CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 551

_id ijac201210307
id ijac201210307
authors Willmann, Jan; Federico Augugliaro, Thomas Cadalbert, et al.
year 2012
title Aerial Robotic Construction Towards a New Field of Architectural Research
source International Journal of Architectural Computing vol. 10 - no. 3, 439-459
summary This paper takes a first step in characterizing a novel field of architectural research - aerial robotic construction (ARC) - where aerial robotics is used not only for construction, but as a guiding principle in the design and fabrication process. Featuring autonomous flying vehicles that lift small building elements and position them according to a precise digital blueprint, ARC offers a comprehensive new approach to architecture research and technology. Developed by the research groups of Gramazio & Kohler and Raffaello D'Andrea at ETH Zurich, ARC offers unique advantages over traditional approaches to building: it does not require scaffolding, it is easily scalable, and it offers digital integration and informational oversight across the entire design and building process. This paper considers 1) research parameters for the individual components of ARC (such as module design, connection methodologies, vehicle cooperation, and construction sequencing/synchronization), and 2) the architectural implications of integrating these discrete components into a systemic, unifying process at the earliest stages of design. Fidelity between the design concept and the full-scale construction is of particular concern.
series journal
last changed 2019/05/24 09:55

_id acadia12_177
id acadia12_177
authors Mankouche, Steven ; Bard, Joshua ; Schulte, Matthew
year 2012
title Morphfaux: Probing the Proto-Synthetic Nature of Plaster Through Robotic Tooling
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 177-186
doi https://doi.org/10.52842/conf.acadia.2012.177
summary Morphfaux is an applied research project that revisits the virtually lost craft of plaster to explore its potential for producing thickened architectural environments through the use of contemporary digital technology. The research challenges the flatness of modern, standardized dry wall construction and explores plaster’s malleability as a material that can be applied thick and thin, finished to appear smooth or textured, and tooled while liquid or cured. If the invention of industrialized modern building products such as drywall led to the demise of the plasterer as a tradesperson, our research seeks alliances between the abilities of the human hand and those of automation. By transforming historic methods using new robotic tools, Morphfaux has broadened the possibilities of architectural plaster. While our research has produced forms not possible by human skill alone, it also clearly illustrates a symbiotic relationship between the human body and robotic machines where human dexterity and robotic precision are choreographed in the production of innovative plastering techniques.
keywords Digital Practice , Robotic Fabrication , Digital Craft , Tacit Knowledge , Material Resistance , Synthetic Material , Plaster , Variable Tools
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id ecaade2012_284
id ecaade2012_284
authors Ameijde, Jeroen van; Carlin, Brendon
year 2012
title Digital Construction: Automated Design and Construction Experiments Using Customised On-Site Digital Devices
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 439-446
doi https://doi.org/10.52842/conf.ecaade.2012.2.439
wos WOS:000330320600046
summary This paper presents a currently on-going research trajectory, investigating integrated design and build work-fl ows using generative design strategies and custom built fabrication devices. The aim of the research, which is being developed through a series of experiments and workshops, is to explore scenarios in which these work-flows can produce emergent architectural structures which are highly adapted towards the intended performance within their specifi c context and site. The research has produced a number of installations and prototypical structures which test the practical and theoretical dimensions of the methodology explored. This paper will introduce intriguing new scenarios in which the architects’ role is focused on an indirect, advanced level of control of the process of design, allowing for a more open-ended method of negotiation between structure, users and environment.
keywords Generative design; digital fabrication; customised CNC devices; digital on-site construction
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2012_004
id ascaad2012_004
authors El-Masri, Souheil; Mazen Kana’an and Mohammed Fawzi Elanany
year 2012
title Architecture, Digital Techniques & Project Management
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 14-20
summary With the invention of computers, Architecture and other Engineering disciplines have undergone revolutionary developments offering new opportunities for improving efficiency and opening new frontiers for creativity. For example in architecture and urban planning, the discussions have been extended from conventional writings to cover cyberspace, virtual architecture and digital city. Moreover, computers have helped in the realization of many complex projects that would be inconceivable with traditional drawing techniques. This is clearly demonstrated in the works of Frank Gehry's, Zaha Hadid, Daniel Libeskind and many others. In deed, digital techniques have changed the design creative process and how the architects think. Traditionally the structured development architectural ideas from 2D drawings (plans, sections, elevations) towards 3D resolution has been replaced by more interactive approach of 2D & 3D. The changes that digital techniques have brought to the field of Architecture; including practice and education, can obviously be viewed from different angles and incite many discussions and questions. However, the purpose of this presentation is to discuss the role of digital techniques within the overall framework of project management in Gulf Housing Engineering. It starts the discussion with a brief on architecture and digital techniques in the Gulf Region, especially during the “boom period”; a period characterized by rapid production of buildings relying heavily on virtual images. It is against this background, the role of digital techniques is evaluated from a practice point of view. In fact in GHE, digital means are integral parts of the holistic project delivery process starting form initiation, to various design stages to construction ending with project completion. In this process emphasis is paid to the inter-relationships between IT Systems and Quality Control which in turn facilitate measuring, monitoring and reporting on various managerial, technical and design and budgetary aspects of the project. The presentation is supported by real case studies of GHE portfolio. It emphasizes that digital techniques should be an integral part of an overall process and should be seen as means to enhance efficiency and creativity; and should contribute to the betterment of the built environment
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_004.pdf
last changed 2012/05/15 20:46

