CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 540

_id ascaad2014_016
id ascaad2014_016
authors Al-Ratrout, Samer A. and Rana Zureikat
year 2014
title Pedagogic Approach in the Age of Parametric Architecture: Experimental method for teaching architectural design studio to 3rd year level students
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 211-226
summary In this era, Architectural Design Practice is faced with a paradigm shift in its conventional approaches towards computational methods. In this regard, it is considered a pedagogic challenge to boost up knowledge and skills of architectural students’ towards an advanced approach of architectural design that emphasizes the potentials and complexity of computational environments and parametric tools for design problem solving. For introducing the concept of Parametric Oriented Design Methods to 3rd year level architectural students, an experimental pedagogic course was designed in the scholastic year of 2012-2013 at German Jordanian University GJU (School of Architecture and Built Environment SABE) to approach this concept. In the preparation phase, the experimental course was designed to incorporate structured instructing and training method to be consecutively performed within experimental lab environment to target predetermined learning outcomes and goals. The involved students were intentionally classified into three levels of previous involvement associated with the related software operating skills and computational design exposure. In the implementation phase, the predetermined instructing and training procedures were performed in the controlled environment according to the planned tasks and time intervals. Preceded tactics were prepared to be executed to resolve various anticipated complication. In this phase also, students’ performance and comprehension capacity were observed and recorded. In data analysis phase, the observed results were verified and correlations were recognized. In the final phase, conclusions were established and recommendations for further related pedagogic experiments were introduced.
series ASCAAD
email
last changed 2016/02/15 13:09

_id sigradi2012_372
id sigradi2012_372
authors Carvalho, Guilherme; Araújo, André Luís; Barbosa, Wilson; Noritomi, Pedro; Oliveira, Marcelo; Celani, Gabriela
year 2012
title Avaliação Comparativa de Aplicativos de Análise Estrutural Vinculados ao Ambiente de Modelagem Paramétrica: estudo de caso utilizando o plug-in Scan-and-Solve para Rhinoceros [Comparative between software for structural analysis linked to parametric modeling environment: case study with the plug-in Scan-and-Solve for Rhinoceros]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 348-351
summary This paper evaluates the use of Scan-and-Solve plug-in for structural analysis in Rhinoceros’s environment. A reception desk parametrically modeled was evaluated with Scan-and-Solve and with Ansys. From the results, we concluded that the main difference between the programs is that Ansys allows more detailed definition of the connections between parts of the object. Besides the virtual models, the results were showed with a physical model printed with the rapid prototypes techniques. The paper describes the integration of parametric modeling, structural analysis and rapid prototyping procedures in the design process.
keywords Finite elements, Structural analysis, Scan-and-Solve; Ansys; Rapid prototyping
series SIGRADI
email
last changed 2016/03/10 09:48

_id caadria2012_069
id caadria2012_069
authors Kaijima, Sawako
year 2012
title Computer simulation for intuitive structuring
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 369–378
doi https://doi.org/10.52842/conf.caadria.2012.369
summary Computer simulation methods have opened up new possibilities for design and research by introducing environments in which we can manipulate and observe. For instance, architects utilise three-dimensional modelling tools to simulate architectural geometries, and engineers use Finite Element software to simulate structural behaviour. Simulation tools make certain aspects of architecture efficient, but, on the other hand, they have brought new types of challenges into the field. One such challenge is the structuring of so-called complex geometries. These forms are often conceived in an environment where gravity, scales, and material are absent and calculated in a model where geometries are frozen and static. As a result, there exists little understanding between the two disciplines in solving the design to come to a well-negotiated form. In the context thereof, our work focuses on the development of interactive simulation environments that induce intuition towards the specific counter-intuitive problem of structuring in the early stages of design. The paper gives insights into aspects of simulation relevant to architectural design and structural engineering. Subsequently, three simulation environments that we have developed are presented to demonstrate our strategies.
