CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 542

_id ecaade2012_247
id ecaade2012_247
authors Balaban, Özgün; Kilimci, Elif Sezen Yagmur; Cagdas, Gülen
year 2012
title Automated Code Compliance Checking Model for Fire Egress Codes
doi https://doi.org/10.52842/conf.ecaade.2012.2.117
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 117-125
wos WOS:000330320600011
summary Architecture today has come to its most complex form. There are lots of criteria such as fi re safety, structure, sustainability etc… which must be controlled by the designers. To improve the performance and accessibility of buildings, governing bodies publish different codes for each of the different criteria. Buildings must comply with these codes to get a permit for construction. The checking of the buildings according the codes is done manually by code offi cials. This process is time consuming, high in cost and prone to errors. To remedy this problem by using the tools like BIM and AI, systems that can automatically check the code compliance of projects are being developed. In this paper we provide an overview of the structures and capabilities of these systems and present the automated code compliance checking system that we develop for checking building models against some parts of the Turkish Fire Codes.
keywords Automated Code Compliance Checking; Fire Codes; BIM
series eCAADe
email
last changed 2022/06/07 07:54

_id ijac201210406
id ijac201210406
authors Biswas, Tajin; Ramesh Krishnamurti
year 2012
title Data Sharing for Sustainable Building Assessment
source International Journal of Architectural Computing vol. 10 - no. 4, 555-574
summary Sustainable design assessment requires information, which is aggregated from different phases of a building design, and evaluated according to criteria specified in a ‘sustainable building rating system.’ In the architecture engineering and construction (AEC) domain much of the necessary information is available through open source data standards such as Industry Foundation Classes (IFC). However, no single standard that provides support for sustainability assessment completely suffices as a data structure. This paper explores the augmentation of the Construction Operations Building information exchange (COBie) model, as an intermediary data structure, to bridge between requirements of the Leadership in Energy and Environmental Design (LEED) rating system and a building information model. Development of a general framework for data sharing and information management for LEED assessments is illustrated through an implementation of a prototype using functional databases.The prototype checks and augments available data as needed, which is used to populate LEED submission templates.
series journal
last changed 2019/05/24 09:55

_id sigradi2012_83
id sigradi2012_83
authors Valdes, Francisco; Sun, Yuming
year 2012
title Parametric Natural Ventilation Simulation with Real-time Geometric Feedback (Nat-Vent)
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 436-439
summary Nat-Vent is a modeling system to parametrically simulate natural ventilation of buildings in early stages of design. The Nat-Vent approach comprehends a set of architecture design tools that were connected to an equation solver through a Model Based System Engineering tool (SysML). SysML, which is a general purpose modeling language for systems engineering, is able to mathematically interoperate between architects and engineers while keeping model consistency between them. This implementation enhances the architectural side of design by offering a simple ventilation tool that can be used by architects and engineers, and also delivers geometric feedback from ventilation performance-based decisions.
keywords parametric modeling; building technology; natural ventilation simulation; interoperability in building design; Model Based System Engineering.
series SIGRADI
email
last changed 2016/03/10 10:02

