CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 367

_id ijac201210301
id ijac201210301
authors Pan, Cheng-An; Taysheng Jeng
year 2012
title Cellular Robotic Architecture
source International Journal of Architectural Computing vol. 10 - no. 3, 319-339
summary An emerging need for interactive architecture is currently making buildings mutable, flexible in use, and adaptable to changes in climate by introducing robotic systems. However, the feasibility of the seamless integration of building construction details and kinetic robotics has become a critical issue for developing robotic architecture. The objective of this work is to develop a robotic architecture with an emphasis on the integration of cellular robotics with a distributed kinetic building surface. The kinetic building surface integrates an actuating system, a localization and remote control system, which become part of the kinetic building system. This paper presents a systematic framework by reviewing theories and related work of robotic architecture and automated control. An architectural design scheme is proposed to simulate a scenario of application in a physical space. The functionality of the electrical and control system and the integration of the effects of actual construction were examined by a prototype of a kinetic surface. Our prototype presents a feasible construction method, and a prominent energy-saving effect. The potential strength and restrictions of the cellular robotic approach to architectural applications are discussed. The applicability of the prototype system and issues about controlling the behavior of spatial robots are demonstrated in this paper.
series journal
last changed 2019/05/24 09:55

_id ecaade2012_5
id ecaade2012_5
authors Biloria, Nimish; Chang, Jia-Rey
year 2012
title HyperCell: A Bio-Inspired Information Design Framework for Real-Time Adaptive Spatial Components
doi https://doi.org/10.52842/conf.ecaade.2012.2.573
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 573-581
summary Contemporary explorations within the evolutionary computational domain have been heavily instrumental in exploring biological processes of adaptation, growth and mutation. On the other hand a plethora of designers owing to the increasing sophistication in computer aided design software are equally enthused by the formal aspects of biological organisms and are thus meticulously involved in form driven design developments. This focus on top-down appearance and surface condition based design development under the banner of organic architecture in essence contributes to the growing misuse of bio-inspired design and the inherent meaning associated with the terminology. HyperCell, a bio-inspired information design framework for real-time adaptive spatial components, is an ongoing research, at Hyperbody, TU Delft, which focuses on extrapolating bottom-up generative design and real-time interaction based adaptive spatial re-use logics by understanding processes of adaptation, multi-performance and self sustenance in natural systems. Evolutionary developmental biology is considered as a theoretical basis for this research.
wos WOS:000330320600061
keywords Adaptation; Swarms; Evo-Devo; Simulation: Cellular component
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia12_511
id acadia12_511
authors Borowski, Darrick ; Poulimeni, Nikoletta ; Janssen, Jeroen
year 2012
title Edible Infrastructures: Emergent Organizational Patterns for the Productive City
doi https://doi.org/10.52842/conf.acadia.2012.511
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 511-526
summary Edible Infrastructures is an investigation into a projective mode of urbanism which considers food as an integral part of a city's metabolic infrastructure. Working with algorithms as design tools, we explore the generative potential of such a system to create an urban ecology that: provides for its residents via local, multi-scalar, distributed food production, reconnects urbanites with their food sources, and de-couples food costs from fossil fuels by limiting transportation at all levels, from source to table. The research is conducted through the building up of a sequence of algorithms, beginning with the ‘Settlement Simulation’, which couples consumers to productive surface area within a cellular automata type computational model. Topological analysis informs generative operations, as each stage builds on the output of the last. In this way we explore the hierarchical components for a new Productive City, including: the structure and programming of the urban circulatory network, an emergent urban morphology based around productive urban blocks, and opportunities for new architectural typologies. The resulting prototypical Productive City questions the underlying mechanisms that shape modern urban space and demonstrates the architectural potential of mathematical modeling and simulation in addressing complex urban spatial and programmatic challenges.
