CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 551

_id acadia12_47
id acadia12_47
authors Aish, Robert ; Fisher, Al ; Joyce, Sam ; Marsh, Andrew
year 2012
title Progress Towards Multi-Criteria Design Optimisation Using Designscript With Smart Form, Robot Structural Analysis and Ecotect Building Performance Analysis"
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 47-56
doi https://doi.org/10.52842/conf.acadia.2012.047
summary Important progress towards the development of a system that enables multi-criteria design optimisation has recently been demonstrated during a research collaboration between Autodesk’s DesignScript development team, the University of Bath and the engineering consultancy Buro Happold. This involved integrating aspects of the Robot Structural Analysis application, aspects of the Ecotect building performance application and a specialist form finding solver called SMART Form (developed by Buro Happold) with DesignScript to create a single computation environment. This environment is intended for the generation and evaluation of building designs against both structural and building performance criteria, with the aim of expediently supporting computational optimisation and decision making processes that integrate across multiple design and engineering disciplines. A framework was developed to enable the integration of modeling environments with analysis and process control, based on the authors’ case studies and experience of applied performance driven design in practice. This more generalised approach (implemented in DesignScript) enables different designers and engineers to selectively configure geometry definition, form finding, analysis and simulation tools in an open-ended system without enforcing any predefined workflows or anticipating specific design strategies and allows for a full range of optimisation and decision making processes to be explored. This system has been demonstrated to practitioners during the Design Modeling Symposium, Berlin in 2011 and feedback from this has suggested further development.
keywords Design Optimisation , Scripting , Form Finding , Structural Analysis , Building Performance
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia12_199
id acadia12_199
authors Beorkrem, Chris ; Corte, Dan
year 2012
title Zero-Waste, Flat-Packed, Tri-Chord Truss: Continued Investigations of Structural Expression in Parametric Design"
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 199-208
doi https://doi.org/10.52842/conf.acadia.2012.199
summary The direct and rapid connections between scripting, modeling and prototyping allow for investigations of computation in fabrication. The manipulation of planar materials with two-dimensional CNC cuts can easily create complex and varied forms, volumes, and surfaces. However, the bulk of research on folding using CNC fabrication tools is focused upon surfaces, self-supporting walls and shell structures, which do not integrate well into more conventional building construction models. This paper attempts to explain the potential for using folding methodologies to develop structural members through a design-build process. Conventional building practice consists of the assembly of off-the-shelf parts. Many times, the plinth, skeleton, and skin are independently designed and fabricated, integrating multiple industries. Using this method of construction as an operative status quo, this investigation focused on a single structural component: the truss. Using folding methodologies and sheet steel to create a truss, this design investigation employed a recyclable and prolific building material to redefine the fabrication of a conventional structural member. The potential for using digital design and two-dimensional CNC fabrication tools in the design of a foldable truss from sheet steel is viable in the creation of a flat-packed, minimal waste structural member that can adapt to a variety of aesthetic and structural conditions. Applying new methods to a component of the conventional ‘kit of parts’ allowed for a novel investigation that recombines zero waste goals, flat-packing potential, structural expression and computational processes. This paper will expand (greatly) upon previous research into bi-chord truss designs, developing a tri-chord truss, which is parametrically linked to its structural moment diagram. The cross section of each truss is formed based on the loading condition for each beam. This truss design has been developed through a thorough series of analytical models and tests performed digitally, to scale and in full scale. The tri-chord truss is capable of resisting rotational failures well beyond the capacity of the bi-chord designs previously developed. The results are complex, and elegant expressions of structural logics embodied in a tightly constrained functional design.
keywords Parametric Design , Structural Expression , Material constraints
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ascaad2012_003
id ascaad2012_003
authors Elseragy, Ahmed
year 2012
title Creative Design Between Representation and Simulation
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 11-12
summary Milestone figures of architecture all have their different views on what comes first, form or function. They also vary in their definitions of creativity. Apparently, creativity is very strongly related to ideas and how they can be generated. It is also correlated with the process of thinking and developing. Creative products, whether architectural or otherwise, and whether tangible or intangible, are originated from ‘good ideas’ (Elnokaly, Elseragy and Alsaadani, 2008). On one hand, not any idea, or any good idea, can be considered creative but, on the other hand, any creative result can be traced back to a good idea that initiated it in the beginning (Goldschmit and Tatsa, 2005). Creativity in literature, music and other forms of art is immeasurable and unbounded by constraints of physical reality. Musicians, painters and sculptors do not create within tight restrictions. They create what becomes their own mind’s intellectual property, and viewers or listeners are free to interpret these creations from whichever angle they choose. However, this is not the case with architects, whose creations and creative products are always bound with different physical constraints that may be related to the building location, social and cultural values related to the context, environmental performance and energy efficiency, and many more (Elnokaly, Elseragy and Alsaadani, 2008). Remarkably, over the last three decades computers have dominated in almost all areas of design, taking over the burden of repetitive tasks so that the designers and students can focus on the act of creation. Computer aided design has been used for a long time as a tool of drafting, however in this last decade this tool of representation is being replaced by simulation in different areas such as simulation of form, function and environment. Thus, the crafting of objects is moving towards the generation of forms and integrated systems through designer-authored computational processes. The emergence and adoption of computational technologies has significantly changed design and design education beyond the replacement of drawing boards with computers or pens and paper with computer-aided design (CAD) computer-aided engineering (CAE) applications. This paper highlights the influence of the evolving transformation from Computer Aided Design (CAD) to Computational Design (CD) and how this presents a profound shift in creative design thinking and education. Computational-based design and simulation represent new tools that encourage designers and artists to continue progression of novel modes of design thinking and creativity for the 21st century designers. Today computational design calls for new ideas that will transcend conventional boundaries and support creative insights through design and into design. However, it is still believed that in architecture education one should not replace the design process and creative thinking at early stages by software tools that shape both process and final product which may become a limitation for creative designs to adapt to the decisions and metaphors chosen by the simulation tool. This paper explores the development of Computer Aided Design (CAD) to Computational Design (CD) Tools and their impact on contemporary design education and creative design.
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_003.pdf
last changed 2012/05/15 20:46

