CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 441

_id ecaade2012_85
id ecaade2012_85
authors Meyboom, AnnaLisa
year 2012
title Tuning Heavy Design: Parametric Structural Form Generation
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 567-572
doi https://doi.org/10.52842/conf.ecaade.2012.2.567
wos WOS:000330320600060
summary This paper discusses a methodology for generating architectural form parametrically from structural logics such that an architectural vocabulary can be generated for use in design. It intends to further the discussion of how parametrics can play a role in architectural design. Parametric applications are facilitating the use of engineering design feedback into the architectural process, allowing architects to ‘tune’ their designs. In this case, structural form is discussed. The nature of parametrics makes the use of structural principles relatively simple because they are already in the numeric form of equations. As well, parametrics make the generation of alternatives easy because of the iterative nature of the tool. As such, including the basis of structural principles in the logic of the parametrics allows the design to function performatively in both an architectural and a structural sense.
keywords Parametric; form finding; structural analysis; algorithmic
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2012_059
id ecaade2012_059
authors Wurzer, Gabriel ; Popov, Nikolay ; Lorenz, Wolfgang E.
year 2012
title Meeting Simulation Needs of Early-Stage Design Through Agent-Based Simulation
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 613-620.
doi https://doi.org/10.52842/conf.ecaade.2012.1.613
wos WOS:000330322400064
summary During early-stage planning, numerous design decisions are taken in an argumentative manner, based on occupation with the building site according to the different infl uencing aspects (e.g. topology, wind, visibility, circulation, activities etc.). In this context, sketches, diagrams and spreadsheets are the workhorses for elaboration. However, some of these phenomena are dynamic by nature, and are rather poorly modeled when utilizing static media. In our work, we thus show how agent-based simulation can be used to compute and visualize dynamic factors, in order to inform the decision process on a qualitative level. As a matter of fact, simulations may be used as a design tool in their own right, for analysis and objectifi ed comparison among multiple design variations.
keywords Agent-Based Simulation; Early-Stage Planning; NetLogo; Design Process.
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2012_284
id ecaade2012_284
authors Ameijde, Jeroen van; Carlin, Brendon
year 2012
title Digital Construction: Automated Design and Construction Experiments Using Customised On-Site Digital Devices
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 439-446
doi https://doi.org/10.52842/conf.ecaade.2012.2.439
wos WOS:000330320600046
summary This paper presents a currently on-going research trajectory, investigating integrated design and build work-fl ows using generative design strategies and custom built fabrication devices. The aim of the research, which is being developed through a series of experiments and workshops, is to explore scenarios in which these work-flows can produce emergent architectural structures which are highly adapted towards the intended performance within their specifi c context and site. The research has produced a number of installations and prototypical structures which test the practical and theoretical dimensions of the methodology explored. This paper will introduce intriguing new scenarios in which the architects’ role is focused on an indirect, advanced level of control of the process of design, allowing for a more open-ended method of negotiation between structure, users and environment.
keywords Generative design; digital fabrication; customised CNC devices; digital on-site construction
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia12_295
id acadia12_295
authors Dierichs, Karola ; Menges, Achim
year 2012
title Functionally Graded Aggregate Structures: Digital Additive Manufacturing With Designed Granulates
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 295-304
doi https://doi.org/10.52842/conf.acadia.2012.295
summary In recent years, loose granulates have come to be investigated as architectural systems in their own right. They are defined as large numbers of elements in loose contact, which continuously reconfigure into variant stable states. In nature they are observed in systems like sand or snow. In architecture, however, they were previously known only from rare vernacular examples and geoengineering projects, and are only now being researched for their innate material potentials. Their relevance for architecture lies in being entirely reconfigurable and in allowing for structures that are functionally graded on a macro level. Hence they are a very relevant yet unexplored field within architectural design. The research presented here is focused on the potential of working with designed granulates, which are aggregates where the individual particles are designed to accomplish a specific architectural effect. Combining these with the use of a computer-controlled emitter-head, the process of pouring these aggregate structures can function as an alternative form of 3D printing or digital additive manufacturing, which allows both for instant solidification, consequent reconfiguration, and graded material properties. In its first part, the paper introduces the field of research into aggregate architectures. In its second part, the focus is laid on designed aggregates, and an analytical design tool for the individual grains is discussed. The third part presents research conducted into the process of additive manufacturing with designed granulates. To conclude, further areas of investigation are outlined especially with regard to the development of the additive manufacturing of functionally graded architectural structures. The potentials of the methodologies developed in this process are shown through the fabrication of a full-scale installation. By integrating material, fabrication, and design constraints into a streamlined computational methodology, the process also serves as a model for a more intuitive production workflow, expanding the understanding of glass as a material with wide-ranging possibilities for a more performative architecture.
keywords Aggregate Architectures , Digital Additive Manufacturing , Functionally Graded Materials
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadia12_277
id acadia12_277
authors Kelley, Thomas ; Blankenbaker, Sarah
year 2012
title Smart Disassembly: Or, How I Learned to Take Things Apart"
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 277-283
doi https://doi.org/10.52842/conf.acadia.2012.277
summary Taking things apart is easy. How something works, or even what it is, is irrelevant to its dismantling. If assembly can be perceived as a rational act, then disassembly is certainly its counterpart: an intuitive, foolproof, and mindless errand of the seemingly curious subject. It is in this unflattering description, however, that disassembly warrants an analysis of its smart potential Smart Disassemblies locates the exploded view drawing, a representation that conveys the instructions for assembly, within its architectural legacy, from its origins in the Renaissance to its more contemporary appropriation by Thom Mayne and Daniel Libeskind. The categorical rules, and the part-to-whole relationships they imply, gleaned from these precedents are then subverted toward the end of disassembling an object. The proposed rule sets (Point of Explosion, Point of View, and Explosion Sequence) and their variants are tested through their application to a complex assembly of objects, a jazz quintet.
keywords part-to-whole , smart assembly , synthetic tectonics
series ACADIA
type panel paper
email
last changed 2022/06/07 07:52

