019.3.035
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 35-44
summary When working with parametric models, architects typically focus on using rather structuring them (Woodbury, 2010). As a result, increasing design complexity typically means a convoluted parametric model, amplifying known problems: 'hard to understand, modify, share and reuse' (Smith 2007; Davis 2011). This practice is in contrast with conventional software-programming where programmers are known to meticulously document and structure their code with versioning tool. In this paper, we argue that versioning tools could help to manage parametric modelling complexity, as it has been showing with software counterparts. Four key features of version control: committing, differentiating, branching, and merging, and how they could be implemented in a parametric design practice are discussed. Initial user test sessions with 5 student designers using GHShot Grasshopper version control plugin (Cristie and Joyce 2018, 2017) revealed that the plugin is useful to record and overview design progression, share model, and provide a fallback mechanism.
keywords Version Control; Parametric Design; Collaborative Design; Design Exploration
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ijac20119403
id ijac20119403
authors Davis,Daniel; Jane Burry and Mark Burry
year 2011
title Understanding visual scripts: Improving collaboration through modular programming
source International Journal of Architectural Computing vol. 9 - no. 4, 361-375
summary Modularisation is a well-known method of reducing code complexity, yet architects are unlikely to modularise their visual scripts. In this paper the impact that modules used in visual scripts have on the architectural design process is investigated with regard to legibility, collaboration, reuse and design modification.Through a series of thinking-aloud interviews, and through the collaborative design and construction of the parametric Dermoid pavilion, modules are found to impact the culture of collaborative design in architecture through relatively minor alterations to how architects organise visual scripts.
series journal
last changed 2019/07/30 10:55

_id caadria2011_045
id caadria2011_045
authors Indraprastha, Aswin and Michihiko Shinozaki
year 2011
title Computational method for mapping quality of architectural space
doi https://doi.org/10.52842/conf.caadria.2011.473
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 473-482
summary The key aim of this paper is to develop a computational method for mapping architectural space used for visual openness analysis. We suggest that the result will offer possibilities for quantitative design analysis particularly on spatial quality influenced by architectural elements. The proposed method consists of two stages: determination of subdivided enclosed spaces and measuring quality using visual openness parameters on each subdivided enclosed space. We advise new approach to determine subdivided enclosed spaces on architectural plan by determining two factors: bounded space and circulation space. Computational procedures applied to analyse architectural plan and then determine map of subdivided enclosed space by analysing relationship of these two factors. The concept underlying this method is that architectural space is composed of subdivided enclosed spaces, which each of them have distinct physical properties and therefore become possible to develop mapping of evaluation regarding the quality of architectural space. Our finding on orthogonal architectural plan provides ranking index of subdivided enclosed spaces that could help for analysing spatial quality of architectural space.
keywords Architectural space; subdivided enclose space; quality mapping; computational method
series CAADRIA
email
last changed 2022/06/07 07:50

_id eaea2009_kardos_plachtinska
id eaea2009_kardos_plachtinska
authors Kardos, Peter; Petra Plachtinska
year 2011
title Spatial Experience in Real & Virtual Environment as an Urban Design Tool
source Projecting Spaces [Proceedings of the 9th European Architectural Endoscopy Association Conference / ISBN 978-3-942411-31-8 ], pp. 59-64
summary The innovations of information technologies and the new possibilities of multimedia exploitation in the realm of architectural design and education are supporting the development of image communication methods on the basis of interactivity. The creative process of searching and decision-making in the urban design studio of our Faculty is supported by spatial modeling methods. The draft is sketched in modeling material on a working model. From the didactic point of view, relevant are mainly those phases, in which is possible, in the imaginative way, to support the searching and decision making process with the aim to test, compare and continuously evaluate the fulfillment of the hypothetic intentions of the solution responsibilities. The model becomes an interactive medium of cooperation between teacher and the working group of students. From the view of design crystallization, the dominant phases, in the creative process, are examining, verification, and simulation. The alternatives of material-compositional content and the spatial performance charts of modeled physical structure are verifying and the visual experience of the anticipated urban environment is simulated by the author, but also through the future client’s eyes. The alternation of the composition’s spatial configurations is generally appreciated by the static visual verification in the endoscopic horizon like the architectural spatial studies. The effective method of the progress generates a creative atmosphere for the generative thinking and design. The laboratory simulation of spatial experiences and their evaluation is performed following the perception psychology relations. The simulation of digestion of the new spatial reality intervenes the customer’s identification and guides to subjective approaches towards the quality and complexity of the formed environment. The simulation is performed in motion in order to be able to anticipate the dynamic continuity of subjective spatial imagination. The induced atmosphere will direct the evaluational attitudes of authors on comparison and selection of the successful alternatives. In our fee, we will present the demonstrations of selected static and dynamic notations of image sequences prepared in our laboratory. The presentations have been created in order to analyze, verify and offer imaginative support to creative findings in result of fulfilling the studio design tasks in the educational process. The main one is the design of urban spatial structures. The laboratory methodology is in the first place oriented on the analogue-digital procedures of "endoscope" model simulation. At the same time it also explores and looks for new unconventional forms of visual communication or archiving as imagination support to specialist and laymen participants in creative, valorization and approval processes.
series other
more http://info.tuwien.ac.at/eaea
last changed 2011/03/04 08:45