_id ecaade2012_022
id ecaade2012_022
authors Ham, Jeremy J. ; Schnabel, Marc Aurel ; Datta, Sambit
year 2012
title Developing Online Construction Technology Resources in Tectonic Design Education
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 135-142
doi https://doi.org/10.52842/conf.ecaade.2012.1.135
wos WOS:000330322400013
summary We outline issues of importance in relation to tectonic design within the architectural profession and the relationship to architectural education in Australia. Twelve years of research and curriculum development at Deakin University is discussed, involving the creation of online resources and case studies, digitally-integrated projects relating to building construction and design studio education. The ethos behind the Construction Primer of engaging students as ‘amateur researchers’ in a way that ensures ‘that student research work is worth more than course assessment’ forms the pedagogical foundation of much of this work. A model of Socially Networked Construction Technology education has been developed that integrates social networks and the Internet to engage students in tectonic design within and outside the classroom through authentic curricula. Through the use of Virtual Galleries, Blogs, YouTube and social networks, a culture of peer learning and sharing has ben developed. Through shared knowledge facilitated through social networks, great potential lies for expanding the synergies between higher order learning and online resource development for design decision support.
keywords Construction technology; social network; online learning; design decision support
series eCAADe
email
last changed 2022/06/07 07:50

_id ijac201210106
id ijac201210106
authors Henriques, Goncalo Castro
year 2012
title TetraScript: A Responsive Pavilion, From Generative Design to Automation
source International Journal of Architectural Computing vol. 10 - no. 1, 87-104
summary This research is part of a broader investigation into the use of digital technologies in the Architecture, Engineering and Construction (AEC) sector. The intention is to improve the ability of buildings to respond to context by proposing a skylight system that can adjust to external environmental conditions and internal functional demands. We call this responsive ability customisation. The proposed skylight system can adapt to different geometries, uses, locations, times of day and other contextual conditions. Customisation can be achieved by static and dynamic processes. Static customisation is achieved during the design process by selecting the form and size of the building, as well as the number, arrangement and size of the skylights, among other features. Dynamic customisation is accomplished after construction by changing the skylight aperture in real-time to control interior conditions. This paper focuses on the static process to find an adequate skylight configuration for a case-study pavilion.
series journal
last changed 2019/07/30 10:55