_id acadia12_539
id acadia12_539
authors Van Ameijde, Jeroen ; Carlin, Brendon ; Vlieghe, Denis
year 2012
title Emergent Constructions: Experiments Towards Generative On-Site Design and Build Strategies Using Customised Digital Devices
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 539-545
doi https://doi.org/10.52842/conf.acadia.2012.539
summary This paper presents a currently ongoing research trajectory, investigating integrated design and build workflows using generative design strategies and custom built fabrication devices. The aim of the research, which is being developed through a series of experiments and workshops, is to explore scenarios in which these work-flows can produce emergent architectural structures which are highly adapted towards the intended performance within their specific context and site. The research has produced a number of installations and prototypical structures which explore practical and theoretical dimensions of the methodology explored. It introduces intriguing new scenarios in which the architects' role is focused on the indirect control of the process of design, allowing for a more open-ended process of negotiation between structure, users and environment.
keywords generative design , digital fabrication , customised CNC devices , digital on-site construction
series ACADIA
type panel paper
email
last changed 2022/06/07 07:57

_id caadria2012_069
id caadria2012_069
authors Kaijima, Sawako
year 2012
title Computer simulation for intuitive structuring
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 369–378
doi https://doi.org/10.52842/conf.caadria.2012.369
summary Computer simulation methods have opened up new possibilities for design and research by introducing environments in which we can manipulate and observe. For instance, architects utilise three-dimensional modelling tools to simulate architectural geometries, and engineers use Finite Element software to simulate structural behaviour. Simulation tools make certain aspects of architecture efficient, but, on the other hand, they have brought new types of challenges into the field. One such challenge is the structuring of so-called complex geometries. These forms are often conceived in an environment where gravity, scales, and material are absent and calculated in a model where geometries are frozen and static. As a result, there exists little understanding between the two disciplines in solving the design to come to a well-negotiated form. In the context thereof, our work focuses on the development of interactive simulation environments that induce intuition towards the specific counter-intuitive problem of structuring in the early stages of design. The paper gives insights into aspects of simulation relevant to architectural design and structural engineering. Subsequently, three simulation environments that we have developed are presented to demonstrate our strategies.
keywords Computer simulation; finite element analysis; interactive software
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2023_318
id ecaade2023_318
authors Imam, Chowdhury Ali, Othman, Hanin Abdel Salam and Çapunaman, Özgüç Bertug
year 2023
title Robotic Plaster Carving: Formalizing subtractive detailing of plaster surfaces for construction and crafts
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 397–406
doi https://doi.org/10.52842/conf.ecaade.2023.1.397
summary Plaster has been a fundamental material in numerous interior and exterior applications in architectural construction due to its fire-resistant properties and capabilities for intricate detailing. Moreover, prior to the widespread adoption of computer-aided design tools, plaster played a crucial role in historic preservation and architectural education (Mankouche & Schulte, 2012). While the use of decorative plaster elements in architectural construction has waned in popularity, the renewed interest in plaster within the context of advanced robotic fabrication offers a compelling basis for research. This paper presents an investigation into robotic plaster carving for adding detail and texture to plaster surfaces. Within the scope of this study, we identify and systematically examine various fabrication and material parameters for emergent geometries and fabrication defects, subsequently formalizing this robotic workflow for diverse applications in construction and crafts. Among these parameters, we primarily concentrate on toolpath geometry, tool orientation, carving speed, carving profile, and aggregation of carving strokes. Through this bottom-up approach, our objective is to enhance the understanding of tool-material interaction during the fabrication process and achieve improved control over the resulting artifact. Building on these insights, we demonstrate how the proposed robotic plaster carving workflow can be employed for subtractive surface detailing in architectural construction and digital crafts.
keywords Robotic Fabrication, Plaster Carving, Surface Detailing, Digital Craft
series eCAADe
email
last changed 2023/12/10 10:49

