CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 551

_id ascaad2012_001
id ascaad2012_001
authors Mahdjoubi, Lamine
year 2012
title Digital Architecture at Crossroads – Transition from Simulation and Visualisation to Information Modelling
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 5
summary Digital architecture is at an exciting but challenging stage of its development. Past decades have witnessed important developments in computer-generated architectural representations. These tools have complemented and, in some cases, superseded the traditional forms of design and communication. In parallel with progress in computer graphics, advances in computer generated architectural representations have evolved to deliver photorealistic computer generated imagery. However, there is evidence to suggest that these advances have not significantly enhanced collaborative practices. It was acknowledged that to address the fragmentation of the industry, a fundamental change to deliver digital architecture was needed. Dealing with the requirements for an improved co-ordination and co-operation between designers and other stakeholders to encourage more integration has therefore become a central issue in the last decade. It was also recognised that significantly more intelligence needs to be brought to bear on the decision-making process if the targets set by the sustainability agenda are to be met. The quest for an improved quality of information and decision making has shifted the emphasis from computer-generated imagery to integrated building information. The recent emergence of building information modelling (BIM) constitutes one of the most exciting developments in the field. It was suggested that BIM will deliver considerable sophistication and judgment in decision-making. This keynote speech seeks to examine the implications of the transition of digital architecture from simulation and visualisation to information modelling. It aims to shed light on the methodological and technological challenges facing practitioners, researchers, and software developers, as a result of the early adoption of BIM.
series ASCAAD
type keynote paper
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_001.pdf
last changed 2012/05/15 20:46

_id acadia12_47
id acadia12_47
authors Aish, Robert ; Fisher, Al ; Joyce, Sam ; Marsh, Andrew
year 2012
title Progress Towards Multi-Criteria Design Optimisation Using Designscript With Smart Form, Robot Structural Analysis and Ecotect Building Performance Analysis"
doi https://doi.org/10.52842/conf.acadia.2012.047
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 47-56
summary Important progress towards the development of a system that enables multi-criteria design optimisation has recently been demonstrated during a research collaboration between Autodesk’s DesignScript development team, the University of Bath and the engineering consultancy Buro Happold. This involved integrating aspects of the Robot Structural Analysis application, aspects of the Ecotect building performance application and a specialist form finding solver called SMART Form (developed by Buro Happold) with DesignScript to create a single computation environment. This environment is intended for the generation and evaluation of building designs against both structural and building performance criteria, with the aim of expediently supporting computational optimisation and decision making processes that integrate across multiple design and engineering disciplines. A framework was developed to enable the integration of modeling environments with analysis and process control, based on the authors’ case studies and experience of applied performance driven design in practice. This more generalised approach (implemented in DesignScript) enables different designers and engineers to selectively configure geometry definition, form finding, analysis and simulation tools in an open-ended system without enforcing any predefined workflows or anticipating specific design strategies and allows for a full range of optimisation and decision making processes to be explored. This system has been demonstrated to practitioners during the Design Modeling Symposium, Berlin in 2011 and feedback from this has suggested further development.
keywords Design Optimisation , Scripting , Form Finding , Structural Analysis , Building Performance
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2012_5
id ecaade2012_5
authors Biloria, Nimish; Chang, Jia-Rey
year 2012
title HyperCell: A Bio-Inspired Information Design Framework for Real-Time Adaptive Spatial Components
doi https://doi.org/10.52842/conf.ecaade.2012.2.573
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 573-581
summary Contemporary explorations within the evolutionary computational domain have been heavily instrumental in exploring biological processes of adaptation, growth and mutation. On the other hand a plethora of designers owing to the increasing sophistication in computer aided design software are equally enthused by the formal aspects of biological organisms and are thus meticulously involved in form driven design developments. This focus on top-down appearance and surface condition based design development under the banner of organic architecture in essence contributes to the growing misuse of bio-inspired design and the inherent meaning associated with the terminology. HyperCell, a bio-inspired information design framework for real-time adaptive spatial components, is an ongoing research, at Hyperbody, TU Delft, which focuses on extrapolating bottom-up generative design and real-time interaction based adaptive spatial re-use logics by understanding processes of adaptation, multi-performance and self sustenance in natural systems. Evolutionary developmental biology is considered as a theoretical basis for this research.