_id acadia12_333
id acadia12_333
authors Poulsen, Esben Skouboe ; Andersen, Hans Jørgen
year 2012
title Reactive Light Design in the ""Laboratory of the Street"" Esben Skouboe Poulsen, Hans Jørgen Andersen"
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 333-342
doi https://doi.org/10.52842/conf.acadia.2012.333
summary This paper presents and discusses results related to a full-scale responsive urban lighting experiment and introduces a light design methodology inspired by reactive control strategies in robot systems. The experiment investigates how human motion intensities can be used as input to light design in a reactive system. Using video from 3 thermal cameras and computer vision analysis; people’s flow patterns were monitored and send as input into a reactive light system. Using physical as well as digital models 4 different light scenarios is designed and tested in full-scale. Results show that people on the square did not engage in the changing illumination and often they did not realized that the light changed according to their presence. However from the edge of the square people observed the light patterns “painted” on the city square, as such people became actors on the urban stage, often without knowing. Furthermore did the experiment showcase power savings up to 90% depending on the response strategy.
keywords Responsive environments , Architectural Lighting , Interaction , Realtime response , Computer vision
series ACADIA
type normal paper
email
last changed 2022/06/07 08:00

_id ecaade2012_144
id ecaade2012_144
authors Wurzer, Gabriel ; Pak, Burak
year 2012
title Lawnmower: Designing a web-based visual programming environment that generates code to help students learn textual programming
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 655-663.
doi https://doi.org/10.52842/conf.ecaade.2012.1.655
wos WOS:000330322400069
summary Learning programming can be a challenging task for design students, especially when code is to be entered in textual form. Visual programming languages, such as McNeil’s Grasshopper, have helped students to engage in scripting without having to deal with lower level syntax that is often hindering them in expressing their thoughts. However, the problem with learning how to program textually is only postponed: When switching to a new platform, students may be forced to learn coding from scratch, and, even worse, to do so in a textual environment that is yet unfamiliar. Our idea is simple: Connect visual programming with textual coding, using code-generation as means. Using this approach enables students to think visually, and see the results textually. An added bonus is the possibility to use debugging, a feature that is yet lacking from Grasshopper. By this way, our language aims to enable students to gradually move from visual to textual programming in a comfortable manner.
keywords Visual Programming; Structured Code; Teaching; Code Generation
series eCAADe
email
last changed 2022/06/07 07:57