keywords Computer simulation; finite element analysis; interactive software
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2012_038
id caadria2012_038
authors Kato, Kody and Hyoung-June Park
year 2012
title Toward a performance-oriented architecture: An integrated design approach to a real time responsive structure
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 59–68
doi https://doi.org/10.52842/conf.caadria.2012.059
summary This paper started from the study of “performance-oriented architecture” for the purpose of developing a real time responsive prototype that can enclose large expansive interior space. Questions regarding the relationship between the structural arrangement of systems and the natural environment initiated an investigation in Phyllotaxis. It has been found in plant systems for the optimisation of photosynthesis with harvesting maximum amounts of solar energy. In the design of a real time responsive prototype, an algorithmic approach is introduced with the mathematical interpretation of Phyllotaxis and its translation into the global geometry of the prototype. Also, the usage of a Voronoi diagram is parametrically configured to form the local geometry of the prototype. The interactive mechanism of the prototype was achieved with an assorted computational application. Furthermore, with the demonstration of the aforementioned prototype in both digital and physical environments, its implementation process is explained.
keywords Performance-oriented architecture; phyllotaxis; Voronoi diagram; real-time-responsive structure
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2012_117
id ecaade2012_117
authors Kurilla, Lukas ; Ruzicka, Marek ; Florián, Milos
year 2012
title Architectural software tool for structural analysis (ATSA) intended for intuitive form-fi nding process
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 547-553
doi https://doi.org/10.52842/conf.ecaade.2012.1.547
wos WOS:000330322400056
summary This paper presents Architectural software Tool for Structural Analysis (ATSA) which is designed as a software bridge between architectural and structural software programmes. It has been developed at university in cooperation with architects and structural engineers, intended to make their interdisciplinary cooperation more efficient. ATSA is aimed to provide structural analysis of drafts created by an architetct in the early stages of design in order to enable the architect to understand the mechanical responses of the structure to loading, and thus optimise it creatively through an intuitive form-finding process.
keywords Design tool development; interactive structural analysis; architect-engineer collaboration; intuitive form-finding;generative design
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2012_002
id ecaade2012_002
authors Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejdan, Dana (eds.)
year 2012
title Physical Digitality
source Proceedings of the 30th International Conference on Education and research in Computer Aided Architectural Design in Europe - Volume 2 [ISBN 978-9-4912070-3-7], Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, 714 p.
doi https://doi.org/10.52842/conf.ecaade.2012.2
summary Physical Digitality is the second volume of the conference proceedings of the 30th eCAADe conference, held from 12-14 september 2012 in Prague at the Faculty of Architecture of Czech Technical University in Prague. The companion volume is called Digital Physicality. Together, both volumes contain 154 papers that were submitted to this conference. Digitality is the condition of living in a world where ubiquitous information and communication technology is embedded in the physical world. Although it is possible to point out what is “digital” and what is “real,” the distinction has become pointless, and it has no more explanatory power for our environment, buildings, and behaviour. Material objects are invested with communication possibilities, teams are communicating even when not together, and buildings can sense and respond to the environment, each other, and to inhabitants. Digital is no longer an add-on, extra, or separate software. Reality is partly digital and partly physical. The implication of this condition is not clear however, and it is necessary to investigate its potential. New strategies are necessary that acknowledge the synergetic qualities of the physical and the digital. This is not limited to our designs but it also infl uences the process, methods, and what or how we teach. The subdivision of papers in these volumes follow the distinction made in the conference theme. The papers in Physical Digitality have their orientation mainly in the physical realm, and reach towards the digital part. It has to be granted that this distinction is rather crude, because working from two extremes (digital versus physical) tends to ignore the arguably most interesting middle ground.