wos WOS:000330320600061
keywords Adaptation; Swarms; Evo-Devo; Simulation: Cellular component
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia12_479
id acadia12_479
authors Castorina, Giulio
year 2012
title Performative Topologies: An Evolutionary Shape Optimization Framework for Daylighting Performance Coupling a Particle-Spring System With an Energy Simulation Tool
doi https://doi.org/10.52842/conf.acadia.2012.479
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 479-490
summary This paper develops a methodological approach for use in design practice which combines an external simulation tool (EnergyPlus™) with an evo-lutionary optimisation strategy for the form-finding of complex fenestra-tion systems. On one hand, based on previous research, it presents a novel approach for the shape morphogenesis that exploits a generative algorithm technique to control a limited set of parameters whilst on the other hand it facilitates the integration of a simulation tool capable of handling increasing levels of complexity with greater data interoperabil-ity. In doing so it will argue the heuristic potential of the proposed meth-od in aiding the designers’ decision making whilst increasing the formal possibilities of their final design solutions.
keywords Performance-based design , Genetic Algorithm (GA) , daylighting simulation , shape optimisation , decision support system (DSS)
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ascaad2012_003
id ascaad2012_003
authors Elseragy, Ahmed
year 2012
title Creative Design Between Representation and Simulation
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 11-12
summary Milestone figures of architecture all have their different views on what comes first, form or function. They also vary in their definitions of creativity. Apparently, creativity is very strongly related to ideas and how they can be generated. It is also correlated with the process of thinking and developing. Creative products, whether architectural or otherwise, and whether tangible or intangible, are originated from ‘good ideas’ (Elnokaly, Elseragy and Alsaadani, 2008). On one hand, not any idea, or any good idea, can be considered creative but, on the other hand, any creative result can be traced back to a good idea that initiated it in the beginning (Goldschmit and Tatsa, 2005). Creativity in literature, music and other forms of art is immeasurable and unbounded by constraints of physical reality. Musicians, painters and sculptors do not create within tight restrictions. They create what becomes their own mind’s intellectual property, and viewers or listeners are free to interpret these creations from whichever angle they choose. However, this is not the case with architects, whose creations and creative products are always bound with different physical constraints that may be related to the building location, social and cultural values related to the context, environmental performance and energy efficiency, and many more (Elnokaly, Elseragy and Alsaadani, 2008). Remarkably, over the last three decades computers have dominated in almost all areas of design, taking over the burden of repetitive tasks so that the designers and students can focus on the act of creation. Computer aided design has been used for a long time as a tool of drafting, however in this last decade this tool of representation is being replaced by simulation in different areas such as simulation of form, function and environment. Thus, the crafting of objects is moving towards the generation of forms and integrated systems through designer-authored computational processes. The emergence and adoption of computational technologies has significantly changed design and design education beyond the replacement of drawing boards with computers or pens and paper with computer-aided design (CAD) computer-aided engineering (CAE) applications. This paper highlights the influence of the evolving transformation from Computer Aided Design (CAD) to Computational Design (CD) and how this presents a profound shift in creative design thinking and education. Computational-based design and simulation represent new tools that encourage designers and artists to continue progression of novel modes of design thinking and creativity for the 21st century designers. Today computational design calls for new ideas that will transcend conventional boundaries and support creative insights through design and into design. However, it is still believed that in architecture education one should not replace the design process and creative thinking at early stages by software tools that shape both process and final product which may become a limitation for creative designs to adapt to the decisions and metaphors chosen by the simulation tool. This paper explores the development of Computer Aided Design (CAD) to Computational Design (CD) Tools and their impact on contemporary design education and creative design.