_id acadia12_315
id acadia12_315
authors Imbern, Matias ; Raspall, Felix ; Su, Qi
year 2012
title Tectonic Tessellations: A Digital Approach to Ceramic Structural Surfaces
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 315-321
doi https://doi.org/10.52842/conf.acadia.2012.315
summary From the beginning of digital revolution, structural surfaces drew significant attention as a realm that interweaves formal explorations, form-finding and structural optimization. However, after successful experimentation in the virtual domain, it became evident that some of the main challenges lay on how to translate these structural forms into architectural assemblies at the scale of buildings. The development of digital fabrication is crucial in this task, as means to overcome traditional constraints such as need for modular pieces, scaffolding and optimal assembly sequences.This research focuses on digital workflows that combine form finding with robotic fabrication, surface tessellation and panelization. In the past years, the use of digital tools to assemble identical modules into complex formations has achieved significant results for loadbearing walls. Expanding this line of research, the proposed fabrication system carries these experiments on additive fabrication into the production of structural surfaces. The assembly sequence involves a two-step fabrication: off-site panel manufacturing and on-site assembly. The main components of the system consist of two triangular ceramic pieces that provide structural resistance, refined surface finish, and formwork for thin reinforced-concrete layer. Panelization strategies reduce the requirements on-site work and formwork.The paper describes background research, concept, construction process, methodology, results and conclusions.
keywords Digital Fabrication , Complex Geometry , Reinforced Ceramic , Structural Surfaces , Reduced Formwork
series ACADIA
type panel paper
email
last changed 2022/06/07 07:50

_id ijac201210306
id ijac201210306
authors Leach, Neil; Anders Carlson, Behrokh Khoshnevis, et al.
year 2012
title Robotic Construction by Contour Crafting: The Case of Lunar Construction
source International Journal of Architectural Computing vol. 10 - no. 3, 423-438
summary Contour Crafting is a digitally controlled construction process invented by Professor Behrokh Khoshnevis that fabricates components directly from computer models, using layered fabrication technology. By obviating the need for formwork used in traditional concrete construction, CC can reduce costs and construction times significantly. The technique has great potential as a robotic form of construction reliant on relatively minimal human labor as a form of construction in relatively hazardous environments, such as the Moon with its radiation levels that can prove highly damaging. Current research funded by NASA has been exploring the potential for using CC on the Moon to build structures making use of readily available regolith that is found in great abundance on the surface of the Moon. This article offers an overview of this research and evaluates the merits of using CC on the Moon.
series journal
last changed 2019/05/24 09:55

_id caadria2012_110
id caadria2012_110
authors McGee, Wes; David Pigram and Maciej P. Kaczynski
year 2012
title Robotic reticulations: A method for the integration of multi-axis fabrication processes with algorithmic form-finding techniques
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 295–304
doi https://doi.org/10.52842/conf.caadria.2012.295
summary This paper addresses the design and fabrication of non-uniform structural shell systems. Structural shells, particularly gridshells, have a long history but due to their complexity and the accompanying high cost of construction, their application has been limited. The research proposes a method for integrating the design and fabrication processes such that complex double curved reticulated frames can be constructed efficiently, from prefabricated components, requiring significantly less formwork than is typical. A significant aspect of the method has been the development of software tools that allow for both algorithmic form-finding and the direct control of robotic fabrication equipment from within the same modelling package. A recent case-study is examined where the methodology has been applied to construct a reticulated shell structure in the form of a partial vault. Components were prefabricated using 6-axis robotic fabrication equipment. Individual parts are designed such that the assembly of components guides the form of the vault, requiring no centring to create the desired shape. Algorithmically generated machine instructions controlled a sequence of three tool changes for each part, using a single modular fixture, greatly increasing accuracy. The complete integration of computational design techniques and fabrication methodologies now enables the economical deployment of non-uniform structurally optimised reticulated frames.
keywords Reticulated frame; robotic fabrication; dynamic relaxation; form-finding; computational design
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2012_262
id ecaade2012_262
authors Pasternak, Agata
year 2012
title Robotic Prototypes Optimization: Incorporation of Optimization Procedures in the Design Process
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 265-272
doi https://doi.org/10.52842/conf.ecaade.2012.2.265
wos WOS:000330320600026
summary The use of computer-aided design combined with robotics and evolutionary principles of optimization, during the architectural design process, is discussed in this paper. The research is based on the examples of four case studies out of six projects designed during the Experimental Design Studio: ROBO Studio and a parallel seminar on optimization techniques on Architecture for Society of Knowledge Master course at Warsaw University of Technology, Faculty of Architecture. The project’s main goal was to combine robotic prototypes construction with an optimization process executed in parallel within one design procedure. The results of the course and the discussion about the impact of both factors on the architectural design process are presented in this paper.
keywords Genetic algorithm; optimization; robotics; Galapagos, Firefly, digital fabrication, design integration, kinetic structures
series eCAADe
type normal paper
email
last changed 2022/06/07 07:59