_id ijac201210407
id ijac201210407
authors Dritsas, Stylianos
year 2012
title Design-Built Rationalization Strategies and Applications
source International Journal of Architectural Computing vol. 10 - no. 4, 575-594
summary Rationalisation of architectural design is paramount to manufacturing and its construction. This paper presents a methodology of rationalisation of building envelope geometry. We discuss methods for understanding and addressing design complexity; review two theoretical models of rationalisation: the pre-rational and post-rational design principles; illustrate their benefits and limitations and demonstrate their meeting point proposing an integrated performance-oriented model for analysis and design of building envelopes, using digital design techniques.
series journal
last changed 2019/05/24 09:55

_id ecaade2012_208
id ecaade2012_208
authors Koltsova, Anastasia ; Tuncer, Bige ; Georgakopoulou, Sofia ; Schmitt, Gerhard
year 2012
title Parametric Tools for Conceptual Design Support at the Pedestrian Urban Scale: Towards inverse urban design
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 279-287
doi https://doi.org/10.52842/conf.ecaade.2012.1.279
wos WOS:000330322400028
summary This paper presents an inverse pedestrian urban design method and an initial set of parametric tools for conceptual design support at the pedestrian urban scale. Inverse pedestrian urban design concerns the derivation of urban design parameters from a local context in order to produce better informed and situated designs. The tools concern the rationalization of street network and building form. Some of the parameters that are used within the tools are view angles (visibility analysis) and distances between target points (accessibility analysis). The paper elaborates on inverse urban design, presents some case studies and tools, and touches upon design patterns and their alignment to design processes.
keywords Urban design; pedestrian design; parametric modelling; design tools; inverse urban design method
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2012_002
id ecaade2012_002
authors Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejdan, Dana (eds.)
year 2012
title Physical Digitality
source Proceedings of the 30th International Conference on Education and research in Computer Aided Architectural Design in Europe - Volume 2 [ISBN 978-9-4912070-3-7], Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, 714 p.
doi https://doi.org/10.52842/conf.ecaade.2012.2
summary Physical Digitality is the second volume of the conference proceedings of the 30th eCAADe conference, held from 12-14 september 2012 in Prague at the Faculty of Architecture of Czech Technical University in Prague. The companion volume is called Digital Physicality. Together, both volumes contain 154 papers that were submitted to this conference. Digitality is the condition of living in a world where ubiquitous information and communication technology is embedded in the physical world. Although it is possible to point out what is “digital” and what is “real,” the distinction has become pointless, and it has no more explanatory power for our environment, buildings, and behaviour. Material objects are invested with communication possibilities, teams are communicating even when not together, and buildings can sense and respond to the environment, each other, and to inhabitants. Digital is no longer an add-on, extra, or separate software. Reality is partly digital and partly physical. The implication of this condition is not clear however, and it is necessary to investigate its potential. New strategies are necessary that acknowledge the synergetic qualities of the physical and the digital. This is not limited to our designs but it also infl uences the process, methods, and what or how we teach. The subdivision of papers in these volumes follow the distinction made in the conference theme. The papers in Physical Digitality have their orientation mainly in the physical realm, and reach towards the digital part. It has to be granted that this distinction is rather crude, because working from two extremes (digital versus physical) tends to ignore the arguably most interesting middle ground.
keywords Digital physicality; physical digitality
series eCAADe
email
last changed 2022/06/07 07:49