_id ecaade2023_318
id ecaade2023_318
authors Imam, Chowdhury Ali, Othman, Hanin Abdel Salam and Çapunaman, Özgüç Bertug
year 2023
title Robotic Plaster Carving: Formalizing subtractive detailing of plaster surfaces for construction and crafts
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 397–406
doi https://doi.org/10.52842/conf.ecaade.2023.1.397
summary Plaster has been a fundamental material in numerous interior and exterior applications in architectural construction due to its fire-resistant properties and capabilities for intricate detailing. Moreover, prior to the widespread adoption of computer-aided design tools, plaster played a crucial role in historic preservation and architectural education (Mankouche & Schulte, 2012). While the use of decorative plaster elements in architectural construction has waned in popularity, the renewed interest in plaster within the context of advanced robotic fabrication offers a compelling basis for research. This paper presents an investigation into robotic plaster carving for adding detail and texture to plaster surfaces. Within the scope of this study, we identify and systematically examine various fabrication and material parameters for emergent geometries and fabrication defects, subsequently formalizing this robotic workflow for diverse applications in construction and crafts. Among these parameters, we primarily concentrate on toolpath geometry, tool orientation, carving speed, carving profile, and aggregation of carving strokes. Through this bottom-up approach, our objective is to enhance the understanding of tool-material interaction during the fabrication process and achieve improved control over the resulting artifact. Building on these insights, we demonstrate how the proposed robotic plaster carving workflow can be employed for subtractive surface detailing in architectural construction and digital crafts.
keywords Robotic Fabrication, Plaster Carving, Surface Detailing, Digital Craft
series eCAADe
email
last changed 2023/12/10 10:49