_id acadia12_157
id acadia12_157
authors Schwinn, Tobias ; Krieg, Oliver David ; Menges, Achim ; Mihaylov, Boyan ; Reichert, Steffen
year 2012
title Machinic Morphospaces: Biomimetic Design Strategies for the Computational Exploration of Robot Constraint Spaces for Wood Fabrication
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 157-168
doi https://doi.org/10.52842/conf.acadia.2012.157
summary The paper presents research into computational design processes that integrate not only criteria of physical producibility but also characteristics of design intelligence and performance. In the first part, the use of an industrial robot’s design space for developing differentiated finger joint connections for planar sheets of plywood is being introduced. Subsequently, biomimetics is proposed as a filter for the possible geometric differentiations with respect performative capacities. The second part focuses on the integration of fabricational and biomimetic principles with structural and architectural demands, as well as by the development of a custom digital data structure for the fabrication of finger joint plate structures resulting in the construction of a full scale prototype. The paper concludes with evaluating the tolerances inherent in construction through 3D laser scan validation of the physical model.
keywords Computational Design , Robotic Manufacturing , Digital Fabrication , Biomimetics , 3D Scanning
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id acadia20_340
id acadia20_340
authors Soana, Valentina; Stedman, Harvey; Darekar, Durgesh; M. Pawar, Vijay; Stuart-Smith, Robert
year 2020
title ELAbot
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 340-349.
doi https://doi.org/10.52842/conf.acadia.2020.1.340
summary This paper presents the design, control system, and elastic behavior of ELAbot: a robotic bending active textile hybrid (BATH) structure that can self-form and transform. In BATH structures, equilibrium emerges from interaction between tensile (form active) and elastically bent (bending active) elements (Ahlquist and Menges 2013; Lienhard et al. 2012). The integration of a BATH structure with a robotic actuation system that controls global deformations enables the structure to self-deploy and achieve multiple three-dimensional states. Continuous elastic material actuation is embedded within an adaptive cyber-physical network, creating a novel robotic architectural system capable of behaving autonomously. State-of-the-art BATH research demonstrates their structural efficiency, aesthetic qualities, and potential for use in innovative architectural structures (Suzuki and Knippers 2018). Due to the lack of appropriate motor-control strategies that exert dynamic loading deformations safely over time, research in this field has focused predominantly on static structures. Given the complexity of controlling the material behavior of nonlinear kinetic elastic systems at an architectural scale, this research focuses on the development of a cyber-physical design framework where physical elastic behavior is integrated into a computational design process, allowing the control of large deformations. This enables the system to respond to conditions that could be difficult to predict in advance and to adapt to multiple circumstances. Within this framework, control values are computed through continuous negotiation between exteroceptive and interoceptive information, and user/designer interaction.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ascaad2012_024
id ascaad2012_024
authors Abeer, Samy Yousef Mohamed
year 2012
title Sustainable Design and Construction: New Approaches Towards Sustainable Manufacturing
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 241-251
summary Ecological and environmental issues are playing an important and larger role in corporate and manufacturing strategies. For complete creative design process, buildings require both for construction and manufacturing, due to their comparatively long life cycle for maintenance, significant raw material and energy resources. Thinking in terms of product life cycles is one of the challenges facing manufacturers today. “Life Cycle Management” (LCM) considers the product life cycle as a whole and optimizes the interaction of product design, construction, manufacturing and life cycle activities. The goal of this approach is to protect resources and maximize the effectiveness during usage by means of Life Cycle Assessment, Product Data Management, Technical Support and last but not least by Life Cycle Costing. In this paper the environmental consciousness issues pertaining to design, construction, manufacturing and operations management are presented through computer intelligent technologies of this 21century. So, this paper shows the existing approaches of LCM and discusses their visions and further development.
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_024.pdf
last changed 2012/05/15 20:46