_id acadia12_47
id acadia12_47
authors Aish, Robert ; Fisher, Al ; Joyce, Sam ; Marsh, Andrew
year 2012
title Progress Towards Multi-Criteria Design Optimisation Using Designscript With Smart Form, Robot Structural Analysis and Ecotect Building Performance Analysis"
doi https://doi.org/10.52842/conf.acadia.2012.047
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 47-56
summary Important progress towards the development of a system that enables multi-criteria design optimisation has recently been demonstrated during a research collaboration between Autodesk’s DesignScript development team, the University of Bath and the engineering consultancy Buro Happold. This involved integrating aspects of the Robot Structural Analysis application, aspects of the Ecotect building performance application and a specialist form finding solver called SMART Form (developed by Buro Happold) with DesignScript to create a single computation environment. This environment is intended for the generation and evaluation of building designs against both structural and building performance criteria, with the aim of expediently supporting computational optimisation and decision making processes that integrate across multiple design and engineering disciplines. A framework was developed to enable the integration of modeling environments with analysis and process control, based on the authors’ case studies and experience of applied performance driven design in practice. This more generalised approach (implemented in DesignScript) enables different designers and engineers to selectively configure geometry definition, form finding, analysis and simulation tools in an open-ended system without enforcing any predefined workflows or anticipating specific design strategies and allows for a full range of optimisation and decision making processes to be explored. This system has been demonstrated to practitioners during the Design Modeling Symposium, Berlin in 2011 and feedback from this has suggested further development.
keywords Design Optimisation , Scripting , Form Finding , Structural Analysis , Building Performance
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id sigradi2012_223
id sigradi2012_223
authors Alvarado, Rodrigo Garcia; Mardones, Oscar Otárola
year 2012
title Eco-losas: desarrollo de componentes constructivos más eficientes por análisis topológico y diseño paramétrico. [Eco-slabs: development of more efficient building components by topological analysis and parametric design]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 630-632
summary It exposes a design and construction system for horizontal plates to work as slabs in regular concrete buildings. Based to an evolutionary finite-element analysis of the topological configuration to get a curved design with a 50% reduction of traditional volume, that provide lower cost, less carbon foot-print, better performance and innovative ceiling. A library of profiles is elaborated according different loads, support and dimensions and implemented in a parametric design system, in order to produce geometries for study theirs integration in the building and to elaborate digital fabrication files. Different constructive strategies are been studied, making several prototypes.
keywords Losas, Análisis Topológico, Diseño Paramétrico, Fabricación Digital
series SIGRADI
email
last changed 2016/03/10 09:47

_id caadria2012_115
id caadria2012_115
authors Biswas, Tajin; Tsung-Hsien Wang and Ramesh Krishnamurti
year 2012
title Data sharing for sustainable assessments: Using functional databases for interoperating multiple building information structures
doi https://doi.org/10.52842/conf.caadria.2012.193
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 193–202
summary This paper presents the development and implementation of an automatic sustainable assessment prototype using functional databases. For the practical purpose, we use Leadership in Energy and Environmental Design (LEED) as the exemplar standard to demonstrate the integrative process from building information aggregation to final evaluation. We start with a Building Information model, and use Construction Operations Building Information Exchange (COBie) as a bridge to integrate LEED requirements. At present, the process of sustainable building assessment requires information exchange from various building professionals. However, there is no procedure to manage, or use, information pertaining to sustainability. In our research, we translate rules from LEED into computable formulas and develop a prototype application to produce templates for LEED submission.
keywords Building information databases; sustainable assessment
series CAADRIA
email
last changed 2022/06/07 07:52

_id ascaad2012_022
id ascaad2012_022
authors Borham, Ahmad; Lobna Sherif and Osama Tolba
year 2012
title Resilient Rules - Culture and Computation in Traditional Built Environments
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 211-221
summary This study explores the influence of the socio-cultural rules, based upon Islamic jurisprudence (fiqh), on the complexity of the traditional built environment. This system of rules organized the societal activities, including decisions and activities related to design and construction in the Arab-Islamic city. Considering the city as a complex system, the study will try to show how this rules system made the Arab-Islamic city resilient and adaptive. Complex Adaptive Systems (CAS) are non-linear, self-organizing systems that have the ability to adapt to changing conditions through changing the rules that organize the random autonomous interactions between agents in the environment. This adaptation takes place through gradual gained experience that is reflected in the behavior of agents. This study attempts to interrelate different bodies of literature (Complexity/Chaos theory and built environment studies) in a single framework that aims to show that the socio-cultural rules system based on fiqh was a major factor in the resilience of the traditional built environment. These interrelations are illustrated using a graph called Computational Rules Graph (CRG). The CRG relates the traditional rules system to attributes of complex systems in a graph that can be modeled computationally. Traditional rules (codes of conduct) are proscriptive (non-deterministic), defining what is prohibited, thereby producing autonomous environments where agents had control over their immediate environment. In comparison, contemporary rules of the built environment (building codes) are prescriptive (deterministic), subscribing definite actions that need to take place by the stake-holder (agent) neglecting user needs and preferences. The application of these traditional rules system increased the agent’s autonomy and freedom of action. It also helped establish stronger social networks among agents, which resulted in a resilient environment.
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_022.pdf
last changed 2012/05/15 20:46