keywords Digital physicality; physical digitality
series eCAADe
email
last changed 2022/06/07 07:49

_id acadia12_47
id acadia12_47
authors Aish, Robert ; Fisher, Al ; Joyce, Sam ; Marsh, Andrew
year 2012
title Progress Towards Multi-Criteria Design Optimisation Using Designscript With Smart Form, Robot Structural Analysis and Ecotect Building Performance Analysis"
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 47-56
doi https://doi.org/10.52842/conf.acadia.2012.047
summary Important progress towards the development of a system that enables multi-criteria design optimisation has recently been demonstrated during a research collaboration between Autodesk’s DesignScript development team, the University of Bath and the engineering consultancy Buro Happold. This involved integrating aspects of the Robot Structural Analysis application, aspects of the Ecotect building performance application and a specialist form finding solver called SMART Form (developed by Buro Happold) with DesignScript to create a single computation environment. This environment is intended for the generation and evaluation of building designs against both structural and building performance criteria, with the aim of expediently supporting computational optimisation and decision making processes that integrate across multiple design and engineering disciplines. A framework was developed to enable the integration of modeling environments with analysis and process control, based on the authors’ case studies and experience of applied performance driven design in practice. This more generalised approach (implemented in DesignScript) enables different designers and engineers to selectively configure geometry definition, form finding, analysis and simulation tools in an open-ended system without enforcing any predefined workflows or anticipating specific design strategies and allows for a full range of optimisation and decision making processes to be explored. This system has been demonstrated to practitioners during the Design Modeling Symposium, Berlin in 2011 and feedback from this has suggested further development.
keywords Design Optimisation , Scripting , Form Finding , Structural Analysis , Building Performance
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia12_391
id acadia12_391
authors Ajlouni, Rima
year 2012
title The Forbidden Symmetries
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 391-400
doi https://doi.org/10.52842/conf.acadia.2012.391
summary The emergence of quasi-periodic tiling theories in mathematics and material science is revealing a new class of symmetry, which had never been accessible before. Because of their astounding visual and structural properties, quasi-periodic symmetries can be ideally suited for many applications in art and architecture; providing a rich source of ideas for articulating form, pattern, surface and structure. However, since their discovery, the unique long-range order of quasi-periodic symmetries, is still posing a perplexing puzzle. As rule-based systems, the ability to algorithmically generate these complicated symmetries can be instrumental in understanding and manipulating their geometry. Recently, the discovery of quasi-periodic patterns in ancient Islamic architecture is providing a unique example of how ancient mathematics can inform our understanding of some basic theories in modern science. The recent investigation into these complex and chaotic formations is providing evidence to show that ancient designers, by using the most primitive tools (a compass and a straightedge) were able to resolve the complicated long-range principles of ten-fold quasi-periodic formations. Derived from these ancient principles, this paper presents a computational model for describing the long-range order of octagon-based quasi-periodic formations. The objective of the study is to design an algorithm for constructing large patches of octagon-based quasi-crystalline formations. The proposed algorithm is proven to be successful in producing an infinite and defect-free covering of the two-dimensional plane.
keywords computational model , quasi-crystalline , symmetries , algorithms , complex geometry
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2012_39
id ecaade2012_39
authors Asanowicz, Aleksander
year 2012
title Design: Analogue, Digital, and Somewhere in Between
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 273-280
doi https://doi.org/10.52842/conf.ecaade.2012.2.273
wos WOS:000330320600027
summary The problem considered in this paper is: “In what way do we design?” This paper concentrates on the early creative stages of the design process during which the designer gradually gathers the information about the problem, applying appropriate rules, tools and media. If the tools are chosen as a starting point of consideration, designing may be analysed as manual or digital. If we chose the medium - design may be considered as physical or virtual. The main thesis of this paper is that designing proceeds somewhere in between. “Somewhere in between” means the space where manual, digital, virtual are mixing, overlapping, and transforming one into the other. As a case study the process of designing of blurred function object is presented. In this experimental design studio we paid particular attention to the design process and we searched for the answer to the following questions: how to find an idea (what tools/media are helpful), how to express, fi x and transform that idea? In the paper the examples of students’ work will be presented and discussed.
keywords Creativity; digital design methods; mixed methods of design
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2012_163
id ecaade2012_163
authors Barbosa, Wilson; Araújo, André; Carvalho, Guilherme; Celani, Gabriela
year 2012
title Samba Reception Desk: Compromising Aesthetics, Fabrication and Structural Performance in the Design Process
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 255-263
doi https://doi.org/10.52842/conf.ecaade.2012.2.255
wos WOS:000330320600025
summary The present paper describes an integrative design experiment in which different types of models were used in order to achieve a design that compromises aesthetics, lightness, fabrication, assembly and structural performance. It shows how an integrative approach, through the use of both virtual and physical models, can provide valuable feedback in different phases of the design and fabrication process. It was possible to conclude that the design method used allowed solving many problems and had a significant impact in the resulting object.