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_003.pdf
last changed 2012/05/15 20:46

_id ecaade2012_109
id ecaade2012_109
authors Simeone, Davide ; Kalay, Yehuda E.
year 2012
title An Event-Based Model to simulate human behaviour in built environments
doi https://doi.org/10.52842/conf.ecaade.2012.1.525
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 525-532
summary During a design process, few methods allow designers to evaluate if and how the future building will match and affect its intended use and its intended users. Computer simulation techniques have focused on prediction of human behavior in built environments in order to overcome this lack; nevertheless, their applications are limited to representation of specifi c behavioral aspects while a reliable representation of building response to actual use is still missing. Based on current developments in the video game industry, the research described here aims to establish a new approach to simulating human behavior in buildings, centered on a clear definition of use scenarios as specific structures of active entities called Events. They provide information about occurrences happening during the use process in terms of Actors involved, Activities performed and Space where the event takes place. Equipped with AI engines, events control and coordinate the actors’ behavior during the simulation, representing their interaction, cooperation and collaboration.
wos WOS:000330322400054
keywords Building use simulation; event-based model; human-built environment interaction
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2012_040
id caadria2012_040
authors Toth, Bianca; Stefan Boeykens, Andre Chaszar, Patrick Janssen and Rudi Stouffs
year 2012
title Custom digital workflows: A new framework for design analysis integration
doi https://doi.org/10.52842/conf.caadria.2012.163
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 163–172
summary Flexible information exchange is critical to successful design integration, but current top-down, standards-based and model-oriented strategies impose restrictions that are contradictory to this flexibility. In this paper we present a bottom-up, user-controlled and process-oriented approach to linking design and analysis applications that is more responsive to the varied needs of designers and design teams. Drawing on research into scientific workflows, we present a framework for integration that capitalises on advances in cloud computing to connect discrete tools via flexible and distributed process networks. Adopting a services-oriented system architecture, we propose a web-based platform that enables data, semantics and models to be shared on the fly. We discuss potential challenges and opportunities for the development thereof as a flexible, visual, collaborative, scalable and open system.
keywords Visual dataflow modelling; design processes; interoperability; simulation integration; cloud-based systems
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia12_87
id acadia12_87
authors Menicovich, David ; Gallardo, Daniele ; Bevilaqua, Riccardo ; Vollen, Jason
year 2012
title Generation and Integration of an Aerodynamic Performance Data Base Within the Concept Design Phase of Tall Buildings
doi https://doi.org/10.52842/conf.acadia.2012.087
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 87-96
summary Despite the fact that tall buildings are the most wind affected architectural typology, testing for aerodynamic performance is conducted during the later design phases well after the overall geometry has been developed. In this context, aerodynamic performance studies are limited to evaluating an existing design rather than a systematic performance study of design options driving form generation. Beyond constrains of time and cost of wind tunnel testing, which is still more reliable than Computational Fluid Dynamics (CFD) simulations for wind conditions around buildings, aerodynamic performance criteria lack an immediate interface with parametric design tools. This study details a framework for empirical data collection through wind tunnel testing of building mechatronic models and the expansion of the collected dataset by determining a mathematical interpolating model using an Artificial Neural Network (ANN) algorithm developing an Aerodynamic Performance Data Base (APDB). Frederick Keisler called the interacting of forces CO-REALITY, which he defined as The Science of Relationships. In the same article Keisler proclaims that the Form Follows Function is an outmoded understanding that design must demonstrate continuous variability in response to interactions of competing forces. This topographic space is both constant and fleeting where form is developed through the broadcasting of conflict and divergence as a system seeks balance and where one state of matter is passing by another; a decidedly fluid system. However, in spite of the fact that most of our environment consists of fluids or fluid reactions, instantaneous and geologic, natural and engineered, we have restricted ourselves to approaching the design of buildings and their interactions with the environment through solids, their properties and geometry; flow is considered well after the concept design stage and as validation of form. The research described herein explores alternative relations between the object and the flows around it as an iterative process, moving away from the traditional approach of Form Follows Function to Form Follows Flow.