keywords Urban Agriculture , Urban Ecologies and Food Systems , Productive Cities , Urban Metabolism , Computational Modeling and Simulation , Algorithmic/ Procedural Design Methodologies , Emergent Organization , Self-Organizing Systems
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia12_139
id acadia12_139
authors Erioli, Alessio ; Zomparelli, Alessandro
year 2012
title Emergent Reefs
doi https://doi.org/10.52842/conf.acadia.2012.139
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 139-148
summary The Emergent Reefs project thrives on the potential that emerge from a coherent utilization of the environment’s inherent ecological structure for its own transformation and evolution, using an approach based on digitally simulated ecosystems and sparkled by the possibilities and potential of large-scale 3D printing technology. Considering tourism as an inevitable vector of environmental change, the project aims to direct its potential and economic resources towards a positive transformation, providing a material substrate for the human-marine ecosystem integration with the realization of spaces for an underwater sculpture exhibition. Such structures will also provide a pattern of cavities which, expanding the gradient of microenvironmental conditions, break the existing homogeneity in favor of systemic heterogeneity, providing the spatial and material preconditions for the repopulation of marine biodiversity. Starting from a digital simulation of a synthetic local ecosystem, a generative technique based on multi-agent systems and continuous cellular automata (put into practice from the theoretical premises in Alan Turing’s paper “The Chemical basis of Morphogenesis” through reaction-diffusion simulation) is implemented in a voxel field at several scales giving the project a twofold quality: the implementation of reaction diffusion generative strategy within a non-isotropic 3-dimensional field and integration with the large-scale 3D printing fabrication system patented by D-Shape®. Out of these assumptions and in the intent of exploiting the expressive and tectonic potential of such technology, the project has been tackled exploring voxel-based generative strategies. Working with a discrete lattice eases the simulation of complex systems and processes across multiple scales (including non-linear simulations such as Computational Fluid-Dynamics) starting from local interactions using, for instance, algorithms based on cellular automata, which then can be translated directly to the physical production system. The purpose of Emergent-Reefs is to establish, through strategies based on computational design tools and machine-based fabrication, seamless relationships between three different aspects of the architectural process: generation, simulation and construction, which in the case of the used technology can be specified as guided growth.
keywords emergence , reef , underwater , 3D printing , ecology , ecosystem , CFD , agency , architecture , tourism , culture , Open Source
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ecaade2012_184
id ecaade2012_184
authors Zomparelli, Alessandro ; Erioli, Alessio
year 2012
title Emergent Reefs
doi https://doi.org/10.52842/conf.ecaade.2012.1.329
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 329-337
summary The purpose of Emergent-Reefs is to establish, through computational design strategies and machine-based fabrication, seamless relationships between three different aspects of the architectural process: generation, simulation and construction, with the intent of exploiting the expressive and tectonic potential of D-Shape technology for underwater reef formations as a design response to coastal erosion. Starting from a digital simulation of a synthetic local ecosystem, a generative technique based on multi-agent systems and reaction-diffusion (through continuous cellular automata - CCA) is implemented in a voxel fi eld at several scales. Discrete voxel space eases the simulation of complex systems and processes (including CFD simulations) via CCA algorithms, which then can be translated directly to the physical production system, which in case of addtive technology can be specifi ed as guided growth.
wos WOS:000330322400033
keywords Reaction-diffusion; Reefs; Multi-agent Systems; Open Source; D-Shape
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia12_149
id acadia12_149
authors Besler, Erin
year 2012
title Low Fidelity
doi https://doi.org/10.52842/conf.acadia.2012.149
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 149-153
summary Low Fidelity engages in the translational discrepancies that occur through mediums of architectural representation, not as instances of dilemma but as opportunities to subdue tautology and augment the seductive latency of representation(1). Where some might contend the discrepant as unlawful, the methodology that this thesis argues for engages the digital and machinic, and explores the translational discrepancies that challenge and interrupt our interface with matters of materialization and excite material propensities. The discrepant becomes a dynamic catalyst through the engagement of tools and techniques that subvert the homogeneity of digital design. Low Fidelity engages the sphere of translation by reevaluating the role of architectural representation as generator and generated its originations and its limitations. In an attempt to negotiate the digital and physical, this thesis situates itself within the feedback loop between the mediums of translation through ideas their formal logics, material propensities and back again.
