CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 2 of 2

_id acadia12_295
id acadia12_295
authors Dierichs, Karola ; Menges, Achim
year 2012
title Functionally Graded Aggregate Structures: Digital Additive Manufacturing With Designed Granulates
doi https://doi.org/10.52842/conf.acadia.2012.295
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 295-304
summary In recent years, loose granulates have come to be investigated as architectural systems in their own right. They are defined as large numbers of elements in loose contact, which continuously reconfigure into variant stable states. In nature they are observed in systems like sand or snow. In architecture, however, they were previously known only from rare vernacular examples and geoengineering projects, and are only now being researched for their innate material potentials. Their relevance for architecture lies in being entirely reconfigurable and in allowing for structures that are functionally graded on a macro level. Hence they are a very relevant yet unexplored field within architectural design. The research presented here is focused on the potential of working with designed granulates, which are aggregates where the individual particles are designed to accomplish a specific architectural effect. Combining these with the use of a computer-controlled emitter-head, the process of pouring these aggregate structures can function as an alternative form of 3D printing or digital additive manufacturing, which allows both for instant solidification, consequent reconfiguration, and graded material properties. In its first part, the paper introduces the field of research into aggregate architectures. In its second part, the focus is laid on designed aggregates, and an analytical design tool for the individual grains is discussed. The third part presents research conducted into the process of additive manufacturing with designed granulates. To conclude, further areas of investigation are outlined especially with regard to the development of the additive manufacturing of functionally graded architectural structures. The potentials of the methodologies developed in this process are shown through the fabrication of a full-scale installation. By integrating material, fabrication, and design constraints into a streamlined computational methodology, the process also serves as a model for a more intuitive production workflow, expanding the understanding of glass as a material with wide-ranging possibilities for a more performative architecture.
keywords Aggregate Architectures , Digital Additive Manufacturing , Functionally Graded Materials
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ecaade2012_60
id ecaade2012_60
authors Dierichs, Karola; Menges Achim
year 2012
title Material and Machine Computation of Designed Granular Matter: Rigid-Body Dynamics Simulations as a Design Tool for Robotically-Poured Aggregate Structures Consisting of Polygonal Concave Particles
doi https://doi.org/10.52842/conf.ecaade.2012.2.711
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 711-719
summary Loose granulates are a relevant yet rarely deployed architectural material system. Their significance lies in their capacity to combine fluid-like amorphousness with solid-like rigidity, resulting in potential architectural structures capable of continuous reconfi guration. In addition aggregates allow for functional grading. Especially if custom designed concave particles are used, full-scale architectural structures can be poured using a six-axis industrial robot, combining the precise travel of the emitter-head with the self-organizational capacity of granular substances. In this context, the paper proposes Rigid-Body Dynamics (RBD) simulations as a design-tool for the robotic pouring of loose granular structures. The notions of material and machine computation are introduced and RBD is explained in greater detail. A set of small tests is conducted to investigate the advantages and disadvantages of a specifi c RBD software. Conclusively, further areas of research are outlined.
wos WOS:000330320600076
keywords Material and machine computation; aggregate architectures; designed granulates; robotic pouring; Rigid-Body Dynamics
series eCAADe
email
last changed 2022/06/07 07:55

No more hits.

HOMELOGIN (you are user _anon_201769 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002