_id acadia12_511
id acadia12_511
authors Borowski, Darrick ; Poulimeni, Nikoletta ; Janssen, Jeroen
year 2012
title Edible Infrastructures: Emergent Organizational Patterns for the Productive City
doi https://doi.org/10.52842/conf.acadia.2012.511
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 511-526
summary Edible Infrastructures is an investigation into a projective mode of urbanism which considers food as an integral part of a city's metabolic infrastructure. Working with algorithms as design tools, we explore the generative potential of such a system to create an urban ecology that: provides for its residents via local, multi-scalar, distributed food production, reconnects urbanites with their food sources, and de-couples food costs from fossil fuels by limiting transportation at all levels, from source to table. The research is conducted through the building up of a sequence of algorithms, beginning with the ‘Settlement Simulation’, which couples consumers to productive surface area within a cellular automata type computational model. Topological analysis informs generative operations, as each stage builds on the output of the last. In this way we explore the hierarchical components for a new Productive City, including: the structure and programming of the urban circulatory network, an emergent urban morphology based around productive urban blocks, and opportunities for new architectural typologies. The resulting prototypical Productive City questions the underlying mechanisms that shape modern urban space and demonstrates the architectural potential of mathematical modeling and simulation in addressing complex urban spatial and programmatic challenges.
keywords Urban Agriculture , Urban Ecologies and Food Systems , Productive Cities , Urban Metabolism , Computational Modeling and Simulation , Algorithmic/ Procedural Design Methodologies , Emergent Organization , Self-Organizing Systems
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2012_267
id ecaade2012_267
authors Caldas, Luísa G. ; Santos, Luís
year 2012
title Generation of Energy-Efficient Patio Houses with GENE_ARCH: Combining an Evolutionary Generative Design System with a Shape Grammar
doi https://doi.org/10.52842/conf.ecaade.2012.1.459
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 459-470
wos WOS:000330322400047
summary GENE_ARCH is a Generative Design System that combines Pareto Genetic Algorithms with an advanced building energy simulation engine. This work explores its integration with a Shape Grammar, acting as GENE_ARCH’s shape generation module. The urban patio house typology is readdressed in a contemporary context, both by improving its energy-effi ciency standards, and by rethinking its role in the genesis of high-density urban areas, while respecting its specifi c spatial organization and cultural grounding. Field work was carried out in Marrakesh, surveying a number of patio houses which became the Corpus of Design, from where a Shape Grammar was extracted. The computational implementation of the patio house grammar was done within GENE_ARCH. The resulting program was able to generate new, alternative patio houses designs that were more energy effi cient, while respecting the traditional rules captured from the analysis of existing houses. After the computational system was fully implemented, it was possible to complete different sets of experiments. The first experiments kept more restrained rules, thus generating new designs that closer resembled the existing ones. The progressive relaxation of rules and constraints allowed for a larger number of variations to emerge. Analysis of energy results provide insight into the main patterns resulting from the evolutionary search processes, namely in terms of form factors of generated solutions, and urban densities achieved.
keywords Generative Design Systems; Genetic Algorithms; Shape Grammars; Patio Houses; Energy Efficiency
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2012_266
id ecaade2012_266
authors Casucci, Tommaso ; Erioli, Alessio
year 2012
title Behavioural Surfaces: Project for the Architecture Faculty library in Florence
doi https://doi.org/10.52842/conf.ecaade.2012.1.339
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 339-345
wos WOS:000330322400034
summary Behavioural Surfaces is a thesis project in Architecture discussed on December 2010 at the University of Florence. The project explores the surfacespace relationship in which a surface condition, generated from intensive datascapes derived from environmental data, is able to produce spatial differentiation and modulate structural and environmental preformance. Exploiting material self-organization in sea sponges as surfaces that deploy function and performance through curvature modulation and space defi nition, two different surface definition processes were explored to organize the system hierarchy and its performances at two different scales. At the macroscale, the global shape of the building is shaped on the base of isopotential surfaces while at a more detailed level the multi-performance skin system is defi ned upon the triply periodic minimal surfaces (TPMS).