keywords Robotic Fabrication , Digital Machinic , Material Propensity , Technological Fidelity , Generative Representation , Translation through Mediums
series ACADIA
type panel paper
email
last changed 2022/06/07 07:52

_id ijac201210405
id ijac201210405
authors Braumann, Johannes; Sigrid-Brell Cokcan
year 2012
title Digital and Physical Tools for Industrial Robots in Architecture: Robotic Interaction and Interfaces
source International Journal of Architectural Computing vol. 10 - no. 4, 541-554
summary The development of digital and physical tools is highly dependent on interfaces, which define the terms of interaction both between humans and machines, as well as between machines and other machines.This research explores how new, advanced human machine interfaces, that are built upon concepts established by entertainment electronics can enhance the interaction between users and complex, kinematic machines. Similarly, physical computing greatly innovates machine-machine interaction, as it allows designers to easily customize microcontroller boards and to embed them into complex systems, where they drive actuators and interact with other machines such as industrial robots.These approaches are especially relevant in the creative industry, where customized soft- and hardware is now enabling innovative and highly effective fabrication strategies that have the potential to compete with high-tech industry applications.
series journal
last changed 2019/05/24 09:55

_id ecaade2012_60
id ecaade2012_60
authors Dierichs, Karola; Menges Achim
year 2012
title Material and Machine Computation of Designed Granular Matter: Rigid-Body Dynamics Simulations as a Design Tool for Robotically-Poured Aggregate Structures Consisting of Polygonal Concave Particles
doi https://doi.org/10.52842/conf.ecaade.2012.2.711
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 711-719
summary Loose granulates are a relevant yet rarely deployed architectural material system. Their significance lies in their capacity to combine fluid-like amorphousness with solid-like rigidity, resulting in potential architectural structures capable of continuous reconfi guration. In addition aggregates allow for functional grading. Especially if custom designed concave particles are used, full-scale architectural structures can be poured using a six-axis industrial robot, combining the precise travel of the emitter-head with the self-organizational capacity of granular substances. In this context, the paper proposes Rigid-Body Dynamics (RBD) simulations as a design-tool for the robotic pouring of loose granular structures. The notions of material and machine computation are introduced and RBD is explained in greater detail. A set of small tests is conducted to investigate the advantages and disadvantages of a specifi c RBD software. Conclusively, further areas of research are outlined.
wos WOS:000330320600076
keywords Material and machine computation; aggregate architectures; designed granulates; robotic pouring; Rigid-Body Dynamics
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia12_491
id acadia12_491
authors Feringa, Jelle ; Søndergaard, Asbjørn
year 2012
title An Integral Approach to Structural Optimization and Fabrication
doi https://doi.org/10.52842/conf.acadia.2012.491
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 491-497
summary Abstract Integral structural optimization and fabrication seeks the synthesis of two original approaches; that of topological optimization (TO) and robotic hotwire cutting (HWC). TO allows for the reduction of up to 70% of the volume of concrete to support a given structure. A strength of the method is that it allows to come up with structural designs that lie beyond the grasp of traditional means of design. A design space is a discretized volume, delimiting where the optimization will take place. The number of cells used to discretize the design space thus sets the resolution of the TO. While the approach of the application of TO as a constitutive design tool centers on structural aspects in the design phase, the outcome of this process are structures that cannot be realized within a conventional budget. As such the ensuing design is optimal in a narrow sense; whilst optimal structurally though, construction can be prove to be prohibitively expensive. This paper reports ongoing research efforts on the development of a cost effective methodology for the realization of TO concrete structures using HWC.
keywords Topology optimization , robotics , hotwire cutting , ruled surfaces , advanced concrete structures , formwork , EPS
series ACADIA
type panel paper
email
last changed 2022/06/07 07:50

_id ecaade2012_261
id ecaade2012_261
authors Feringa, Jelle; Sondergaard, Asbjorn
year 2012
title Design and Fabrication of Topologically Optimized Structures; An Integral Approach - A Close Coupling Form Generation and Fabrication
doi https://doi.org/10.52842/conf.ecaade.2012.2.495
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 495-500
summary Integral structural optimization and fabrication seeks the synthesis of two original approaches; that of topological optimization (TO) and robotic hotwire cutting (HWC) (Mcgee 2011). TO allows for the reduction of up to 70% of the volume of concrete to support a given structure (Sondergaard & Dombernowsky 2011). A strength of the method is that it allows to come up with structural designs that lie beyond the grasp of traditional means of design. A design space is a discretized volume, delimiting where the optimization will take place. The number of cells used to discretize the design space thus sets the resolution of the TO. While the approach of the application of TO as a constitutive design tool centers on structural aspects in the design phase (Xie 2010), the outcome of this process are structures that cannot be realized within a conventional budget. As such the ensuing design is optimal in a narrow sense; whilst optimal structurally though, construction can be prove to be prohibitively expensive.