keywords Tall Buildings , Mechatronics , Artificial Neural Network , Aerodynamic Performance Data Base
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id acadia12_391
id acadia12_391
authors Ajlouni, Rima
year 2012
title The Forbidden Symmetries
doi https://doi.org/10.52842/conf.acadia.2012.391
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 391-400
summary The emergence of quasi-periodic tiling theories in mathematics and material science is revealing a new class of symmetry, which had never been accessible before. Because of their astounding visual and structural properties, quasi-periodic symmetries can be ideally suited for many applications in art and architecture; providing a rich source of ideas for articulating form, pattern, surface and structure. However, since their discovery, the unique long-range order of quasi-periodic symmetries, is still posing a perplexing puzzle. As rule-based systems, the ability to algorithmically generate these complicated symmetries can be instrumental in understanding and manipulating their geometry. Recently, the discovery of quasi-periodic patterns in ancient Islamic architecture is providing a unique example of how ancient mathematics can inform our understanding of some basic theories in modern science. The recent investigation into these complex and chaotic formations is providing evidence to show that ancient designers, by using the most primitive tools (a compass and a straightedge) were able to resolve the complicated long-range principles of ten-fold quasi-periodic formations. Derived from these ancient principles, this paper presents a computational model for describing the long-range order of octagon-based quasi-periodic formations. The objective of the study is to design an algorithm for constructing large patches of octagon-based quasi-crystalline formations. The proposed algorithm is proven to be successful in producing an infinite and defect-free covering of the two-dimensional plane.
keywords computational model , quasi-crystalline , symmetries , algorithms , complex geometry
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id sigradi2012_26
id sigradi2012_26
authors Aschwanden, Gideon
year 2012
title Agent-Based Social Pedestrian Simulation for the Validation of Urban Planning Recommendations
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 332-336
summary The goal of this project is a deeper understanding of the mechanisms that shape a city with a focus on pedestrian flow. Pedestrian flow reveals the use of space, the capacity and use of transportation and has an impact on the health of people. Movement patterns of pedestrians are a topic in many related fields like transportation planning, computer graphics and sociology. This project augments the simulation of pedestrian decision processes by taking into account the preferences for surrounding factors like additional points of interests and how pedestrians interact along their path with other pedestrians in a social manner. The goal of this project is to analyse urban planning configurations and to give designers and decision makers a tool to measure the amount of people walking and therefore define the health of a society, finding places of social interaction and improving social coherence in neighbourhoods.
keywords Urban Planning; Pedestrian Movement; Multi-agent System
series SIGRADI
email
last changed 2016/03/10 09:47

_id ascaad2012_012
id ascaad2012_012
authors Bhzad Sidawi
year 2012
title The Possible Role of CAAD Systems in Initiating Innovation in the Design Studio
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 117-128
summary Design is a social phenomenon and the previous research highlights that design precedents and social interaction between designers including negotiation, collaboration and communications is essential to initiate creativity and the production of innovative design products. CAAD systems aim is to help the architect in formulating and developing design ideas. Researchers suggest that knowledge based systems can be integrated with CAAD systems so it would provide the architect with design knowledge that would him/ her to recall design precedents/ solutions thus link it to the design problems. Nevertheless, CAAD systems can provide limited help regarding the production of innovative design. Furthermore, the attention of the designers of knowledge based systems is focused on architects rather than the end product. On the other hand, most of the CAAD systems have web communication tools that enable designers to communicate their with colleagues and partners in business. However, none of these systems have the capability to capture useful knowledge from the design negotiations. Students of the third to fifth year at College of Architecture, University of Dammam were surveyed and interviewed to find out how far design tools, communications and resources would impact the production of innovative design projects. The survey results show that knowledge extracted from design negotiations would impact the innovative design outcome. It highlights also that present design precedents are not very helpful and design negotiations between students, tutors and other students are not documented thus fully incorporated into the design scheme. The paper argues that the future CAAD systems should be capable to recognize innovative design precedents, and incorporate knowledge that is resulted from design negotiations. This would help students to produce innovative design products.