keywords Digital datascape; Isosurfaces; Material intelligence; Minimal sufaces
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2012_004
id caadria2012_004
authors Chien, S. F. and H. J. Wang
year 2012
title A support system for integrating smart technologies into existing buildings
doi https://doi.org/10.52842/conf.caadria.2012.445
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 445–454
summary We propose a support system for infill elements that integrate smart technologies based on Open Building principles. The design requirements were collected from design practitioners. It consists of an architectural sub-system and an information sub-system. A working prototype was constructed and some smart infill components were implemented to demonstrate and examine the system design. The prototype was evaluated by design practitioners.
keywords Support system; smart house; open building; building renovation
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2012_77
id ecaade2012_77
authors Derix, Christian
year 2012
title Implicit Space
doi https://doi.org/10.52842/conf.ecaade.2012.2.583
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 583-591
wos WOS:000330320600062
summary Algorithmic design must start with the observation of physical behaviours. When applied to designing spatial confi gurations, correlations between occupation, experience and spatial properties as implicit performances require mapping that can be abstracted into notations for algorithmic encoding. The algorithmic descriptions of space are calibrated by physical models. Both algorithms and catalogues of physical models are weighted and compiled into a heuristic design system that enables the generation of spatial confi gurations based on behaviours of occupation observed in real spaces. The final designs of this Implicit Space course constitute diagrammatic building configurations designed from the inside-out through encoded occupant experiences.
keywords Spatial configuration; behavioural mapping; heuristic algorithms; design system
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2012_002
id caadria2012_002
authors Elkhaldi, Maher S. and Ellen Y. Do
year 2012
title Generative synthesis systems: A framework
doi https://doi.org/10.52842/conf.caadria.2012.399
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 399–408
summary Responses delivered by a generative synthesis system (GSS) vary between creative solutions and unusable outcomes. The type of GSS response is driven by many factors such as: the design context, designer’s interpretation, implementation environments, design language, and the GSS composition, among many factors. In this paper, we describe a GSS framework to provide a recipe for delivering responses, which can be qualified as solutions. The framework focuses on GSS composition. It includes descriptions for: building blocks, components, and building strategy. The framework is informed by generative design literature and by our experimentation. We present the framework through: a brief background to GSS, metrics, building blocks, components, and building strategy. We also show an example of GSS implementation and offer a brief discussion.
keywords Generative; building blocks; components; strategy
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2018_243
id ecaade2018_243
authors Gardner, Nicole
year 2018
title Architecture-Human-Machine (re)configurations - Examining computational design in practice
doi https://doi.org/10.52842/conf.ecaade.2018.2.139
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 139-148
summary This paper outlines a research project that explores the participation in, and perception of, advanced technologies in architectural professional practice through a sociotechnical lens and presents empirical research findings from an online survey distributed to employees in five large-scale architectural practices in Sydney, Australia. This argues that while the computational design paradigm might be well accepted, understood, and documented in academic research contexts, the extent and ways that computational design thinking and methods are put-into-practice has to date been less explored. In engineering and construction, technology adoption studies since the mid 1990s have measured information technology (IT) use (Howard et al. 1998; Samuelson and Björk 2013). In architecture, research has also focused on quantifying IT use (Cichocka 2017), as well as the examination of specific practices such as building information modelling (BIM) (Cardoso Llach 2017; Herr and Fischer 2017; Son et al. 2015). With the notable exceptions of Daniel Cardoso Llach (2015; 2017) and Yanni Loukissas (2012), few scholars have explored advanced technologies in architectural practice from a sociotechnical perspective. This paper argues that a sociotechnical lens can net valuable insights into advanced technology engagement to inform pedagogical approaches in architectural education as well as strategies for continuing professional development.
keywords Computational design; Sociotechnical system; Technology adoption
series eCAADe
email
last changed 2022/06/07 07:51