wos WOS:000330320600052
keywords Topology optimization; robotics; hotwire cutting; EPS formwork; concrete structures
series eCAADe
email
last changed 2022/06/07 07:50

_id acadia12_169
id acadia12_169
authors Helm, Volker ; Ercan, Selen ; Gramazio, Fabio ; Kohler, Matthias
year 2012
title In-Situ Robotic Construction: Extending the Digital Fabrication Chain in Architecture
doi https://doi.org/10.52842/conf.acadia.2012.169
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 169-176
summary In this paper, viable applications of mobile robotic units on construction sites are explored. While expanding on potential objectives for in-situ fabrication in the construction sector, the intention is also to build upon innovative man-machine interaction paradigms to deal with the imprecision and tolerances often faced on construction sites. By combining the precision of the machine with the cognitive environmental human skills, a simple but effective mobile fabrication system is experimented for the building of algorithmically designed additive assemblies that would not be possible through conventional manual methods if the large amount of individual building blocks and the size of the structure to be built are taken into account. It is believed that this new approach to man-machine collaboration, aimed at a deeper integration of human ability with the strengths of digitally controlled machines, will result in advances in the construction sector, thus opening up new design and application fields for architects and planners.
keywords in-situ robotic fabrication , mobile robotics , 1:1 scale fabrication , additive assembly , algorithmically designed structures , man-machine interaction , cognitive , object recognition , construction site
series ACADIA
type normal paper
email
last changed 2022/06/07 07:49

_id acadia12_315
id acadia12_315
authors Imbern, Matias ; Raspall, Felix ; Su, Qi
year 2012
title Tectonic Tessellations: A Digital Approach to Ceramic Structural Surfaces
doi https://doi.org/10.52842/conf.acadia.2012.315
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 315-321
summary From the beginning of digital revolution, structural surfaces drew significant attention as a realm that interweaves formal explorations, form-finding and structural optimization. However, after successful experimentation in the virtual domain, it became evident that some of the main challenges lay on how to translate these structural forms into architectural assemblies at the scale of buildings. The development of digital fabrication is crucial in this task, as means to overcome traditional constraints such as need for modular pieces, scaffolding and optimal assembly sequences.This research focuses on digital workflows that combine form finding with robotic fabrication, surface tessellation and panelization. In the past years, the use of digital tools to assemble identical modules into complex formations has achieved significant results for loadbearing walls. Expanding this line of research, the proposed fabrication system carries these experiments on additive fabrication into the production of structural surfaces. The assembly sequence involves a two-step fabrication: off-site panel manufacturing and on-site assembly. The main components of the system consist of two triangular ceramic pieces that provide structural resistance, refined surface finish, and formwork for thin reinforced-concrete layer. Panelization strategies reduce the requirements on-site work and formwork.The paper describes background research, concept, construction process, methodology, results and conclusions.
keywords Digital Fabrication , Complex Geometry , Reinforced Ceramic , Structural Surfaces , Reduced Formwork
series ACADIA
type panel paper
email
last changed 2022/06/07 07:50

_id ecaade2012_152
id ecaade2012_152
authors Krieg, Oliver David; Mihaylov, Boyan; Schwinn, Tobias; Reichert, Steffen; Menges, Achim
year 2012
title Computational Design of Robotically Manufactured Plate Structures Based on Biomimetic Design Principles Derived from Clypeasteroida
doi https://doi.org/10.52842/conf.ecaade.2012.2.531
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 531-540
summary The paper presents the current development of an ongoing research project about the integration of robotic fabrication strategies in computational design through morphological and functional principles derived from natural systems. Initially, a developed plate structure material system based on robotically fabricated fi nger joints is being informed by biomimetic principles from the sea urchin Clypeasteroida in order to be able to adapt effi ciently to its building environment. Consequently, the paper’s main focus lies on translating the biomimetic design principles into a computational design tool, also integrating fabrication parameters as well as structural and architectural demands. The design tool’s capability to integrate these parameters is shown by the design, development and realization of a full-scale research pavilion. The paper concludes with discussing the performative capacity of the developed material system and the introduced methodology.