_id acadia12_391
id acadia12_391
authors Ajlouni, Rima
year 2012
title The Forbidden Symmetries
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 391-400
doi https://doi.org/10.52842/conf.acadia.2012.391
summary The emergence of quasi-periodic tiling theories in mathematics and material science is revealing a new class of symmetry, which had never been accessible before. Because of their astounding visual and structural properties, quasi-periodic symmetries can be ideally suited for many applications in art and architecture; providing a rich source of ideas for articulating form, pattern, surface and structure. However, since their discovery, the unique long-range order of quasi-periodic symmetries, is still posing a perplexing puzzle. As rule-based systems, the ability to algorithmically generate these complicated symmetries can be instrumental in understanding and manipulating their geometry. Recently, the discovery of quasi-periodic patterns in ancient Islamic architecture is providing a unique example of how ancient mathematics can inform our understanding of some basic theories in modern science. The recent investigation into these complex and chaotic formations is providing evidence to show that ancient designers, by using the most primitive tools (a compass and a straightedge) were able to resolve the complicated long-range principles of ten-fold quasi-periodic formations. Derived from these ancient principles, this paper presents a computational model for describing the long-range order of octagon-based quasi-periodic formations. The objective of the study is to design an algorithm for constructing large patches of octagon-based quasi-crystalline formations. The proposed algorithm is proven to be successful in producing an infinite and defect-free covering of the two-dimensional plane.
keywords computational model , quasi-crystalline , symmetries , algorithms , complex geometry
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2012_163
id ecaade2012_163
authors Barbosa, Wilson; Araújo, André; Carvalho, Guilherme; Celani, Gabriela
year 2012
title Samba Reception Desk: Compromising Aesthetics, Fabrication and Structural Performance in the Design Process
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 255-263
doi https://doi.org/10.52842/conf.ecaade.2012.2.255
wos WOS:000330320600025
summary The present paper describes an integrative design experiment in which different types of models were used in order to achieve a design that compromises aesthetics, lightness, fabrication, assembly and structural performance. It shows how an integrative approach, through the use of both virtual and physical models, can provide valuable feedback in different phases of the design and fabrication process. It was possible to conclude that the design method used allowed solving many problems and had a significant impact in the resulting object.
keywords Design process; structural analysis; parametric design; digital fabrication; integrative design; models in design
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2012_014
id caadria2012_014
authors Benros, Deborah; Jose Pinto Duarte and Sean Hanna
year 2012
title An alternative Palladian shape grammar: A subdivision grammar for Palladian villas
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 415–424
doi https://doi.org/10.52842/conf.caadria.2012.415
summary This paper describes a shape grammar that recreates Palladio’s villas. A Palladian grammar was previously proposed by Stiny and Mitchell. However, this alternative grammar uses different parametric shape rules and methodology to test the hypothesis that different grammars can generate the same corpus of designs. The formalism is then implemented using a computerised design tool. The grammar includes subdivision rules that allow for a more economical formulation. The project is part of wider research aimed at formulating a generic housing grammar.
keywords Shape grammar; design rules; housing grammar
series CAADRIA
email
last changed 2022/06/07 07:54

_id b2f9
id b2f9
authors Bhzad Sidawi and Neveen Hamza
year 2012
title INTELLIGENT KNOWLEDGE-BASED REPOSITORY TO SUPPORT INFORMED DESIGN DECISION MAKING
source ITCON journal
summary Research highlights that architectural design is a social phenomenon that is underpinned by critical analysis of design precedents and the social interaction between designers including negotiation, collaboration and communication. CAAD systems are continuously developing as essential design tools in formulating and developing ideas. Researchers such as (Rosenman, Gero and Oxman 1992) have suggested suggest that knowledge based systems can be integrated with CAAD systems to provide design knowledge that would enable recalling design precedents that maybe linked to the design constraints. Currently CAAD systems are user centric being focused on architects rather than the end product. The systems provide limited assistance in the production of innovative design. Furthermore, the attention of the designers of knowledge based systems is providing a repository rather than a system that is capable to initiate innovation. Most of the CAAD systems have web communication tools that enable designers to communicate their design ideas with colleagues and partners in business. However, none of these systems have the capability to capture useful knowledge from the design negotiations. Students of the third to fifth year at College of Architecture, University of Dammam were surveyed and interviewed to find out how far design tools, communications and resources would impact the production of innovative design projects. The survey results show that knowledge extracted from design negotiations would impact the innovative design outcome. It highlights also that present design precedents are not very helpful and design negotiations between students, tutors and other students are not documented thus fully incorporated into the design scheme. The paper argues that the future CAAD systems should be capable to recognize innovative design precedents, and incorporate knowledge that is resulted from design negotiations. This would help students to gain a critical mass of knowledge that would underpin informed design decisions.
series journal paper
type normal paper
email
more http://www.itcon.org/cgi-bin/works/Show?2012_20
last changed 2012/09/19 13:41