_id sigradi2011_411
id sigradi2011_411
authors Pujol, Mónica; Farkas Monica; Feinsilber, Sebastián; Cruz, Diego; Mato, Gastón
year 2011
title Dispositivos de visualización y cartografías digitales del Diseño [Visualization devices and digital mapping of Design]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 391-394
summary As part of the UBACyT A038 Digital Map Buenos Aires City Design research project, we propose, on the one hand, to examine the misalignments detected between the development of interfaces and the technological developments available for accessibility to complex information systems, applied to map the field of design; on the other hand, to show the advances achieved in the realization of a digital visual device that enables collaborative data input that allows visualization of the different variables of the design state in Buenos Aires, through digital processing and analytical interpretation of information.
series SIGRADI
email
last changed 2016/03/10 09:58

_id cf2011_p104
id cf2011_p104
authors Sherif, Ahmed; El Zafarany Abbas
year 2011
title Designing the Window to Fit a Shading Device, A Reversed Method for Optimizing Energy Efficient Fenestration
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 383-399.
summary Solar radiation passing through a window contributes significantly to cooling loads and energy consumption, especially in hot climates. Most CAAD tools handling energy efficient design help designers to define the optimal shading device to protect a window of a certain shape, usually a rectangle, but some parts of the rectangular window (such as lower corners) are typically difficult to protect. Usually the whole shading device becomes bigger to shade these corners, which over-shades the rest of the window, increasing artificial lighting and heating loads. It also increases the complexity, visual impact and cost of the shading device. Changing the shape of the window by cutting these corners may reduce the size of the shading device considerably, which opens way to a different –or even a reversed- approach: “Designing the window to fit a shading device instead of designing the shading device to fit the window!” This approach has several potential applications. The building form itself sometimes works implicitly as a shading device. For example, if the building plan shape is a U or L shape, some parts of the walls become shaded, the windows can be placed in these shaded parts, and the window shape can be designed to fit the shadow pattern caused by the building form, changes in the building profile gives similar chances to design windows that fit the shadow pattern. Conceptually, this approach makes energy efficiency a form giving attribute, helping to create innovative facades, while giving an energy efficient configuration for both window and its shading device. CAAD tools can help the designer adopt such an innovative approach, by proposing the window shape that suits an arbitrary shading device created by the designer or a building mass. This paper examines the validity of the approach and introduces the approach required for developing a software module that can be integrated with other CAAD tools such as the Ecotect software. This would enable the designers to use this approach. The method handles the complexity of time-dependent solar geometry and radiation intensity, the geometry of both the window and shading device, and the designers set of objectives, enabling the designer to define the required configuration of window and shading device.
keywords Energy Efficiency, Low Energy Architecture, Windows, Shading Devices, Algorithm, Oprimization
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p011
id cf2011_p011
authors Verdonck, Evelien; Lieve Weytjens, Verbeeck Griet, Froyen Hubert
year 2011
title Design Support Tools in Practice. The Architects' Perspective
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 769-784.
summary In recent years, a large number of design support tools (DSTs) have been developed to address the ever increasing complexity and fragmentation of the architectural design process. Despite the omnipresence and the wide variety of DSTs available to architects today, literature reveals that there is still a mismatch between existing tools and design practice. Further examination of this discrepancy might reveal possible strategies for the improvement of tools. Therefore, this study investigates the Flemish architectural practice directly through a large-scale survey including 629 architects (nearly 10% of the population). The survey was based on a practice-oriented conceptual framework, which was developed as a theoretical background for this study. First the nature of the design process was explored through extensive literature review. In addition to this, a study of tools and possible classifications was carried out. Although numerous studies are available that provide a possible classification, most focus on specific design aspects, for instance sustainability or user-centered design. However, there is no general outline of tools available that would be adequate for the purpose of this research. The DSTs included in this study range from sketches and checklists to 3D CAD and simulation software, in other words any instrument intended to support one or more aspects of the design process. The findings from both literature studies were synthesized in the conceptual framework. This framework presents the design process as a linear process, consisting of the conceptual design phase, the preliminary design phase, the building permission phase, and the construction phase. Six categories of tools were defined, according to the roles they play in the design process, namely knowledge-based, presentation, evaluation/analysis, structuring, modeling, and communication. A tool can belong to one or more categories. The mapping of these roles on the design process resulted in the final framework, which was then used as a base for the questionnaire. The survey aimed at gaining insight into the different DSTs and their corresponding roles, as well as the design phases in which they are used or most needed by Flemish architects in architectural practice. In addition to this, the survey contained questions about the influence of tools on design decision-making, and the specific characteristics and qualities the designers prefer for design support tools. A final part of the survey asked about general background information, such as the respondents’ age, size of architectural firm and types of projects usually undertaken. The results of the survey reveal that there are distinctly different needs for each of the roles defined, as well as a specific frequency of use within each design phase. Furthermore, the most popular tools often encompass multiple roles. Additionally, clear expectations for future tools are defined. Finally, the data collected show researchers and tool developers what kind of support designers need in the different stages of the design process, and may help them to develop DSTs accordingly, to maximize their usability and eventually contribute to decrease the gap between tools and practice.
keywords design tools, architectural design process, survey
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2011_359
id sigradi2011_359
authors Bessone, Miriam; Milone, Diego; Irsuta, Maximiliano
year 2011
title Relaciones sinestésicas entre la música y la forma visual: hacia una identificación automatizada a través de métodos computacionales [Synaesthetic relations between music and visual shapes: towards automated identification using computational methods]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 289-293
summary In this paper, relations between music and visual perception are investigated using statistical analisys of the entailment made amongst them by different subjects in several experimental situations designed for such purpose. The goal, is to discover a set of elements and management mechanisms that are common to both field, from wich it is posible to detect significant constants and discard atypical relations. Finally, we will seek to develop a series of mathematical models that may be implemented as software to analize music and synthesis of forms, and simulate human analisys of relations between them.
series SIGRADI
email
last changed 2016/03/10 09:47