_id acadia12_305
id acadia12_305
authors Kock, Jeffrey ; Bradley, Benjamin ; Levelle, Evan
year 2012
title The Digital-Physical Feedback Loop: A Case Study
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 305-314
doi https://doi.org/10.52842/conf.acadia.2012.305
summary Kukje Art Center, Seoul’s new gallery designed by SO-IL, features a totally bespoke chainmail mesh system (submission note: the authors are not affiliated with SO-IL). A single sheet of complex-curved, tensioned mesh, made up of interlocking 40mm diameter stainless steel rings, wraps the building. This paper discusses the stages of a feedback loop process employed by the authors to refine a digital model of the mesh. The mesh’s perimeter attachment system does not prescribe ring locations, allowing the mesh to form find for itself during installation. As a result, the digital model must capture the behavioral tendencies of the mesh as it negotiates the building’s geometry. Paramount in meeting this challenge was the use of physical mockups. At each stage of the feedback loop process, the working digital model was used to develop a physical mockup of increased scale and complexity, and this mockup was used to refine the digital model. Ultimately, the model output of a mesh relaxation algorithm was used as the basis for engineering simulations and predictions of the mesh vertical ringcount needed at specific locations around the building. Mesh vertical ringcount predictions are validated relative to a 1:1 mockup and the installed Kukje Art Center mesh.
keywords minimal surface , chainmail mesh , form finding , dynamic relaxation , finite element analysis , feedback loop , tensioned fabric , physical mockup , bespoke cladding , Kukje , Seoul
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id ecaade2012_208
id ecaade2012_208
authors Koltsova, Anastasia ; Tuncer, Bige ; Georgakopoulou, Sofia ; Schmitt, Gerhard
year 2012
title Parametric Tools for Conceptual Design Support at the Pedestrian Urban Scale: Towards inverse urban design
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 279-287
doi https://doi.org/10.52842/conf.ecaade.2012.1.279
wos WOS:000330322400028
summary This paper presents an inverse pedestrian urban design method and an initial set of parametric tools for conceptual design support at the pedestrian urban scale. Inverse pedestrian urban design concerns the derivation of urban design parameters from a local context in order to produce better informed and situated designs. The tools concern the rationalization of street network and building form. Some of the parameters that are used within the tools are view angles (visibility analysis) and distances between target points (accessibility analysis). The paper elaborates on inverse urban design, presents some case studies and tools, and touches upon design patterns and their alignment to design processes.
keywords Urban design; pedestrian design; parametric modelling; design tools; inverse urban design method
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia12_269
id acadia12_269
authors Lally, Sean
year 2012
title Architecture of an Active Context
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 269-276
doi https://doi.org/10.52842/conf.acadia.2012.269
summary As we stand with our feet on earth’s outermost surface we build an architecture today that is much like it was several thousand years earlier, in an attempt to extend that outer shell with one of our own making. Artificial masses are built from a refinement of this existing geologic layer into materials of stone, steel, concrete, and glass that assemble to produce new pockets of space through the buildings they create. However, the sixth century BC writer Thales of Miletus put a different perspective on this: he insisted that we live, in reality, not on the summit of a solid earth but at the bottom of an ocean of air (Holmyard 1931). And so, as architecture continues to build up the outermost layer of earth’s surface through a mimicking, embellishing, and enhancing of the materials which it comes from, it raises the question of why we have not brought a similar relationship to the materialities at the bottom of this “ocean” of air to create the spaces we call architecture. If you were looking to level a complaint with the architectural profession, stating that it has not been ambitious enough in scope would not be one. Architects have never shied away from the opportunity to design everything from the building’s shell to the teaspoon used to stir your sugar in its matching cup. But it would seem that the profession has developed a rather large blind spot in terms of what it sees as a malleable material with which to engage. Architects have made assumptions as to what is beyond our scope of action, refraining from engaging a range of material variables due to a belief that the task would be too great or simply beyond our physical control. So even though we are enveloped by them continuously, both on the exterior as well as the interior of our buildings, it must be assumed that the particles, waves, and frequencies of energy that move around us are thought by architects to be too faint and shaky to unload upon them any heavy obligations, that they are too unwieldy for us to control to create the physical boundaries of separation, security, and movement required of architecture. This has resulted in a cultivated set of blinders that essentially defines architecture as a set of mediation devices (surfaces, walls, and inert masses) for tempering the environmental context it is situated in from the individuals and activities within. The spaces we inhabit are defined by their ability to decide what gets in and what stays out (sunlight, precipitation, winds). We place our organizational demands and aesthetic opinions on the surfaces that mediate these variables rather than seeing them as available for manipulation as a building material on their own. The intention here is to recalibrate the materialities that make up that environmental context to build architecture. The starting point is a rather naive question: can we design the energy systems that course in and around us daily as an architectural material so as to take on the needs of activities, securities, and lifestyles associated with architecture? Can the variables that we would normally mediate against instead be heightened and amplified so as to become the architecture itself? That which many would incorrectly dismiss as simply “air” today—thought to be homogeneous, scale-less, and vacant due in part to the limits of our human sensory system to perceive more fully otherwise—might tomorrow be further articulated, populated, and layered so as to become a materiality that will build spatial boundaries, define activities of individuals and movement, and act as architectural space. Our environmental context consists of a diverse range of materials (particles and waves of energy, spectrum of light, sound waves, and chemical particles) that can be manipulated and formed to meet our needs. The opportunity before us today is to embrace the needs of organizational structures and aesthetics by designing the active context that surrounds us through the material energies that define it.
keywords Material energies
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id acadia12_343
id acadia12_343
authors Leidi, Michele ; Schlüter, Arno
year 2012
title Formal and Functional Implications of Dynamics-Related Solar Design Schemes
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 343-354
doi https://doi.org/10.52842/conf.acadia.2012.343
summary In recent years several solar radiation simulation tools have been developed to assist architects in analyzing the performance of existing building designs. However it is often unclear how the results of these analyses can help to generate new solutions and thus be truly beneficial for innovation in sustainable architectural design. Recent developments in open source applications that allow links between energy simulation engines and 3D modeling environments open a new layer of understanding. The possibility to better understand the dynamic interaction between incident solar radiation and building envelopes allows the synthesis of new architectural design-schemes. This paper presents the results of a series of experiments based on the case-study of a mid-latitude single-family house in Taiki-Cho, Japan. The first experiment describes how the incident solar energy interacts with the exposed components of the envelope. The second experiment describes how the energy demand of the building can be partially reduced through the design of passive interventions that are based on the dynamics of the demand. Finally, the third experiment exemplifies how, based on the knowledge extracted from the first two experiments, it is possible to synthesize new dynamics-related solar design-schemes that join passive techniques, active technologies, and formal aspects.
keywords Form , Function , Dynamics , Solar , Design-Scheme , Mid-latitude
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id sigradi2012_209
id sigradi2012_209
authors Muñoz, Patricia
year 2012
title Relaciones in-formadas entre la investigación y la enseñanza de morfología [In-formed relationships between morphology investigation and teaching]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 308-311
summary This paper describes two case studies in which digital media and morphology are closely related. The first one refers to the evolution of the different instruments applied in a research area comprising spatial surfaces generated by double rotation. The second one deals from the start with laser cutting, and its possibilities of providing flexibility to rigid sheets through density and shape of the incisions. It presents the latest results in the development of joint design for this kind of products. Finally, the current trends in our research are briefly mentioned.
keywords investigación; enseñanza; morfología; diseño; fabricación digital
series SIGRADI
email
last changed 2016/03/10 09:55