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_012.pdf
last changed 2012/05/15 20:46

_id acadia12_67
id acadia12_67
authors Gerber, Dr. David Jason ; Lin, Shih-Hsin
year 2012
title Synthesizing Design Performance: An Evolutionary Approach to Multidisciplinary Design Search
doi https://doi.org/10.52842/conf.acadia.2012.067
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 67-75
summary Design is a goal oriented decision-making activity. Design is ill defined and requiring of synthetic approaches to weighing and understanding tradeoffs amongst soft and hard objectives, and the imprecise and or computationally explicit criteria and goals. In this regard designers in contemporary practice face a crisis of sorts. How do we achieve performance under large degrees of uncertainty and limited design cycle time? How do we better design for integrating performance? Fundamentally design teams, are not typically given enough time nor the best tools to design explore, to generate design alternatives, and then evolve solution quality to search for best fit through expansive design solution spaces. Given the complex criteria for defining performance in architecture our research approach experiments upon an evolutionary and integrative computational strategy to expand the solution space of a design problem as well as pre-sort and qualify candidate designs. We present technology and methodology that supports rapid development of design problem solution spaces in which three design domains objectives have multi-directional impact on each other. The research describes the use of an evolutionary approach in which a genetic algorithm is used as a means to automate the design alternative population as well as to facilitate multidisciplinary design domain optimization. The paper provides a technical description of the prototype design, one that integrates associative parametric modeling with an energy use intensity evaluation and with a financial pro forma. The initial results of the research are presented and analyzed including impacts on design process; the impacts on design uncertainty and design cycle latency; and the affordances for ‘designing-in’ performance and managing project complexity. A summary discussion is developed which describes a future cloud implementation and the future extensions into other domains, scales, tectonic and system detail.
keywords Parametric Design , Domain Integration , Design Methods , Multidisciplinary Design Optimization (MDO) , Evolutionary Algorithms , Design Decision Support , Generative Design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id acadia12_15
id acadia12_15
authors Johnson, Jason Kelly; Cabrinha, Mark; Steinfeld, Kyle
year 2012
title Synthetic Digital Ecologies
doi https://doi.org/10.52842/conf.acadia.2012.015
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 15-17
summary Why use the terms synthetic and ecology in the context of a conference dedicated to the field of digital architecture, computation and fabrication? How do we begin to unpack the synthetic union of diverse elements, processes, collaborators, and code underlying any single contemporary design or research project? What could our field gain by interrogating these diverse ecologies? What are the relationships and interactions between our design processes, including our various tools and techniques, and the multiple environments with which we routinely work, collaborate and make? It is these questions and more that we hope to address at this year’s “Synthetic Digital Ecologies” conference. A quick scan of the papers and projects that will be presented at ACADIA reveals an extraordinary ecology of experimental research that emerged by working between messy labs, studios, workshops, hacker spaces and the like. In many ways today’s so-called “digital architects” do not feel compelled to distinguish between what is digitally designed and what is not. They are leading the way through a promiscuous and synthetic mixing of skill sets, of pens and paper, hardware and software, electronics and g-code. In a single research project these designers might collaborate with a computer scientist, a robotics expert and a glass blower, and in many cases they might even attempt to do all of these things themselves. It was with this in mind that we put forth an international call inviting, “… architects, fabricators, engineers, media artists, technologists, software developers, hackers and others in related fields of inquiry …” to submit papers and projects for this year’s conference. This year the proceedings have been organized into twelve synthetic categories based around the potential for diverse research topics to inform new and unexpected conversations. Instead of organizing peer-reviewed papers and projects through their formal characteristics, we were interested in forming new synthetic categories by curating unexpected juxtapositions. This ecology of ideas and research was meant to provoke and inspire new ways of thinking, making, building and collaborating.
series ACADIA
type introduction
email
last changed 2022/06/07 07:52

_id acadia12_000
id acadia12_000
authors Johnson, Jason; Cabrina, Mark and Steinfeld, Kyle (eds.)
year 2012
title ACADIA 12: Synthetic Digital Ecologies
doi https://doi.org/10.52842/conf.acadia.2012
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), 588p.