keywords Design process; structural analysis; parametric design; digital fabrication; integrative design; models in design
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia12_199
id acadia12_199
authors Beorkrem, Chris ; Corte, Dan
year 2012
title Zero-Waste, Flat-Packed, Tri-Chord Truss: Continued Investigations of Structural Expression in Parametric Design"
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 199-208
doi https://doi.org/10.52842/conf.acadia.2012.199
summary The direct and rapid connections between scripting, modeling and prototyping allow for investigations of computation in fabrication. The manipulation of planar materials with two-dimensional CNC cuts can easily create complex and varied forms, volumes, and surfaces. However, the bulk of research on folding using CNC fabrication tools is focused upon surfaces, self-supporting walls and shell structures, which do not integrate well into more conventional building construction models. This paper attempts to explain the potential for using folding methodologies to develop structural members through a design-build process. Conventional building practice consists of the assembly of off-the-shelf parts. Many times, the plinth, skeleton, and skin are independently designed and fabricated, integrating multiple industries. Using this method of construction as an operative status quo, this investigation focused on a single structural component: the truss. Using folding methodologies and sheet steel to create a truss, this design investigation employed a recyclable and prolific building material to redefine the fabrication of a conventional structural member. The potential for using digital design and two-dimensional CNC fabrication tools in the design of a foldable truss from sheet steel is viable in the creation of a flat-packed, minimal waste structural member that can adapt to a variety of aesthetic and structural conditions. Applying new methods to a component of the conventional ‘kit of parts’ allowed for a novel investigation that recombines zero waste goals, flat-packing potential, structural expression and computational processes. This paper will expand (greatly) upon previous research into bi-chord truss designs, developing a tri-chord truss, which is parametrically linked to its structural moment diagram. The cross section of each truss is formed based on the loading condition for each beam. This truss design has been developed through a thorough series of analytical models and tests performed digitally, to scale and in full scale. The tri-chord truss is capable of resisting rotational failures well beyond the capacity of the bi-chord designs previously developed. The results are complex, and elegant expressions of structural logics embodied in a tightly constrained functional design.
keywords Parametric Design , Structural Expression , Material constraints
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2012_057
id ecaade2012_057
authors Bielik, Martin ; Schneider, Sven ; König, Reinhard
year 2012
title Parametric Urban Patterns: Exploring and integrating graph-based spatial properties in parametric urban modelling
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 701-708.
doi https://doi.org/10.52842/conf.ecaade.2012.1.701
wos WOS:000330322400074
summary The article presents a graph-based spatial analysis toolset (“decoding spaces”components) which we have recently developed as an extension of the visual scripting language Grasshopper3D for Rhino. These tools directly integrate spatial analysis methods into CAD design software which can have a signifi cant effect on current design workfl ows. However,grasshopper doesn’t only enable the results of analyses to be used in the standard Rhino modelling environment. It also makes it possible to integrate spatial analysis into a parametric design approach as discussed in this paper. The functionality of this toolset is demonstrated using a simple urban design scenario where we introduce the idea of parametric patterns based on graph-measures.
keywords Spatial analysis; parametric modelling; urban layout; design process; decoding spaces
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2012_5
id ecaade2012_5
authors Biloria, Nimish; Chang, Jia-Rey
year 2012
title HyperCell: A Bio-Inspired Information Design Framework for Real-Time Adaptive Spatial Components
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 573-581
doi https://doi.org/10.52842/conf.ecaade.2012.2.573
wos WOS:000330320600061
summary Contemporary explorations within the evolutionary computational domain have been heavily instrumental in exploring biological processes of adaptation, growth and mutation. On the other hand a plethora of designers owing to the increasing sophistication in computer aided design software are equally enthused by the formal aspects of biological organisms and are thus meticulously involved in form driven design developments. This focus on top-down appearance and surface condition based design development under the banner of organic architecture in essence contributes to the growing misuse of bio-inspired design and the inherent meaning associated with the terminology. HyperCell, a bio-inspired information design framework for real-time adaptive spatial components, is an ongoing research, at Hyperbody, TU Delft, which focuses on extrapolating bottom-up generative design and real-time interaction based adaptive spatial re-use logics by understanding processes of adaptation, multi-performance and self sustenance in natural systems. Evolutionary developmental biology is considered as a theoretical basis for this research.