_id cf2011_p157
id cf2011_p157
authors Boton, Conrad; Kubicki Sylvain, Halin Gilles
year 2011
title Understanding Pre-Construction Simulation Activities to Adapt Visualization in 4D CAD Collaborative Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 477-492.
summary Increasing productivity and efficiency is an important issue in the AEC field. This area is mainly characterized by fragmentation, heterogeneous teams with low lifetimes and many uncertainties. 4D CAD is one of the greatest innovations in recent years. It consists in linking a 3D model of the building with the works planning in order to simulate the construction evolution over time. 4D CAD can fill several needs from design to project management through constructivity analysis and tasks planning (Tommelein 2003). The literature shows that several applications have been proposed to improve the 4D CAD use (Chau et al. 2004; Lu et al. 2007; Seok & al. 2009). In addition, studies have shown the real impact of 4D CAD use in construction projects (Staub-French & Khanzode 2007; Dawood & Sika 2007). More recently, Mahalingam et al. (2010) showed that the collaborative use of 4D CAD is particularly useful during the pre-construction phase for comparing the constructability of working methods, for visually identifying conflicts and clashes (overlaps), and as visual tool for practitioners to discuss and to plan project progress. So the advantage of the 4D CAD collaborative use is demonstrated. Moreover, several studies have been conducted both in the scientific community and in the industrial world to improve it (Zhou et al. 2009; Kang et al. 2007). But an important need that remains in collaborative 4D CAD use in construction projects is about the adaptation of visualization to the users business needs. Indeed, construction projects have very specific characteristics (fragmentation, variable team, different roles from one project to another). Moreover, in the AEC field several visualization techniques can represent the same concept and actors choose one or another of these techniques according to their specific needs related to the task they have to perform. For example, the tasks planning may be represented by a Gantt chart or by a PERT network and the building elements can be depicted with a 3D model or a 2D plan. The classical view (3D + Gantt) proposed to all practitioners in the available 4D tools seems therefore not suiting the needs of all. So, our research is based on the hypothesis that adapting the visualization to individual business needs could significantly improve the collaboration. This work relies on previous ones and aim to develop a method 1) to choose the best suited views for performed tasks and 2) to compose adapted multiple views for each actor, that we call “business views”. We propose a 4 steps-method to compose business views. The first step identifies the users’ business needs, defining the individual practices performed by each actor, identifying his business tasks and his information needs. The second step identifies the visualization needs related to the identified business needs. For this purpose, the user’s interactions and visualization tasks are described. This enables choosing the most appropriate visualization techniques for each need (step 3). At this step, it is important to describe the visualization techniques and to be able to compare them. Therefore, we proposed a business view metamodel. The final step (step 4) selects the adapted views, defines the coordination mechanisms and the interaction principles in order to compose coordinated visualizations. A final step consists in a validation work to ensure that the composed views really match to the described business needs. This paper presents the latest version of the method and especially presents our latest works about its first and second steps. These include making more generic the business tasks description in order to be applicable within most of construction projects and enabling to make correspondence with visualization tasks.
keywords Pre-construction, Simulation, 4D CAD, Collaboration, Computer Supported Cooperative Work, Human-Computer Interface, Information visualization, Business view, Model driven engineering
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p135
id cf2011_p135
authors Chen Rui, Irene; Schnabel Marc Aurel
year 2011
title Multi-touch - the future of design interaction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 557-572.
