CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 7 of 7

_id caadria2012_040
id caadria2012_040
authors Toth, Bianca; Stefan Boeykens, Andre Chaszar, Patrick Janssen and Rudi Stouffs
year 2012
title Custom digital workflows: A new framework for design analysis integration
doi https://doi.org/10.52842/conf.caadria.2012.163
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 163–172
summary Flexible information exchange is critical to successful design integration, but current top-down, standards-based and model-oriented strategies impose restrictions that are contradictory to this flexibility. In this paper we present a bottom-up, user-controlled and process-oriented approach to linking design and analysis applications that is more responsive to the varied needs of designers and design teams. Drawing on research into scientific workflows, we present a framework for integration that capitalises on advances in cloud computing to connect discrete tools via flexible and distributed process networks. Adopting a services-oriented system architecture, we propose a web-based platform that enables data, semantics and models to be shared on the fly. We discuss potential challenges and opportunities for the development thereof as a flexible, visual, collaborative, scalable and open system.
keywords Visual dataflow modelling; design processes; interoperability; simulation integration; cloud-based systems
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2013_000
id caadria2013_000
authors Stouffs, Rudi; Patrick Janssen, Stanislav Roudavski and Bige Tunçer (eds.)
year 2013
title Open Systems
doi https://doi.org/10.52842/conf.caadria.2013
source Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2012, 977 p.
summary Contemporary challenges require inclusively integrated approaches to designing. Constrained by established modes of practice, such integration is impossible without a radical commitment to openness. In response to this need, the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) brought together contributions that engage with open systems in all aspects of architectural and urban design: open with respect to the scale of the design objectives and the context, from a building component within a building system to a neighbourhood or city within its urban and rural context; open with respect to the domains being considered, from planning to sustainable performance of a building or city; open with respect to the collaboration of disciplines and participants, from ad-hoc brainstorming to a rigorous process of consultation and feedback; open with respect to design methods and techniques, from physical modelling to digital prototyping; open with respect to design models and representations being adopted, from a parametric exploration to an ontological delineation considering Building Information Modelling, Built Environment Modelling or City Information Modelling; open with respect to the tools and applications being adopted, despite interoperability issues, from modelling to simulation and assessment; open with respect to the learning approach being adopted, from informal interaction and sharing to formal design education; open with respect to the open source approach being adopted in research and development, in order to gather community involvement and use. The conference was held 15-18 May 2013 at the Department of Architecture, School of Design and Environment, at National University of Singapore.By focusing on the theme of Open Systems, CAADRIA 2013 aimed to explore all these aspects and more, and raise awareness to the need of breaching disciplinary boundaries and reaching creative communities at all levels of expertise, by pooling resources, knowledge and practices, and integrating them through the adoption of open systems.
series CAADRIA
email
last changed 2022/06/07 07:49

_id ijac201210402
id ijac201210402
authors Toth, Bianca; Patrick Janssen, Rudi Stouffs, et al.
year 2012
title Custom Digital Workflows: A New Framework for Design Analysis Integration
source International Journal of Architectural Computing vol. 10 - no. 4, 481-500
summary Flexible information exchange is critical to successful design-analysis integration, but current top-down, standards-based and model-oriented strategies impose restrictions that contradict this flexibility. In this article we present a bottom-up, user-controlled and process-oriented approach to linking design and analysis applications that is more responsive to the varied needs of designers and design teams. Drawing on research into scientific workflows, we present a framework for integration that capitalises on advances in cloud computing to connect discrete tools via flexible and distributed process networks.We then discuss how a shared mapping process that is flexible and user friendly supports non-programmers in creating these custom connections. Adopting a services-oriented system architecture, we propose a web- based platform that enables data, semantics and models to be shared on the fly.We then discuss potential challenges and opportunities for its development as a flexible, visual, collaborative, scalable and open system.
series journal
last changed 2019/05/24 09:55