_id ecaade2012_000
id ecaade2012_000
authors Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejdan, Dana (eds.)
year 2012
title Digital Physicality
source Proceedings of the 30th International Conference on Education and research in Computer Aided Architectural Design in Europe - Volume 1 [ISBN 978-9-4912070-2-0], Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, 762 p.
doi https://doi.org/10.52842/conf.ecaade.2012.1
summary Digital Physicality is the first volume of the conference proceedings of the 30th eCAADe conference, held from 12-14 september 2012 in Prague at the Faculty of Architecture of Czech Technical University in Prague. The companion volume is called Physical Digitality. Together, both volumes contain 154 papers that were submitted to this conference.Physicality means that digital models increasingly incorporate information and knowledge of the world. This extends beyond material and component databases of building materials, but involves time, construction knowledge, material properties, space logic, people behaviour, and so on. Digital models therefore, are as much about our understanding of the world as they are about design support. Physical is no longer the opposite part of digital models. Models and reality are partly digital and partly physical. The implication of this condition is not clear however, and it is necessary to investigate its potential. New strategies are necessary that acknowledge the synergetic qualities of the physical and the digital. This is not limited to our designs but it also influences the process, methods, and what or how we teach.The subdivision of papers in these volumes follow the distinction made in the conference theme. The papers in Digital Physicality have their orientation mainly in the digital realm, and reach towards the physical part. It has to be granted that this distinction is rather crude, because working from two extremes (digital versus physical) tends to ignore the arguably most interesting middle ground.
keywords Digital physicality; physical digitality
series eCAADe
email
last changed 2022/06/07 07:49

_id ecaade2012_212
id ecaade2012_212
authors Aghaei Meibodi, Mania ; Aghaiemeybodi, Hamia
year 2012
title The Synergy Between Structure and Ornament: A Reflection on the Practice of Tectonic in the Digital and Physical Worlds
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 245-254
doi https://doi.org/10.52842/conf.ecaade.2012.2.245
wos WOS:000330320600024
summary The use of digital design and fabrication technologies in architecture has followed a paradigm shift, which has seen the topology, form and structure of architecture pushed to incorporate areas such as climate, construction, acoustic etc. While these digital technologies are intended to enhance the processes and performance, a discussion of aesthetics has been ignored. Surmising that the use of digital technology enhances the performability and effi ciency aspects of architecture as well as the aesthetics, this research questions what the new relationships and arrangements for structure and ornament are. What are the challenges when structure uses a process-based logic and is sensitive to materiality whereas the aesthetics has a representation-based logic and is not sensitive to materiality? The authors of this paper contribute to this debate by using the notion of tectonic as a platform for gaining and creating knowledge about this issue and examining the issues through the design and prototyping of a Multi-functional Pavilion.
keywords Processes; ornament; digital technology; tectonic; architectural expression
series eCAADe
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2015_185
id caadria2015_185
authors De Oliveira, Maria João and Vasco Moreira Rato
year 2015
title From Morphogenetic Data to Performative Behaviour
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 765-774
doi https://doi.org/10.52842/conf.caadria.2015.765
summary This paper presents part of CORK’EWS, a research work developed within the framework of the Digital Architecture Advanced Program 2012/13 at ISCTE-IUL. The main goal of this investigation was to develop a parametric, customizable and adaptive wall system designed for environmental performance. Moreover, the system is based on standard industrial products: expanded cork blocks produced by Amorim Insulation industries. CAD/CAM resources were the essential tools of the research process, where fundamental and practical knowledge is integrated to understand the microstructure morphological properties of the raw material – cork – and its derivate – natural expanded cork. These properties were upscale and adapted to create a wall with an optimized solar control environmental performance. The result is a digitally fabricated prototype of a new customizable industrial product, adaptable to specific environmental conditions and installation setups being therefore easily commercialized. From microstructural morphology to macroscale construction, the research explores new application possibilities through morphogenesis and opens new possible markets for these customizable products.
keywords Morphogenesis; performance; shading systems; cork.
series CAADRIA
email
last changed 2022/06/07 07:55