summary The next major revolution for design is to bring the natural user interaction into design activities. Graphical User Interfaces (GUI) brought a new approach that was more effective compared to their conventional predecessors. In recent years, Natural User Interfaces (NUI) have advanced user experiences and multi-touch and gesture technologies provide new opportunities for a variety of potential uses in design. Much attention has been paid to leverage in the design of interactive interfaces. The mouse input and desktop screen metaphors limit the information sharing for multiple users and also delayed the direct interaction for communication between each other. This paper proposes the innovative method by integrating game engine ‘Unity3D’ with multi-touch tangible interfaces. Unity3D provides a game development tool as part of its application package that has been designed to let users to focus on creating new games. However, it does not limit the usage of area to design additional game scenarios since the benefits of Unity3D is allowing users to build 3D environments with its customizable and easy to use editor, graphical pipelines to openGL (http://unity3d.com/, 2010 ). It creates Virtual Reality (VR) environments which can simulates places in the real world, as well as the virtual environments helping architects and designers to vividly represent their design concepts through 3D visualizations, and interactive media installations in a detailed multi-sensory experience. Stereoscopic displays advanced their spatial ability while solving issues to design e.g. urban spaces. The paper presents how a multi-touch tabletop can be used for these design collaboration and communication tasks. By using natural gestures, designers can now communicate and share their ideas by manipulating the same reference simultaneously using their own input simultaneously. Further studies showed that 3Dl forms are perceived and understood more readily through haptic and proprioceptive perception of tangible representations than through visual representation alone (Gillet et al, 2005). Based on the authors’ framework presented at the last CAADFutures, the benefits of integrating 3D visualization and tactile sensory can be illustrated in this platform (Chen and Wang, 2009), For instance, more than one designer can manipulate the 3D geometry objects on tabletop directly and can communicate successfully their ideas freely without having to waiting for the next person response. It made the work more effective which increases the overall efficiency. Designers can also collect the real-time data by any change they make instantly. The possibilities of Uniy3D make designing very flexible and fun, it is deeply engaging and expressive. Furthermore, the unity3D is revolutionizing the game development industry, its breakthrough development platform for creating highly interactive 3D content on the web (http://unity3d.com/ , 2010) or similar to the interface of modern multimedia devices such as the iPhone, therefore it allows the designers to work remotely in a collaborative way to integrate the design process by using the individual mobile devices while interacting design in a common platform. In design activities, people create an external representation of a domain, often of their own ideas and understanding. This platform helps learners to make their ideas concrete and explicit, and once externalized, subsequently they reflect upon their work how well it sits the real situation. The paper demonstrates how this tabletop innovatively replaces the typical desktop metaphor. In summary, the paper addresses two major issues through samples of collaborative design: firstly presenting aspects of learners’ interactions with physical objects, whereby tangible interfaces enables them constructing expressive representations passively (Marshall, 2007), while focussing on other tasks; and secondly showing how this novel design tool allows designers to actively create constructions that might not be possible with conventional media.
keywords Multi-touch tabletop, Tangible User Interface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2011_000
id sigradi2011_000
authors Chiarella, Mauro; Tosello, Maria Elena (eds.)
year 2011
title Sigradi 2011: Augmented Culture
source Proceedings of the 15th Iberoamerican Congress of Digital Graphics Graphics / ISBN 13: 978-987-657-679-6] Argentina - Santa Fe 16-18 November 2011, 579 p.
summary “Augmented Culture” talks about a combination of interdependent social and technological meanings in a complex, multiple, interactive and interconnected context. It acknowledges that a new social and cultural paradigm is being developed as the old barriers of time, space and language are ruptured and transcended. In our knowledge-based civilization, we inhabit interconnected societies where new relational forms are configured. Additionally, cultural expressions have been qualitatively augmented starting from their integration with information and communication technologies, which have dramatically enhanced not only their creative and reflective processes, but also the realization and construction of cultural objects. In this sense, an “Augmented Culture” compels us to investigate the wide and complex spectrum of the variables that express the interdisciplinary, collective and participative constructions of our present age, so strongly related to visual culture, information culture and interface culture. Thus, we consider it necessary to concentrate, to expand, to spread and to share exploratory, descriptive or explanatory experiences and productions of such phenomena. The attempt is to define a multidimensional theoretical framework that while recognizing today’s state-of-the-art and tendencies, it provides us with a critical viewpoint.
series other
type normal paper
email
last changed 2011/12/30 18:05