_id acadia12_511
id acadia12_511
authors Borowski, Darrick ; Poulimeni, Nikoletta ; Janssen, Jeroen
year 2012
title Edible Infrastructures: Emergent Organizational Patterns for the Productive City
doi https://doi.org/10.52842/conf.acadia.2012.511
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 511-526
summary Edible Infrastructures is an investigation into a projective mode of urbanism which considers food as an integral part of a city's metabolic infrastructure. Working with algorithms as design tools, we explore the generative potential of such a system to create an urban ecology that: provides for its residents via local, multi-scalar, distributed food production, reconnects urbanites with their food sources, and de-couples food costs from fossil fuels by limiting transportation at all levels, from source to table. The research is conducted through the building up of a sequence of algorithms, beginning with the ‘Settlement Simulation’, which couples consumers to productive surface area within a cellular automata type computational model. Topological analysis informs generative operations, as each stage builds on the output of the last. In this way we explore the hierarchical components for a new Productive City, including: the structure and programming of the urban circulatory network, an emergent urban morphology based around productive urban blocks, and opportunities for new architectural typologies. The resulting prototypical Productive City questions the underlying mechanisms that shape modern urban space and demonstrates the architectural potential of mathematical modeling and simulation in addressing complex urban spatial and programmatic challenges.
keywords Urban Agriculture , Urban Ecologies and Food Systems , Productive Cities , Urban Metabolism , Computational Modeling and Simulation , Algorithmic/ Procedural Design Methodologies , Emergent Organization , Self-Organizing Systems
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2017_142
id caadria2017_142
authors Kaijima, Sawako, Tan, Ying Yi and Lee, Tat Lin
year 2017
title Functionally Graded Architectural Detailing using Multi-Material Additive Manufacturing
doi https://doi.org/10.52842/conf.caadria.2017.427
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 427-436
summary The paper presents a future architectural detailing strategy enabled by the design of functionally graded materials (FGM). In specific, our proposal suggests the possibility of removing mechanical fasteners and adhesives from joint details. This is achieved by combining the principles of interlocking joineries found in traditional timber structures and current Multi-Material Additive Manufacturing (MMAM) technology to materialise FGMs. FGM belongs to a class of advanced materials characterised by variation in properties as the dimension varies by combining two or more materials at a microscopic scale (Mahamood et al. 2012). FGM is ubiquitous in nature and, when properly designed, can exhibit superior performance characteristics compared to objects comprised of homogeneous material properties. With the aim of developing interlocking details with improved performance, reliability, and design flexibility, we focus on controlling material stiffness, joint fitting, and geometry through the design of the microscopic material layout. A case study design will be presented to illustrate the process.
keywords Functionality Graded Material; Multi-Material Additive Manufacturing ; Architectural Detailing; Interlocking Joints
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2012_036
id caadria2012_036
authors Kaushik, Vignesh Srinivas and Patrick Janssen
year 2012
title Multi-criteria evolutionary optimisation of building enveloped during conceptual stages of design
doi https://doi.org/10.52842/conf.caadria.2012.497
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 497–506
summary This paper focuses on using evolutionary algorithms during conceptual stages of design process for multi-criteria optimisation of building envelopes. An experiment is carried out in optimising a panelled building envelope. The design scenario for the experiment is based on the scenario described in Shea et al. (2006) for the building envelope of the Media Centre Building in Paris. However, in their research, the optimisation process only allowed panel configuration to be optimised. In this paper, the task is to approach the optimisation of the envelope of the same building, assuming it to be in the early phases of the design process. The space of possible solutions is therefore assumed to be much wider, and as a result both external building form and internal layout of functional activities are allowed to vary. The performance intent of the experiment remains the same as that of Shea et al. (2006), which was to maximise daylight and minimise afternoon direct sun hours in the building at certain specific locations.
keywords Multi-criteria optimisation; building envelopes; conceptual stages of design evolutionary algorithms; parametric design
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2012_033
id ecaade2012_033
authors Janssen, Patrick ; Kaushik, Vignesh
year 2012
title Iterative Refi nement through Simulation: Exploring trade-off s between speed and accuracy
doi https://doi.org/10.52842/conf.ecaade.2012.1.555
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 555-563
summary Iterative Refinement through Simulation: Exploring trade-offs between speed and accuracy
wos WOS:000330322400057
keywords Iterative; design; refinement; simulation; Radiance
series eCAADe
email
last changed 2022/06/07 07:52

No more hits.

HOMELOGIN (you are user _anon_772192 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002