_id ascaad2012_025
id ascaad2012_025
authors Hamani, Dalil and Jean Michel Olive
year 2012
title Information System to Improve the Building Production Management Cooperative Work in Design and Architectural Production
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 253-270
summary Our work is to enable partners of a construction project (building owner, architect, engineer, etc.) to share all the technical data produced and manipulated during the building process, by setting up interfaces for an accessible information system via the internet. Our system would be able to deliver an answer to a user to a particular question asked. The system links databases and allows building partners to access and to manipulate specific information. This paper covers the information structure model based on building construction knowledge and the access to user-relevant information. First, the paper aims to establish the state of the art of the information systems available today in the building construction field. Second, we present the contribution of our research to the description of the building elements (foundations, ramps, stairs, etc.), where information is share by partners who are distant from one another and focused on fields of expertise that are distinct but concurrent. Our system links distributed databases and provides an updated building representation that is being enriched and refined all along the building life cycle. It consists of 3D representations of the building as well as data that are associated with each graphical entity (walls, slabs, beams, etc.).
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_025.pdf
last changed 2012/05/15 20:46

_id acadia12_169
id acadia12_169
authors Helm, Volker ; Ercan, Selen ; Gramazio, Fabio ; Kohler, Matthias
year 2012
title In-Situ Robotic Construction: Extending the Digital Fabrication Chain in Architecture
doi https://doi.org/10.52842/conf.acadia.2012.169
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 169-176
summary In this paper, viable applications of mobile robotic units on construction sites are explored. While expanding on potential objectives for in-situ fabrication in the construction sector, the intention is also to build upon innovative man-machine interaction paradigms to deal with the imprecision and tolerances often faced on construction sites. By combining the precision of the machine with the cognitive environmental human skills, a simple but effective mobile fabrication system is experimented for the building of algorithmically designed additive assemblies that would not be possible through conventional manual methods if the large amount of individual building blocks and the size of the structure to be built are taken into account. It is believed that this new approach to man-machine collaboration, aimed at a deeper integration of human ability with the strengths of digitally controlled machines, will result in advances in the construction sector, thus opening up new design and application fields for architects and planners.
keywords in-situ robotic fabrication , mobile robotics , 1:1 scale fabrication , additive assembly , algorithmically designed structures , man-machine interaction , cognitive , object recognition , construction site
series ACADIA
type normal paper
email
last changed 2022/06/07 07:49

_id ijac201210106
id ijac201210106
authors Henriques, Goncalo Castro
year 2012
title TetraScript: A Responsive Pavilion, From Generative Design to Automation
source International Journal of Architectural Computing vol. 10 - no. 1, 87-104
summary This research is part of a broader investigation into the use of digital technologies in the Architecture, Engineering and Construction (AEC) sector. The intention is to improve the ability of buildings to respond to context by proposing a skylight system that can adjust to external environmental conditions and internal functional demands. We call this responsive ability customisation. The proposed skylight system can adapt to different geometries, uses, locations, times of day and other contextual conditions. Customisation can be achieved by static and dynamic processes. Static customisation is achieved during the design process by selecting the form and size of the building, as well as the number, arrangement and size of the skylights, among other features. Dynamic customisation is accomplished after construction by changing the skylight aperture in real-time to control interior conditions. This paper focuses on the static process to find an adequate skylight configuration for a case-study pavilion.
series journal
last changed 2019/07/30 10:55