_id ecaade2012_057
id ecaade2012_057
authors Bielik, Martin ; Schneider, Sven ; König, Reinhard
year 2012
title Parametric Urban Patterns: Exploring and integrating graph-based spatial properties in parametric urban modelling
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 701-708.
doi https://doi.org/10.52842/conf.ecaade.2012.1.701
wos WOS:000330322400074
summary The article presents a graph-based spatial analysis toolset (“decoding spaces”components) which we have recently developed as an extension of the visual scripting language Grasshopper3D for Rhino. These tools directly integrate spatial analysis methods into CAD design software which can have a signifi cant effect on current design workfl ows. However,grasshopper doesn’t only enable the results of analyses to be used in the standard Rhino modelling environment. It also makes it possible to integrate spatial analysis into a parametric design approach as discussed in this paper. The functionality of this toolset is demonstrated using a simple urban design scenario where we introduce the idea of parametric patterns based on graph-measures.
keywords Spatial analysis; parametric modelling; urban layout; design process; decoding spaces
series eCAADe
email
last changed 2022/06/07 07:52

_id ascaad2012_020
id ascaad2012_020
authors Bouchahm, Yasmina; Fatiha Bourbia and Bouketta Samira
year 2012
title Numerical Simulation of Effect of Urban Geometry Layouts on Wind and Natural Ventilation Under Mediterranean Climate
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 195-202
summary The use of the method "simulation" of the microclimate for an urban site presents much of interest; because this can serve as us observation and analysis of the consequences of various scenarios relating to the existence and the importance of the constituent elements in urban space. Wind in outdoor urban space is among the most difficult parameters to identify and control field given its instability. Currently, in the field of the ventilation, there are some outdoor spaces simulation tools, used to assess the flow of the wind at different spatial scales. The aim of this research is to demonstrate the effect of the urban geometry of the layout on the wind movement and the outdoor natural ventilation. However, this study investigated the effect on outdoor thermal comfort of a building layouts in a planned residential area situated in the city of Jijel humid Mediterranean region of Algeria. In order to improve outside comfort in this open space, a 3D numerical simulation tool ENVI-met 3.1 beta 4 was used to simulate the urban thermal climate taking into account various scenarios. Thus, simulation’s results are discussed in this paper
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_020.pdf
last changed 2012/05/15 20:46