summary Why use the terms synthetic and ecology in the context of a conference dedicated to the field of digital architecture, computation and fabrication? How do we begin to unpack the synthetic union of diverse elements, processes, collaborators, and code underlying any single contemporary design or research project? What could our field gain by interrogating these diverse ecologies? What are the relationships and interactions between our design processes, including our various tools and techniques, and the multiple environments with which we routinely work, collaborate and make? It is these questions and more that we hope to address at this year’s “Synthetic Digital Ecologies” conference. A quick scan of the papers and projects that will be presented at ACADIA reveals an extraordinary ecology of experimental research that emerged by working between messy labs, studios, workshops, hacker spaces and the like. In many ways today’s so-called “digital architects” do not feel compelled to distinguish between what is digitally designed and what is not. They are leading the way through a promiscuous and synthetic mixing of skill sets, of pens and paper, hardware and software, electronics and g-code. In a single research project these designers might collaborate with a computer scientist, a robotics expert and a glass blower, and in many cases they might even attempt to do all of these things themselves. It was with this in mind that we put forth an international call inviting, “... architects, fabricators, engineers, media artists, technologists, software developers, hackers and others in related fields of inquiry ...” to submit papers and projects for this year’s conference. This year the proceedings have been organized into twelve synthetic categories based around the potential for diverse research topics to inform new and unexpected conversations. Instead of organizing peer-reviewed papers and projects through their formal characteristics, we were interested in forming new synthetic categories by curating unexpected juxtapositions. This ecology of ideas and research was meant to provoke and inspire new ways of thinking, making, building and collaborating.
series ACADIA
email
last changed 2022/06/07 07:49

_id ecaade2012_191
id ecaade2012_191
authors Krijnen, Thomas ; Beetz, Jakob ; Voorthuis, Jacob ; Vries, Bauke de
year 2012
title Explauralisation: The experience of exploring architecture made audible
doi https://doi.org/10.52842/conf.ecaade.2012.1.593
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 593-598
summary In this paper we propose an open source design tool that allows designers to easily conceive, evaluate and design the full auditory experience of a building, based on a digital three-dimensional model. A guiding principle has been the dynamic nature of the confi guration of sound sources and listeners. Hence, a system is created that enables sound sources as well as listeners to be defi ned as moving entities. Furthermore, the ability exists for listeners, in their own movements and interactions, to generate sounds as well. In the system, proposed in this paper, ray-tracing is used to simulate the spatial acoustics. The paper discusses the considerations regarding several implementation choices and regarding adoption of the tool in the architectural design process.
wos WOS:000330322400061
keywords Auditory perception; Architectural design; Acoustics; Simulation; Auralisation
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2012_041
id caadria2012_041
authors Lin, Yifeng and Shanshan Shen
year 2012
title Designing a performance-oriented house envelope based on a parametric approach: An integrated method
doi https://doi.org/10.52842/conf.caadria.2012.507
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 507–516
summary Conventional house envelope design methods often generate few alternatives related to meeting living comfort and building environmental requirements. However, these design methods are increasingly facing difficulties in following the dynamic climate change and advanced building performance conditions in the early stage of the design process. This paper attempts to introduce an integrated method for designing a performance-orientated house envelope in New Zealand which adopts the parametric approach. This approach can guide and assist designers to make a well-informed decision, which can satisfy both aesthetics and energy performance, and gain more efficiency for the design process in the early stage of housing performance simulation.
keywords Performance-oriented house envelope design; integrated parametric design; dynamic approach
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2012_061
id ecaade2012_061
authors Macris, Vincent ; Weytjens, Lieve ; Geyskens, Kenny ; Knapen, Marc ; Verbeeck, Griet
year 2012
title Design Guidance for Low-Energy Dwellings in Early Design Phases: Development of a simple design support tool in SketchUp
doi https://doi.org/10.52842/conf.ecaade.2012.1.691
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 691-699.
summary Considering the energy effi ciency and comfort levels of dwellings, stricter legislation will be applied towards 2020. To reach these requirements, an insight into the energy effi ciency becomes essential from the start of a design. However, the uptake of building simulation tools by architects and students to evaluate the energy performance during the architectural design process remains very limited, mainly due to the complexity of these tools. Therefore, this research aims at early design support through an easy-to-use application adapted to the modelling logic of a designer. As architects often use simple CAAD design tools for design exploration, a prototype was established in Google SketchUp. In this context, the paper presents the development of a support tool for low-energy dwellings in early design phases, allowing designers to quickly assess the thermal comfort and energy performance of early design alternatives.