_id ecaade2012_041
id ecaade2012_041
authors Patlakas, Panagiotis ; Altan, Hasim
year 2012
title Visualizing Post - Occupancy Evaluation Data: Rationale, methodology and potential of EnViz, a visualization software prototype
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 647-653.
doi https://doi.org/10.52842/conf.ecaade.2012.1.647
wos WOS:000330322400068
summary This paper introduces EnViz, a software prototype for the visualization of environmental data collected from post-occupancy evaluation surveys. The piece begins by introducing the rationale for the software, and why the authors believe it can be a valuable aid for environmental building design. The development methodology is described and the basic operability and interface are presented. A case study is introduced, and the results from the application of the software on the data from it are presented with accompanying images. Further results are presented, from the use of the software in workshops with undergraduate and post-graduate students, as well as researchers and professionals. Finally, future directions of the software development and the potential of the software are given.
keywords Visualization; post-occupancy evaluation; indoor environmental data; 3D graphics
series eCAADe
email
last changed 2022/06/07 07:59

_id caadria2012_008
id caadria2012_008
authors Schimek, Heimo; Emmanuel Ruffo Calderon Dominguez, Albert Wiltsche and Markus Manahl
year 2012
title Sewing timber panels: An innovative digitally supported joint system for self-supported timber plate structures
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 213–222
doi https://doi.org/10.52842/conf.caadria.2012.213
summary This paper focuses on the joint system of flat panels as parts of a freeform building. This topic is a key area of the ongoing founded research project, in which we investigate nonstandard shapes, realized with standard building materials, namely cross-laminated timber (CLT). We use different discretization algorithms to overlay arbitrary freeform surfaces with ornaments consisting of polygonal flat panels. We investigate a series of ornaments and their discretization results on different surfaces. In this paper, we will present and discuss a new timber-to-timber joint system that we developed exclusively for this project. We discuss the results of the load tests that we performed recently and we take a look at the construction dependent requirements of the joint system concerning the tolerances and the geometry and also, how these constraints inform the digital process. As we will discuss throughout the paper, in earlier publications we described the form finding process and the geometrical guidelines for the discretization of a desired freeform building using ornamental flat patterns. This paper moves one step further as the digital becomes physical and it is closely related to building construction and the computational design outset.
keywords Digital fabrication technology; computational algorithmic design; building construction; freeform optimisation; CLT joint system
series CAADRIA
email
last changed 2022/06/07 07:57