_id caadria2012_087
id caadria2012_087
authors Cho, Ji Young
year 2012
title Spatial ability, creativity, and studio performance in architectural design
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 131–140
doi https://doi.org/10.52842/conf.caadria.2012.131
summary Architectural design is a multifaceted discipline that requires many abilities, in particular creativity and spatial ability. In order to identify the relationships among spatial ability, creativity, and studio performance, an exploratory study was conducted at one Midwestern university in the USA. Twenty-one freshman architecture students participated in the study, which involved three tasks: (a) the Torrance Test of Creative Thinking that measures fluency and originality in creativity, (b) a group of general spatial ability tests, and (c) the computer-based Architectural Spatial Ability Test. Students’ scores on the tasks were compared with their studio performance grades using SPSS. Results show that studio performance correlated with the ASAT but did not correlate with the TTCT or a group of general spatial ability tests. These findings indicate that a student’s performing well does not necessarily mean that she or he can generate many different alternatives (fluency) or original ideas (originality) nor that the student possesses general spatial abilities. The findings show the complexity of architectural design components and reveal beginning design students’ architectural abilities.
keywords Creativity; spatial ability; architectural spatial ability; studio performance; architectural design education
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2021_257
id ecaade2021_257
authors Cichocka, Judyta Maria, Loj, Szymon and Wloczyk, Marta Magdalena
year 2021
title A Method for Generating Regular Grid Configurations on Free-From Surfaces for Structurally Sound Geodesic Gridshells
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 493-502
doi https://doi.org/10.52842/conf.ecaade.2021.2.493
summary Gridshells are highly efficient, lightweight structures which can span long distances with minimal use of material (Vassallo & Malek 2017). One of the most promising and novel categories of gridshells are bending-active (elastic) systems (Lienhard & Gengnagel 2018), which are composed of flexible members (Kuijenhoven & Hoogenboom 2012). Timber elastic gridshells can be site-sprung or sequentially erected (geodesic). While a lot of research focus is on the site-sprung ones, the methods for design of sequentially-erected geodesic gridshells remained underdeveloped (Cichocka 2020). The main objective of the paper is to introduce a method of generating regular geodesic grid patterns on free-form surfaces and to examine its applicability to design structurally feasible geodesic gridshells. We adopted differential geometry methods of generating regular bidirectional geodesic grids on free-form surfaces. Then, we compared the structural performance of the regular and the irregular grids of the same density on three free-form surfaces. The proposed method successfully produces the regular geodesic grid patterns on the free-form surfaces with varying curvature-richness. Our analysis shows that gridshells with regular grid configurations perform structurally better than those with irregular patterns. We conclude that the presented method can be readily used and can expand possibilities of application of geodesic gridshells.
keywords elastic timber gridshell; bending-active structure; grid configuration optimization; computational differential geometry; material-based design methodology; free-form surface; pattern; geodesic
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia12_109
id acadia12_109
authors Comodromos, Demetrios A ; Ellinger, Jefferson
year 2012
title Material Intensities
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 109-113
doi https://doi.org/10.52842/conf.acadia.2012.109
summary As host organizers of the Smartgeometry 2012 Conference, professors of Architecture, and as principals in design firms, our work aims to use as a productive resistance the notion of Material Intensity described below as both a foil and measure to current concepts of simulation and intensive modeling in architectural computation. The holding of SG 2012 aimed to stage this resistance in the form of workshop, round-table discussions, lectures and symposia, with the outcome attempting to define a new synthetic notion of material intensities in modes of architectural production. This paper aims to form the basis of a continued exploration and development of this work. In summary we focused on: 1-Intensive thinking as derived from the material sciences as an actual and philosophical framework that emphasizes qualitative attributes, which is likened to behavior, simulation, and dynamic modeling. Extensive attributes lead to analytical, representational and static modeling. 2-Material practices can also be formed and as a result of this method of thinking. As demonstrated by the glasswork of Evan Douglis, ‘paintings’ by Perry Hall—the managed complexity possible by working with materials during intensive states of change allow for scalar, morphological and performative shifts according to a designer’s criteria. 3- Although both are necessary and actually complement each other, architects need to ‘catch-up’ to intensive thinking in process and modeling strategies. Our methods rely on static modeling that yield often complicated frameworks and results, wherein accepting methods of dynamic modeling suggests the capacity to propose complex and nuanced relationships and frameworks.
keywords Material Intensities , Intensive Thinking , Material Practice
series ACADIA
type panel paper
email
last changed 2022/06/07 07:56

_id acadia23_v3_115
id acadia23_v3_115
authors Dade-Robertson, Martyn
year 2023
title Designing with Agential Matter
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary There have been, very broadly, three eras in the understanding of matter in design. The first, associated with an Aristotelian view of matter as inert and as a receptacle of form, has dominated many of the formalisms in Architectural Design from the Renaissance through to Modernism. The second, sometimes described as “new materialism” (Menges 2012), considers matter as active through design processes which work with materials’ inherent tendencies and capacities. This has led to now-familiar design methods, including Material Based Design Computation (Oxman 2009), and many experiments with active materials such as bilayer metals and hygromorphs. These materials can be programmed to respond to their environments and often take inspiration from biology. I want to suggest that we are entering a new era of understanding matter, which I refer to as the “agential era.”
series ACADIA
type keynote
email
last changed 2024/04/17 13:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 22HOMELOGIN (you are user _anon_201796 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002