wos WOS:000330322400073
keywords Design support tool; Energy; SketchUp; Architectural design process; Output
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia12_447
id acadia12_447
authors Rossi, Dino ; Nagy, Zoltan ; Schlueter, Arno
year 2012
title Adaptive Distributed Architectural Systems
doi https://doi.org/10.52842/conf.acadia.2012.447
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 447-456
summary Artificial Intelligence has a long and rich history in the field of architecture. Building upon this history, we clarify the term “adaptive” and its use within the field. This allows us to explore the application of adaptive systems to architectural design through the prototyping of an adaptive solar envelope (ASE). The building envelope was chosen because it is a common place to address issues of energy performance and occupant comfort and thereby offers an ideal scenario in which to explore the negotiative potential of adaptive systems in architecture. The ASE prototype addresses issues of distributed shading, solar power generation through integrated thin film photovoltaics, and daylight distribution. In addition, building envelopes, being the most publically visible part of a building, play an important role in the aesthetic result of a design. Therefore, conceiving buildings as dynamic systems with the ability to adapt to the fluctuating environments in which they exist opens new aesthetic possibilities for designers. Additionally we present examples of student work created during workshops based on the theme of integrating adaptive distributed systems into architectural design. We argue that with presently available technology, and an increased exposure of architecture students and practitioners to adaptive design techniques, adaptive architectures will soon become a regular element of the built environment.
keywords adaptive , distributed , systems , reinforcement , learning , architecture , design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ecaade2012_013
id ecaade2012_013
authors Salim, Flora ; Moya, Rafael
year 2012
title Parallel Analysis of Urban Aerodynamic Phenomena Using High and Low-Tech Tools
doi https://doi.org/10.52842/conf.ecaade.2012.1.621
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 621-629.
summary The study of wind conditions in cities is a significant factor in urban design in order to deal with issues related with pollution, wind pressures on buildings, and comfort on public spaces. This paper presents some results of a four-day workshop where some of the different techniques for simulating and visualising aerodynamic phenomena were explored. These technologies, classified as high-tech and low-tech tools, were used to investigate urban aerodynamic phenomena through parallel experiments, analysis, and eye observations. The experiments demonstrated that getting live feedbacks while interacting with the simulated aerodynamic phenomena is essential to improve the observers’ general comprehension of the phenomena. Our proposed method for studying aerodynamic phenomena, which integrates both low-tech and high-tech tools, facilitates designers to explore multiple options and configurations in the early stage of a design process.
wos WOS:000330322400065
keywords Urban aerodynamic; wind tunnel; Computational Fluid Dynamics (CFD); wind simulation; urban design
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2012_124
id ecaade2012_124
authors Wierzbicki-Neagu, Madalina ; Silva, Clarence Wilfred de
year 2012
title Application of Fuzzy Logic for Optimizing Foldable Freeform Geometries: An example of a practical application – a foldable window shade
doi https://doi.org/10.52842/conf.ecaade.2012.1.709
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 709-717.
summary This paper concerns the current discourse on computer-aided design tools for architectural design. There are drawbacks of purely analytic design tools which hinder a system-level, end-effect oriented ideation. For instance, most freeform quadrilateral meshes are fully constrained and therefore not capable of folding. They can only fold under special circumstances – when their geometry satisfi es the conditions of over-constrained kinematics. However, such intent of folding cannot be captured using simple modeling based on parameters and constraints. Furthermore, algorithmization of mesh kinematics using formulas is infl exible, it cannot handle topological variations, and it inhibits the interactive control of the model. In this paper, a fuzzy logic algorithm which uses a goal-oriented, human-like reasoning to control the parametric model is proposed. The algorithm applies easily observable behaviors of the geometry to adjust the selected patches until the entire shell can be folded. The algorithm relies on designer-observable characteristics of motion rather than on formulaic representations. Such approach directs the designers’ focus on the desired outcome while avoiding the drawbacks of analytic modeling of complex kinematics.
wos WOS:000330322400075
keywords Folding structures; fuzzy logic; intent-driven design; freeform quadrilateral mesh
series eCAADe
email
last changed 2022/06/07 07:57

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_8258 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002