keywords Adaptation; Swarms; Evo-Devo; Simulation: Cellular component
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2012_019
id ascaad2012_019
authors Blibli, Mustapha; Ammar Bouchair and Faouzi Hannouf
year 2012
title Three Dimensional Reconstitution of an Old Town from Historical Documents: Case of the Medina of Jijel in Algeria
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 191; 285-303
summary The three-dimensional reconstitution of cities and urban tissues was the subject of several studies and researches. In order to obtain the acquisition of the geometry of architectural or urban sets, some studies are based on Photogrammetric or on computer vision. Others have focused on the development of tools of acquisition from a laser providing a 3D scatter plot. Some of them yet focused towards the development of CAD software. The automatic generation for morphological 3D representation based on the exploitation of the architectural knowledge basis is also an option. This type of work becomes more relevant and legitimate when it concerns old cities in state of ruin or more simply missing whose remains only prints or literary descriptions similar to our case study; the old town of Jijel that many people ignore its existence. The aim of this work is to achieve a 3D reconstitution of buildings of this town based on historical documents, mostly prints, digitized old maps and plans, as well as literary texts (tales of travelers, military records, and history books). The method developed can solve and generate possible urban volumes in the most frequent cases. The 3D model obtained, despite its geometric simplicity, can view the city from different angles and open new opportunities for research in history, architecture and town planning.
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_019.pdf
last changed 2012/05/15 20:46

_id acadia12_217
id acadia12_217
authors Dourtme, Stella ; Ernst, Claudia ; Garcia, Manuel Jimenez ; Garcia, Roberto
year 2012
title Digital Plaster: A Prototypical Design System
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 217-230
doi https://doi.org/10.52842/conf.acadia.2012.217
summary Contemporary computational design processes offer more potential in the design of complex formal architectural outcomes when material processes and fabrication techniques are incorporated within a digital working methodology. This paper discusses the research project “Digital Plaster” which show-cases the development of such an architectural machine that enabled a digital design process to incorporate fabrication and structural form finding processes within flexible formwork plaster casting by the means of digitally depicting a material ecology.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadia12_37
id acadia12_37
authors Fagerström, Gustav ; Hoppermann, Marc ; Almeida, Nuno ; Zangerl, Martin ; Rocchetti, Stefano ; Van Berkel, Ben
year 2012
title Softbim: An Open Ended Building Information Model in Design Practice
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 37-46
doi https://doi.org/10.52842/conf.acadia.2012.037
summary In this paper we present examples from architectural practice in which our definition of the softBIM method has been used to some extent. We discuss its advantages and disadvantages in relation to its use in early project phases. The goal of this study is to propose an integrative, schematic and open-ended model for dealing with complex assemblies of geometric and non-geometric project data, aiming to remain non-reliant on specific software packages. 
keywords BIM , Building Information Modeling , Attributes , Metadata , Early phases design , Open source
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadia12_491
id acadia12_491
authors Feringa, Jelle ; Søndergaard, Asbjørn
year 2012
title An Integral Approach to Structural Optimization and Fabrication
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 491-497
doi https://doi.org/10.52842/conf.acadia.2012.491
summary Abstract Integral structural optimization and fabrication seeks the synthesis of two original approaches; that of topological optimization (TO) and robotic hotwire cutting (HWC). TO allows for the reduction of up to 70% of the volume of concrete to support a given structure. A strength of the method is that it allows to come up with structural designs that lie beyond the grasp of traditional means of design. A design space is a discretized volume, delimiting where the optimization will take place. The number of cells used to discretize the design space thus sets the resolution of the TO. While the approach of the application of TO as a constitutive design tool centers on structural aspects in the design phase, the outcome of this process are structures that cannot be realized within a conventional budget. As such the ensuing design is optimal in a narrow sense; whilst optimal structurally though, construction can be prove to be prohibitively expensive. This paper reports ongoing research efforts on the development of a cost effective methodology for the realization of TO concrete structures using HWC.