_id ecaade2011_039
id ecaade2011_039
authors Da_lar, Özgür; Tong, Togan
year 2011
title A Method on Using Video in Architectural Design Process: Matchmoving
doi https://doi.org/10.52842/conf.ecaade.2011.339
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.339-348
summary Computer technologies are used frequently and effectively in film-making. It is almost inevitable to exclude computer aid in different phases of the process such as video editing, compositing and generation of visual effects. Therefore, techniques and software used in this field are improving every day. In this paper, potentials of a technique known in film making industry as matchmoving will be elaborated to be used in architectural design process. The types of software available for matchmoving purposes excel at generating 3D environment data from video shots, making them very useful tools for architects.
wos WOS:000335665500039
keywords Architectural analysis; digital environment generation; matchmoving; motiontracking
series eCAADe
email
last changed 2022/05/01 23:21

_id eaea2009_drozd_meunier_simonnot_hegron
id eaea2009_drozd_meunier_simonnot_hegron
authors Drozd, Celine; Virginie Meunier, Nathalie Simonnot, Gerard Hegron
year 2011
title What Tools and Modes of Representation to Reflect an Architectural Atmosphere?
source Projecting Spaces [Proceedings of the 9th European Architectural Endoscopy Association Conference / ISBN 978-3-942411-31-8 ], pp. 77-88
summary During the design phase, the architect is required to create images in order to give a shape to his project and communicate it. These visual representations satisfy architectural codes established over the years. Thus, the architect who wants to make public his creation gives representations of impressions and emotions. This way, the represented atmosphere reveals the designed architecture because it refers to personal experiences by involving our different senses. So, we question ourselves on the ability of images to reflect atmospheres projected by architects. The difficult part is to make visual representations which translate perceptions communicated by all our senses.
series other
type normal paper
more http://info.tuwien.ac.at/eaea
last changed 2011/07/05 11:41

