CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 551

_id caadria2012_066
id caadria2012_066
authors Ahmad, Sumbul
year 2012
title The representation of type in grammatical design
doi https://doi.org/10.52842/conf.caadria.2012.425
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 425–432
summary Grammatical design is useful for the generation of a set of related designs. The concept of type aids designers in generating designs with a specified structure. However, existing studies in grammar are ambiguous in their definition of type in the language of designs generated by a grammar. Extending our previous study of defining style in grammar, this paper provides a formal definition of the concept of type in the language of designs generated by a grammar. This is done with the help of a description scheme which is developed by augmenting grammar primitives and spatial relations with descriptors. The description scheme allows the computation of descriptors for designs generated from grammar thus making possible the comparison of various design types in the language of a grammar. Such a description scheme for defining design types is especially significant for less restricted grammars that generate a large number of designs that are varied in nature. A formal definition of type in grammars allows users to sift through designs with particular features, and thus select desired designs.
keywords Type; Design grammars; generative design; description scheme; product design
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia12_57
id acadia12_57
authors Shireen, Naghmi ; Erhan, Halil ; Botta, David ; Woodbury, Robert
year 2012
title Parallel Development of Parametric Design Models Using Subjunctive Dependency Graphs
doi https://doi.org/10.52842/conf.acadia.2012.057
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 57-66
summary Exploring problems through multiple alternatives is a key aspect of design. In this paper, we present a prototype system as an extension to existing parametric CAD tools that enables parallel generation and editing of design alternatives. The system is built on two fundamental ideas. First, use of subjunctive dependency graphs enables simultaneous work on multiple design variations. These graphs capture and reveal complex data flow across alternative parametric CAD models. Second, prototype-based modeling provides a weak notion of inheritance enabling incremental description of differences between alternatives. The system is intended to be general enough to be used in different CAD platforms and other systems using graph-based modeling. The three basic system functions are definition of alternatives (variations) using prototype-based modeling, structural and parametric divergences of the prototypes, and interactive comparison. The goal of this research is consistent with the general qualities expected from any creativity support tools: enabling exploration and simultaneous development of variations.
keywords Parallel editing , Design exploration , Alternatives , Parametric CAD systems , Graph-based modelling
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id acadia12_391
id acadia12_391
authors Ajlouni, Rima
year 2012
title The Forbidden Symmetries
doi https://doi.org/10.52842/conf.acadia.2012.391
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 391-400
summary The emergence of quasi-periodic tiling theories in mathematics and material science is revealing a new class of symmetry, which had never been accessible before. Because of their astounding visual and structural properties, quasi-periodic symmetries can be ideally suited for many applications in art and architecture; providing a rich source of ideas for articulating form, pattern, surface and structure. However, since their discovery, the unique long-range order of quasi-periodic symmetries, is still posing a perplexing puzzle. As rule-based systems, the ability to algorithmically generate these complicated symmetries can be instrumental in understanding and manipulating their geometry. Recently, the discovery of quasi-periodic patterns in ancient Islamic architecture is providing a unique example of how ancient mathematics can inform our understanding of some basic theories in modern science. The recent investigation into these complex and chaotic formations is providing evidence to show that ancient designers, by using the most primitive tools (a compass and a straightedge) were able to resolve the complicated long-range principles of ten-fold quasi-periodic formations. Derived from these ancient principles, this paper presents a computational model for describing the long-range order of octagon-based quasi-periodic formations. The objective of the study is to design an algorithm for constructing large patches of octagon-based quasi-crystalline formations. The proposed algorithm is proven to be successful in producing an infinite and defect-free covering of the two-dimensional plane.
keywords computational model , quasi-crystalline , symmetries , algorithms , complex geometry
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ascaad2014_016
id ascaad2014_016
authors Al-Ratrout, Samer A. and Rana Zureikat
year 2014
title Pedagogic Approach in the Age of Parametric Architecture: Experimental method for teaching architectural design studio to 3rd year level students
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 211-226
summary In this era, Architectural Design Practice is faced with a paradigm shift in its conventional approaches towards computational methods. In this regard, it is considered a pedagogic challenge to boost up knowledge and skills of architectural students’ towards an advanced approach of architectural design that emphasizes the potentials and complexity of computational environments and parametric tools for design problem solving. For introducing the concept of Parametric Oriented Design Methods to 3rd year level architectural students, an experimental pedagogic course was designed in the scholastic year of 2012-2013 at German Jordanian University GJU (School of Architecture and Built Environment SABE) to approach this concept. In the preparation phase, the experimental course was designed to incorporate structured instructing and training method to be consecutively performed within experimental lab environment to target predetermined learning outcomes and goals. The involved students were intentionally classified into three levels of previous involvement associated with the related software operating skills and computational design exposure. In the implementation phase, the predetermined instructing and training procedures were performed in the controlled environment according to the planned tasks and time intervals. Preceded tactics were prepared to be executed to resolve various anticipated complication. In this phase also, students’ performance and comprehension capacity were observed and recorded. In data analysis phase, the observed results were verified and correlations were recognized. In the final phase, conclusions were established and recommendations for further related pedagogic experiments were introduced.
series ASCAAD
email
last changed 2016/02/15 13:09