wos WOS:000330320600056
keywords Biomimetics; Digital Simulation; Parametric Design; Robotic Manufacturing
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia12_177
id acadia12_177
authors Mankouche, Steven ; Bard, Joshua ; Schulte, Matthew
year 2012
title Morphfaux: Probing the Proto-Synthetic Nature of Plaster Through Robotic Tooling
doi https://doi.org/10.52842/conf.acadia.2012.177
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 177-186
summary Morphfaux is an applied research project that revisits the virtually lost craft of plaster to explore its potential for producing thickened architectural environments through the use of contemporary digital technology. The research challenges the flatness of modern, standardized dry wall construction and explores plaster’s malleability as a material that can be applied thick and thin, finished to appear smooth or textured, and tooled while liquid or cured. If the invention of industrialized modern building products such as drywall led to the demise of the plasterer as a tradesperson, our research seeks alliances between the abilities of the human hand and those of automation. By transforming historic methods using new robotic tools, Morphfaux has broadened the possibilities of architectural plaster. While our research has produced forms not possible by human skill alone, it also clearly illustrates a symbiotic relationship between the human body and robotic machines where human dexterity and robotic precision are choreographed in the production of innovative plastering techniques.
keywords Digital Practice , Robotic Fabrication , Digital Craft , Tacit Knowledge , Material Resistance , Synthetic Material , Plaster , Variable Tools
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id acadia12_287
id acadia12_287
authors McGee, Wes ; Newell, Catie ; Willette, Aaron
year 2012
title Glass Cast: A Reconfigurable Tooling System for Free-Form Glass Manufacturing
doi https://doi.org/10.52842/conf.acadia.2012.287
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 287-294
summary Despite glass’s ubiquity in the modern built environment it is rarely applied in applications requiring complex curvature. The high temperatures and complexity of techniques utilized in forming curved glass panels are typically very expensive to employ, requiring dedicated hard-tooling which ultimately limits the formal variation that can be achieved. This combination of economic and manufacturing barriers limits both the formal possibilities and potentially the overall envelope-performance characteristics of the glazing system. This research investigates a methodology for utilizing reconfigurable tooling to form glass into doubly curved geometries, offering the potential for improved structural and environmental performance in a material that has remained largely unchanged since the advent of its industrial manufacturing. A custom built forming kiln has been developed and tested, integrated through a parametric modeling workflow to provide manufacturing constraint feedback directly into the design process. The research also investigates the post-form trimming of glass utilizing robotic abrasive waterjet cutting, allowing for the output of machine control data directly from the digital model. The potentials of the methodologies developed in this process are shown through the fabrication of a full-scale installation. By integrating material, fabrication, and design constraints into a streamlined computational methodology, the process also serves as a model for a more intuitive production workflow, expanding the understanding of glass as a material with wide-ranging possibilities for a more performative architecture.
keywords Digital Fabrication , Robotic Fabrication , Computational Design , Material Computation
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ecaade2012_262
id ecaade2012_262
authors Pasternak, Agata
year 2012
title Robotic Prototypes Optimization: Incorporation of Optimization Procedures in the Design Process
doi https://doi.org/10.52842/conf.ecaade.2012.2.265
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 265-272
summary The use of computer-aided design combined with robotics and evolutionary principles of optimization, during the architectural design process, is discussed in this paper. The research is based on the examples of four case studies out of six projects designed during the Experimental Design Studio: ROBO Studio and a parallel seminar on optimization techniques on Architecture for Society of Knowledge Master course at Warsaw University of Technology, Faculty of Architecture. The project’s main goal was to combine robotic prototypes construction with an optimization process executed in parallel within one design procedure. The results of the course and the discussion about the impact of both factors on the architectural design process are presented in this paper.
wos WOS:000330320600026
keywords Genetic algorithm; optimization; robotics; Galapagos, Firefly, digital fabrication, design integration, kinetic structures
series eCAADe
type normal paper
email
last changed 2022/06/07 07:59

_id acadia12_157
id acadia12_157
authors Schwinn, Tobias ; Krieg, Oliver David ; Menges, Achim ; Mihaylov, Boyan ; Reichert, Steffen
year 2012
title Machinic Morphospaces: Biomimetic Design Strategies for the Computational Exploration of Robot Constraint Spaces for Wood Fabrication
doi https://doi.org/10.52842/conf.acadia.2012.157
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 157-168
summary The paper presents research into computational design processes that integrate not only criteria of physical producibility but also characteristics of design intelligence and performance. In the first part, the use of an industrial robot’s design space for developing differentiated finger joint connections for planar sheets of plywood is being introduced. Subsequently, biomimetics is proposed as a filter for the possible geometric differentiations with respect performative capacities. The second part focuses on the integration of fabricational and biomimetic principles with structural and architectural demands, as well as by the development of a custom digital data structure for the fabrication of finger joint plate structures resulting in the construction of a full scale prototype. The paper concludes with evaluating the tolerances inherent in construction through 3D laser scan validation of the physical model.