_id acadia11_316
id acadia11_316
authors d’Estree Sterk, Tristan
year 2011
title Using Robotic Technologies to Integrate External Influences in Design
doi https://doi.org/10.52842/conf.acadia.2011.316
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 316-317
summary Designers have always assembled materials to form purposeful connections between ideas and spaces, uniting the height of human thought with the great ability of people to shape the world with their hands and tools. People have understood this opportunity and used it to inform the material investments that they make in buildings.When reflecting upon the past ten or so years of practice it is clear that some methodologies have matured. Professionals, academics and students have found new ways to connect thinking and doing. These connections have a different flavor and tend to feel more analytical to those once used. Previously internalized decisions are being made increasingly explicit by a generation of designers that has found a more meaningful overlap between the theories and procedures of design. The methods they use are visual, analytical, as well as intuitive, and encompassed within a whole gamut of tools such as Grasshopper, Ecotect, Digital Project and Generative Components. All of these tools provide opportunities for designers to inquisitively explore alternative formal, spatial and environmental relationships. The opportunities that are brought by increasing externalization are important. Design is at once turning away from its focus on the end result, be it a building or an interior, and toward a renewed interest in the design process itself. Brought about by encapsulating design principles into self-made tools, this shift has enabled families of formal outcomes rather than singular instances of ‘pure’ architecture. These multiple, equally valid, formal outcomes disrupt more traditional measures of formal legitimacy and help move architects toward more relational understandings of space, time and environment.
series ACADIA
type moderator overview
email
last changed 2022/06/07 07:55

_id sigradi2011_070
id sigradi2011_070
authors Follonier, Maria; Castillo, Mónica
year 2011
title Enseñanza de Lenguajes Comunicacionales Visuales Heterológicos en Entornos Educativos Digitales [Teaching Languages communicational Heterológicos Visual in educational environments Digital]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 402-406
summary The updates made in subjects referred to University Careers with distance educational modality related to the production and dissemination of some of the aspects of knowledge in the field of Project and Habitat Design; allow developing educational strategies considering the didactic potential of interactive learning environments. These cognitive scenarios articulates syntagms of temporality and visuality into the paradigm of digital educational environments; and the syntagms of contents and forms into the paradigm of transformative didactics, deploying heterologycal visual communicational languages, in relation to projectuality and imagination.
series SIGRADI
email
last changed 2016/03/10 09:52

_id sigradi2011_193
id sigradi2011_193
authors Garagnani, Simone; Mingucci, Roberto
year 2011
title A.I.M. Informative Archives for architectural renovation
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 94-97
summary The information technology applied to the architectural surveys makes the environment documentation pos- sible through multimedia data, which can be processed using a "Multimedia Informative Archive" (A.I.M.), designed for Institutions interested in cultural heritage preservation. An A.I.M. system can manage analytical information embedded into digital databases, referencing a visual exploration path to several technical data, documenting the context in which a monument, or an historical building, is placed. The framework can be ported to mobile devices in order to allow a wide number of data gathering stations, connected to the same central archive, making easier browsing and storing architectural information.
keywords Digital 3D modeling; architectural information technology; virtual heritage documentation; multimedial building database; immersive data modeling
series SIGRADI
email
last changed 2016/03/10 09:52

_id sigradi2011_271
id sigradi2011_271
authors Gonçalves, Marly de Menezes
year 2011
title O uso da realidade aumentada no espaço urbano [Augmented Reality use in Urban Area]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 512-515
summary New technologies have lead to significant changes in man's relationship with spaces, both real and virtual. In this regard, this article seeks to show how augmented reality use in urban areas may complement physical space perception, without spoiling cultural, historical, artistic and scenic city heritage.
keywords Augmented Reality; Visual Identity; Urban Space
series SIGRADI
email
last changed 2016/03/10 09:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5HOMELOGIN (you are user _anon_199633 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002