_id sigradi2012_368
id sigradi2012_368
authors Vannini, Virgínia; Bueno, Ernesto; Turkienicz, Benamy
year 2012
title Otimização geométrica de superfícies de fachada para uso fotovoltaico [Geometric optimization of facade surfaces for use of photovoltaic]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 426-430
summary This work describes a methodology to optimize solar incidence in photovoltaic facades of multi-floor buildings. The methodology identifies and parameterizes the building volume according to geometric principles of photovoltaic capture for all facades orientations. Initially, geometric modeling is made through an algorithm developed in a graphic-algorithm editor, Grasshopper – integrated with the modeling tool, Rhinoceros – then establishing the shape restrictions and variables. Secondly, twist and taper geometric transformation is correlated with solar incidence data through the interface of genetic platform, Galapagos. The results indicate that it’s possible explore the method to obtain: optimal solutions, reduced design time and better energy performance.
keywords optimization; photovoltaic facades; genetic algorithm; parametric design.
series SIGRADI
email
last changed 2016/03/10 10:02

_id sigradi2021_18
id sigradi2021_18
authors Verniz, Debora and Duarte, José P
year 2021
title Assessing Santa Marta: Using Evaluation Tools to Inform Parametric Urban Design
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 749–758
summary Lack of affordable housing is a worldwide problem. Rapid urbanization, rural exodus, and poor governance policies have contributed to the problem and, in response, low-income populations resort to self-construction. The result are informal settlements located predominantly in marginalized urban areas (United Nations, 2015) that develop with neither urban infrastructure nor compliance with building and planning codes (Lall et al., 2006; Patel et al., 2018; United Nations Human Settlements Programme, 2012) and, consequently, offer a poor-quality built environment. The goal of this paper is to methodologically identify physical aspects of such built environments that could be improved. We evaluate a case study, the Santa Marta favela in Brazil, using a holistic housing-quality assessment tool and local building and planning codes as reference. Our results identify the physical characteristics with lower quality standards in the case study and demonstrate the efficacy of the methodology introduced for this purpose.
keywords housing quality assessment, building codes, informal settlements, parametric urban design, Santa Marta favela.
series SIGraDi
email
last changed 2022/05/23 12:11

_id ascaad2012_007
id ascaad2012_007
authors Abdelsalam, Mai M.
year 2012
title The Use of Smart Geometry in Islamic Patterns - Case Study: Mamluk Mosques
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 49-68
summary It is noted that architects need new and quick methods designing the historic architectural styles, as well as restoring the historical urban areas particularly the Islamic ones. These designs and restorations should adapt to the basics of the Islamic style used; general concept, module and features. Smart Geometry provides advanced design concepts and increases alternative variations. Parametric design softwares also add more rules and relations on the design process. Obviously, the Islamic module and proportions are used as design generators that result in extracting a number of alternatives easily in a little time. Generative Components (GC) is the parametric software used to achieve the desired objectives of this research.
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_007.pdf
last changed 2012/05/15 20:46

_id ecaade2012_002
id ecaade2012_002
authors Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejdan, Dana (eds.)
year 2012
title Physical Digitality
source Proceedings of the 30th International Conference on Education and research in Computer Aided Architectural Design in Europe - Volume 2 [ISBN 978-9-4912070-3-7], Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, 714 p.
doi https://doi.org/10.52842/conf.ecaade.2012.2
summary Physical Digitality is the second volume of the conference proceedings of the 30th eCAADe conference, held from 12-14 september 2012 in Prague at the Faculty of Architecture of Czech Technical University in Prague. The companion volume is called Digital Physicality. Together, both volumes contain 154 papers that were submitted to this conference. Digitality is the condition of living in a world where ubiquitous information and communication technology is embedded in the physical world. Although it is possible to point out what is “digital” and what is “real,” the distinction has become pointless, and it has no more explanatory power for our environment, buildings, and behaviour. Material objects are invested with communication possibilities, teams are communicating even when not together, and buildings can sense and respond to the environment, each other, and to inhabitants. Digital is no longer an add-on, extra, or separate software. Reality is partly digital and partly physical. The implication of this condition is not clear however, and it is necessary to investigate its potential. New strategies are necessary that acknowledge the synergetic qualities of the physical and the digital. This is not limited to our designs but it also infl uences the process, methods, and what or how we teach. The subdivision of papers in these volumes follow the distinction made in the conference theme. The papers in Physical Digitality have their orientation mainly in the physical realm, and reach towards the digital part. It has to be granted that this distinction is rather crude, because working from two extremes (digital versus physical) tends to ignore the arguably most interesting middle ground.
keywords Digital physicality; physical digitality
series eCAADe
email
last changed 2022/06/07 07:49