keywords Computational Design , Robotic Manufacturing , Digital Fabrication , Biomimetics , 3D Scanning
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id acadia20_340
id acadia20_340
authors Soana, Valentina; Stedman, Harvey; Darekar, Durgesh; M. Pawar, Vijay; Stuart-Smith, Robert
year 2020
title ELAbot
doi https://doi.org/10.52842/conf.acadia.2020.1.340
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 340-349.
summary This paper presents the design, control system, and elastic behavior of ELAbot: a robotic bending active textile hybrid (BATH) structure that can self-form and transform. In BATH structures, equilibrium emerges from interaction between tensile (form active) and elastically bent (bending active) elements (Ahlquist and Menges 2013; Lienhard et al. 2012). The integration of a BATH structure with a robotic actuation system that controls global deformations enables the structure to self-deploy and achieve multiple three-dimensional states. Continuous elastic material actuation is embedded within an adaptive cyber-physical network, creating a novel robotic architectural system capable of behaving autonomously. State-of-the-art BATH research demonstrates their structural efficiency, aesthetic qualities, and potential for use in innovative architectural structures (Suzuki and Knippers 2018). Due to the lack of appropriate motor-control strategies that exert dynamic loading deformations safely over time, research in this field has focused predominantly on static structures. Given the complexity of controlling the material behavior of nonlinear kinetic elastic systems at an architectural scale, this research focuses on the development of a cyber-physical design framework where physical elastic behavior is integrated into a computational design process, allowing the control of large deformations. This enables the system to respond to conditions that could be difficult to predict in advance and to adapt to multiple circumstances. Within this framework, control values are computed through continuous negotiation between exteroceptive and interoceptive information, and user/designer interaction.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2012_319
id ecaade2012_319
authors Stavric, Milena; Kaftan, Martin
year 2012
title Robotic Fabrication of Modular Formwork for Non-Standard Concrete Structures
doi https://doi.org/10.52842/conf.ecaade.2012.2.431
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 431-437
summary In this work we address the fast and economical realization of complex formwork for concrete with the advantage of industrial robot arm. Under economical realization we mean reduction of production time and material effi ciency. The complex form of individual formwork parts can be in our case double curved surface of complex mesh geometry. We propose the fabrication of the formwork by straight or shaped hot wire. We illustrate on several projects different approaches to mould production, where the proposed process demonstrates itself effective. In our approach we deal with the special kinds of modularity and specific symmetry of the formwork.
wos WOS:000330320600045
keywords Robotic fabrication; formwork; non-standard structures
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2013_128
id ecaade2013_128
authors Symeonidou, Ioanna; Hirschberg, Urs and Kaftan, Martin
year 2013
title Designing the Negative
doi https://doi.org/10.52842/conf.ecaade.2013.1.683
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 683-691
summary Designing the Negative was the title of a Master Studio that took place at the Institute of Architecture and Media of Graz University of Technology during the summer semester of 2012. Students designed and fabricated prototypes of customized concrete formwork as part of their studio assignment. The studio theme forced students to think about digital fabrication with parametric tools in a hands-on fashion. Using robotic technology and hot-wire cutting, students worked with the robot’s constraints (size of the robot’s arm, robot’s axis and tool’s restrictions) to design complex curved elements that could serve as formwork (the negative) for cast concrete elements (the positive). The students were asked to design a production strategy for their cast concrete elements as well as the application of said elements in an architectural scheme. The student projects confirmed the value of a pedagogy that takes on research-relevant questions in an interdisciplinary studio setting and engages students in a process that is best described as digital crafting: it simultaneously addressed the conceptual and technical as well as the material and tactile aspects of digital fabrication and design.
wos WOS:000340635300071
keywords Digital fabrication; customization; concrete; hot-wire cutting; parametric design.
series eCAADe
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 18HOMELOGIN (you are user _anon_248053 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002