keywords Topology optimization , robotics , hotwire cutting , ruled surfaces , advanced concrete structures , formwork , EPS
series ACADIA
type panel paper
email
last changed 2022/06/07 07:50

_id ecaade2012_261
id ecaade2012_261
authors Feringa, Jelle; Sondergaard, Asbjorn
year 2012
title Design and Fabrication of Topologically Optimized Structures; An Integral Approach - A Close Coupling Form Generation and Fabrication
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 495-500
doi https://doi.org/10.52842/conf.ecaade.2012.2.495
wos WOS:000330320600052
summary Integral structural optimization and fabrication seeks the synthesis of two original approaches; that of topological optimization (TO) and robotic hotwire cutting (HWC) (Mcgee 2011). TO allows for the reduction of up to 70% of the volume of concrete to support a given structure (Sondergaard & Dombernowsky 2011). A strength of the method is that it allows to come up with structural designs that lie beyond the grasp of traditional means of design. A design space is a discretized volume, delimiting where the optimization will take place. The number of cells used to discretize the design space thus sets the resolution of the TO. While the approach of the application of TO as a constitutive design tool centers on structural aspects in the design phase (Xie 2010), the outcome of this process are structures that cannot be realized within a conventional budget. As such the ensuing design is optimal in a narrow sense; whilst optimal structurally though, construction can be prove to be prohibitively expensive.
keywords Topology optimization; robotics; hotwire cutting; EPS formwork; concrete structures
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2012_318
id ecaade2012_318
authors Fioravanti, Antonio ; Loffreda, Gianluigi ; Simeone, Davide ; Trento, Armando
year 2012
title “Divide et Impera” to dramatically and consciously simplify design: The mental/instance path - How reasoning among spaces, components and goals
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 269-278
doi https://doi.org/10.52842/conf.ecaade.2012.1.269
wos WOS:000330322400027
summary In our times, in a complex and universal village where problems are intertwined and pervasive beyond our imagination, we need new approaches to deal with them – appropriately. In a previous work we highlighted the importance to reason ontologies: a ‘world’ f.i. a building – as a mental image – is not a Linnaeus’s classifi cation (structured set of entities) but a system (goals oriented set of classes) able to reasoning upon selectively chosen entities belonging to different Realms (ontology universes) (Fioravanti et al., 2011a). The general aim of our research– to be an effective aid to design – is to simulate wo/man as designer and user of designed spaces, hence how mental skill can be computably included in new tools able to tackle these problems. This paper is focused on the fi rst role: how actor-designers approach design problems and how the inference mechanism can help them and affect the design process. A ‘Building Object’ - the dual system of Spaces and Technology elements – is inferred in several ways according to different goals and the inference mechanism can, simulating human mental shortcuts, optimize thinking.
keywords Design process; design operational theory; thinking optimization; inferential mechanisms; human-machine collaboration
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2012_257
id ecaade2012_257
authors Fischer, Jan-Ruben
year 2012
title Optimizing Digital Organic Freeform Modelling for Fabrication by Using Parameterization With Glass Fibre Reinforced Plastics (GRP): A Case Study
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 191-200
doi https://doi.org/10.52842/conf.ecaade.2012.2.191
wos WOS:000330320600019
summary In the fabrication of organic free-form shapes in architecture one is constantly faced with specifi c planning and design challenges. This paper examines these problems as well as possible solutions for the design of a completed and built prototype using the example of an organically shaped pavilion made of glass fi bre reinforced plastic modules. The paper describes which adjustments to the original design were required to take the step from “digital physicality” to “physical digitality” to realize a constructive and economically successful implementation. The solutions discussed combine modern digital software methods such as parametric design with innovative 3D modelling principles.
keywords Digital fabrication; freeform modelling; parametric design; bionic, GRP
series eCAADe
email
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 26HOMELOGIN (you are user _anon_992199 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002