_id ecaade2012_000
id ecaade2012_000
authors Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejdan, Dana (eds.)
year 2012
title Digital Physicality
source Proceedings of the 30th International Conference on Education and research in Computer Aided Architectural Design in Europe - Volume 1 [ISBN 978-9-4912070-2-0], Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, 762 p.
doi https://doi.org/10.52842/conf.ecaade.2012.1
summary Digital Physicality is the first volume of the conference proceedings of the 30th eCAADe conference, held from 12-14 september 2012 in Prague at the Faculty of Architecture of Czech Technical University in Prague. The companion volume is called Physical Digitality. Together, both volumes contain 154 papers that were submitted to this conference.Physicality means that digital models increasingly incorporate information and knowledge of the world. This extends beyond material and component databases of building materials, but involves time, construction knowledge, material properties, space logic, people behaviour, and so on. Digital models therefore, are as much about our understanding of the world as they are about design support. Physical is no longer the opposite part of digital models. Models and reality are partly digital and partly physical. The implication of this condition is not clear however, and it is necessary to investigate its potential. New strategies are necessary that acknowledge the synergetic qualities of the physical and the digital. This is not limited to our designs but it also influences the process, methods, and what or how we teach.The subdivision of papers in these volumes follow the distinction made in the conference theme. The papers in Digital Physicality have their orientation mainly in the digital realm, and reach towards the physical part. It has to be granted that this distinction is rather crude, because working from two extremes (digital versus physical) tends to ignore the arguably most interesting middle ground.
keywords Digital physicality; physical digitality
series eCAADe
email
last changed 2022/06/07 07:49

_id sigradi2012_186
id sigradi2012_186
authors Aghaei Meibodi, Mania; Aghaiemeybodi, Hamia
year 2012
title Symbiosis of Structural & Non-Structural properties in Building
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 602-606
summary This paper highlights the different interplays between structural and non-structural parts in building artifact as the result of modes of building processes and massing. The massing is understood as processes of assembling material into a body through which we identify with the building physically. In the last decade architecture discipline as the result of technological inventions has faced shifts in the design processes, massing processes and topology of the artefact. In which we witness integral coexistence between the structural and non-structural elements of building. In this paper the seeds of this integral interplay is scrutinised through the study of design and massing processes of a multi-functional pavilion prototype as a case study.
keywords digital surface; prototype; design processes; structural; formation
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2012_223
id sigradi2012_223
authors Alvarado, Rodrigo Garcia; Mardones, Oscar Otárola
year 2012
title Eco-losas: desarrollo de componentes constructivos más eficientes por análisis topológico y diseño paramétrico. [Eco-slabs: development of more efficient building components by topological analysis and parametric design]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 630-632
summary It exposes a design and construction system for horizontal plates to work as slabs in regular concrete buildings. Based to an evolutionary finite-element analysis of the topological configuration to get a curved design with a 50% reduction of traditional volume, that provide lower cost, less carbon foot-print, better performance and innovative ceiling. A library of profiles is elaborated according different loads, support and dimensions and implemented in a parametric design system, in order to produce geometries for study theirs integration in the building and to elaborate digital fabrication files. Different constructive strategies are been studied, making several prototypes.
keywords Losas, Análisis Topológico, Diseño Paramétrico, Fabricación Digital
series SIGRADI
email
last changed 2016/03/10 09:47

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_381054 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002