_id acadia12_139
id acadia12_139
authors Erioli, Alessio ; Zomparelli, Alessandro
year 2012
title Emergent Reefs
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 139-148
doi https://doi.org/10.52842/conf.acadia.2012.139
summary The Emergent Reefs project thrives on the potential that emerge from a coherent utilization of the environment’s inherent ecological structure for its own transformation and evolution, using an approach based on digitally simulated ecosystems and sparkled by the possibilities and potential of large-scale 3D printing technology. Considering tourism as an inevitable vector of environmental change, the project aims to direct its potential and economic resources towards a positive transformation, providing a material substrate for the human-marine ecosystem integration with the realization of spaces for an underwater sculpture exhibition. Such structures will also provide a pattern of cavities which, expanding the gradient of microenvironmental conditions, break the existing homogeneity in favor of systemic heterogeneity, providing the spatial and material preconditions for the repopulation of marine biodiversity. Starting from a digital simulation of a synthetic local ecosystem, a generative technique based on multi-agent systems and continuous cellular automata (put into practice from the theoretical premises in Alan Turing’s paper “The Chemical basis of Morphogenesis” through reaction-diffusion simulation) is implemented in a voxel field at several scales giving the project a twofold quality: the implementation of reaction diffusion generative strategy within a non-isotropic 3-dimensional field and integration with the large-scale 3D printing fabrication system patented by D-Shape®. Out of these assumptions and in the intent of exploiting the expressive and tectonic potential of such technology, the project has been tackled exploring voxel-based generative strategies. Working with a discrete lattice eases the simulation of complex systems and processes across multiple scales (including non-linear simulations such as Computational Fluid-Dynamics) starting from local interactions using, for instance, algorithms based on cellular automata, which then can be translated directly to the physical production system. The purpose of Emergent-Reefs is to establish, through strategies based on computational design tools and machine-based fabrication, seamless relationships between three different aspects of the architectural process: generation, simulation and construction, which in the case of the used technology can be specified as guided growth.
keywords emergence , reef , underwater , 3D printing , ecology , ecosystem , CFD , agency , architecture , tourism , culture , Open Source
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ascaad2012_025
id ascaad2012_025
authors Hamani, Dalil and Jean Michel Olive
year 2012
title Information System to Improve the Building Production Management Cooperative Work in Design and Architectural Production
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 253-270
summary Our work is to enable partners of a construction project (building owner, architect, engineer, etc.) to share all the technical data produced and manipulated during the building process, by setting up interfaces for an accessible information system via the internet. Our system would be able to deliver an answer to a user to a particular question asked. The system links databases and allows building partners to access and to manipulate specific information. This paper covers the information structure model based on building construction knowledge and the access to user-relevant information. First, the paper aims to establish the state of the art of the information systems available today in the building construction field. Second, we present the contribution of our research to the description of the building elements (foundations, ramps, stairs, etc.), where information is share by partners who are distant from one another and focused on fields of expertise that are distinct but concurrent. Our system links distributed databases and provides an updated building representation that is being enriched and refined all along the building life cycle. It consists of 3D representations of the building as well as data that are associated with each graphical entity (walls, slabs, beams, etc.).
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_025.pdf
last changed 2012/05/15 20:46

_id acadia12_187
id acadia12_187
authors Mei-Ling, Lin ; Han, Ling ; Kothapuram, Shankara ; Jiawei, Song
year 2012
title Digital Vernacular
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 187-195
doi https://doi.org/10.52842/conf.acadia.2012.187
summary Digital Vernacular investigates the potential of the process of depositing a paste like material with precision using a CNC device which has produced an innovative system for design and fabrication of environmentally responsive housing. Architectural practice has been greatly impacted by technical innovations in the past, usually new building types emerge as part of new ideologies. Yet the current revolution in computer-aided design and fabrication has architecture focusing on form – without questioning what these new processes can bring for the masses. The research project 'Digital Vernacular' has investigated the potential of using CNC technology for the production of housing. It has focused on the design of the machinic devices as well as computational design tools, and revolves around the concept of fabrication on site. Using an additive and layered manufacturing process and locally available material, the project proposes a revolutionary new digital design and fabrication system that is based on one of the oldest and most sustainable construction methods in the world. The main potentials of this method are not to create complex forms for the sake of design, but to use parametric control to adapt each design to the specificities of its site. Using geometrical rules found during many research experiments with real material behaviour, a new architectural language is created that merges several environmental functionalities into a single integrated design.
keywords Digital , Vernacular , CNC , CAM , Housing , fabrication , environmental
series ACADIA
type panel paper
email
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_447533 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002