_id acadia12_239
id acadia12_239
authors Jackson, Jesse ; Stern, Luke
year 2012
title Fabricating Sustainable Concrete Elements: A Physical Instantiation of the Marching Cubes Algorithm
doi https://doi.org/10.52842/conf.acadia.2012.239
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 239-247
summary This paper explores how an algorithm designed to represent form can be made physical, and how this physical instantiation can be made to respond to a set of design imperatives. Specifically, the paper demonstrates how Marching Cubes (Lorensen and Cline 1987), an algorithm that extracts a polygonal mesh from a scalar field, can be used to initiate the design for a system of modular concrete armature elements that permit a large degree of variability using a small number of discrete parts. The design of these elements was developed in response to a close examination of Frank Lloyd Wright's Usonian Automatic system, an architecturally pertinent historical precedent. The fabricated results positively satisfy contemporary design criteria, including maximal formal freedom, optimal environmental performance, and minimal life-cycle costs.
keywords Form-finding Algorithms , Digital Fabrication , Sustainability , Frank Lloyd Wright , Concrete , Tectonic Elements
series ACADIA
type panel paper
email
last changed 2022/06/07 07:52

_id sigradi2012_153
id sigradi2012_153
authors Kaufmann, Stefan; Petzold, Frank
year 2012
title Cybernetic models in building fabrication. A three stage training approach to digital fabrication in architecture
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 243-245
summary In the time since European architects first began using computers in the building design process, the digital revolution has transformed how architects use planning tools completely. Today, digital tools are an indispensable part of planning practice. Besides a wide variety of digital modeling tools, parametric tools offer architects diverse options for generating cybernetic building models as BIM-models or homeostatic parametric geometry models. Cybernetic models help us to describe the buildings as a system and can improve planning efficiency. The aim of planning is to construct or fabricate an end result. The integration of digital fabrication methods in the digital chain is a fundamental goal if architects are to benefit from the progressive development of computer controlled machine tools. Fabrication integrated digital models can automate the planning process up to the production stage and enable the efficient fabrication of building components. The increased efficiency of planning and fabrication has facilitated a growing proliferation of buildings of increasing geometric complexity. Computers can open a door to the realization of new forms, spaces and construction systems to architects that understand the principles of fabrication-integrated cybernetic modeling.
keywords didactic; parametric design; digital fabrication; CIM;
series SIGRADI
email
last changed 2016/03/10 09:53

_id acadia12_305
id acadia12_305
authors Kock, Jeffrey ; Bradley, Benjamin ; Levelle, Evan
year 2012
title The Digital-Physical Feedback Loop: A Case Study
doi https://doi.org/10.52842/conf.acadia.2012.305
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 305-314
summary Kukje Art Center, Seoul’s new gallery designed by SO-IL, features a totally bespoke chainmail mesh system (submission note: the authors are not affiliated with SO-IL). A single sheet of complex-curved, tensioned mesh, made up of interlocking 40mm diameter stainless steel rings, wraps the building. This paper discusses the stages of a feedback loop process employed by the authors to refine a digital model of the mesh. The mesh’s perimeter attachment system does not prescribe ring locations, allowing the mesh to form find for itself during installation. As a result, the digital model must capture the behavioral tendencies of the mesh as it negotiates the building’s geometry. Paramount in meeting this challenge was the use of physical mockups. At each stage of the feedback loop process, the working digital model was used to develop a physical mockup of increased scale and complexity, and this mockup was used to refine the digital model. Ultimately, the model output of a mesh relaxation algorithm was used as the basis for engineering simulations and predictions of the mesh vertical ringcount needed at specific locations around the building. Mesh vertical ringcount predictions are validated relative to a 1:1 mockup and the installed Kukje Art Center mesh.
keywords minimal surface , chainmail mesh , form finding , dynamic relaxation , finite element analysis , feedback loop , tensioned fabric , physical mockup , bespoke cladding , Kukje , Seoul
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_41532 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002