_id 47a2
id 47a2
authors Bhzad Sidawi and Neveen Hamza
year 2012
title Editorial: Special issue on CAAD and innovation
source ITCON journal
summary The concepts and applications of Computer Aided Architectural Design (CAAD) have a predominant presence and impact on architectural design innovation and creativity. ASCAAD, in its 6th international conference, invited the learnt society of academics, researchers and professionals to debate the ubiquitous emerging role of CAAD in underpinning innovative design thinking processes and research in design education. The conference theme covered the following issues:  Computational research in design pedagogy and in practice  Intelligent agents, generative and parametric design  Building Information Modeling and Computer-supported design collaboration  Ubiquitous computing and interactive environments  Urban/ City/ regional planning and digital Modeling  Digital tools in design and construction  Mass customization Selected papers have been updated in this publication to reflect the constant quest to balance architectural thinking with operative techniques. It is well acknowledged that the advent of computation and information technology had profoundly altered architectural thinking. Design software and numerical fabrication have recast the role of form giving and shaping environments in architecture and opened up unprecedented opportunities of investigation and links with other scientific domains such as biomimcry, parametric design and modeling of urban and building environments. In this issue authors suggest a continuum between architectural analytical thinking and CAAD systems. Looking at the collaboration between authors of various backgrounds also strengthens this narrative that architecture is expanding beyond its traditional enquiry into historical and theoretical aspects into the world of multi-desciplinarity. It is evident from the diverse publications that CAAD is designed and utilized to expand the architectural pedagogy and practice into initiating and opening up the exploratory grounds of creation and productivity in design.
series journal paper
type short paper
email
more http://www.itcon.org/cgi-bin/works/Show?2012_14
last changed 2012/09/19 13:43

_id acadia12_511
id acadia12_511
authors Borowski, Darrick ; Poulimeni, Nikoletta ; Janssen, Jeroen
year 2012
title Edible Infrastructures: Emergent Organizational Patterns for the Productive City
doi https://doi.org/10.52842/conf.acadia.2012.511
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 511-526
summary Edible Infrastructures is an investigation into a projective mode of urbanism which considers food as an integral part of a city's metabolic infrastructure. Working with algorithms as design tools, we explore the generative potential of such a system to create an urban ecology that: provides for its residents via local, multi-scalar, distributed food production, reconnects urbanites with their food sources, and de-couples food costs from fossil fuels by limiting transportation at all levels, from source to table. The research is conducted through the building up of a sequence of algorithms, beginning with the ‘Settlement Simulation’, which couples consumers to productive surface area within a cellular automata type computational model. Topological analysis informs generative operations, as each stage builds on the output of the last. In this way we explore the hierarchical components for a new Productive City, including: the structure and programming of the urban circulatory network, an emergent urban morphology based around productive urban blocks, and opportunities for new architectural typologies. The resulting prototypical Productive City questions the underlying mechanisms that shape modern urban space and demonstrates the architectural potential of mathematical modeling and simulation in addressing complex urban spatial and programmatic challenges.
keywords Urban Agriculture , Urban Ecologies and Food Systems , Productive Cities , Urban Metabolism , Computational Modeling and Simulation , Algorithmic/ Procedural Design Methodologies , Emergent Organization , Self-Organizing Systems
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ascaad2012_020
id ascaad2012_020
authors Bouchahm, Yasmina; Fatiha Bourbia and Bouketta Samira
year 2012
title Numerical Simulation of Effect of Urban Geometry Layouts on Wind and Natural Ventilation Under Mediterranean Climate
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 195-202
summary The use of the method "simulation" of the microclimate for an urban site presents much of interest; because this can serve as us observation and analysis of the consequences of various scenarios relating to the existence and the importance of the constituent elements in urban space. Wind in outdoor urban space is among the most difficult parameters to identify and control field given its instability. Currently, in the field of the ventilation, there are some outdoor spaces simulation tools, used to assess the flow of the wind at different spatial scales. The aim of this research is to demonstrate the effect of the urban geometry of the layout on the wind movement and the outdoor natural ventilation. However, this study investigated the effect on outdoor thermal comfort of a building layouts in a planned residential area situated in the city of Jijel humid Mediterranean region of Algeria. In order to improve outside comfort in this open space, a 3D numerical simulation tool ENVI-met 3.1 beta 4 was used to simulate the urban thermal climate taking into account various scenarios. Thus, simulation’s results are discussed in this paper
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_020.pdf
last changed 2012/05/15 20:46

_id sigradi2012_107
id sigradi2012_107
authors Carrión, Awilda Rodríguez
year 2012
title Scalable Explorations
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 449-452
summary Authoring environments should strive for effortless navigation, traversing the space-scale virtual space in order to comprehend relationships between distinct elements, provide landmark or reference objects to keep the user’s orientation and perceptual cues that will enhance direction and depth perception. This paper will explore how the dynamic nature of 3-D virtual environments can provide new generations with powerful tools to explore disparate spatial scales, expand the modeling information and give them the ability to manipulate conceptually critical information that is governed by various scale parameters.
keywords BIM; virtual space; scale; urban space
series SIGRADI
email
last changed 2016/03/10 09:48

_id ecaade2012_007
id ecaade2012_007
authors Eloy, Sara ; Duarte, José Pinto
year 2012
title Transformation Grammar for Housing Rehabilitation: From a specifi c to a general grammar
doi https://doi.org/10.52842/conf.ecaade.2012.1.471
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 471-478
summary This article focuses on the use of both shape grammar and space syntax as tools to identify and encode the principles and rules behind the adaptation of existing houses to new requirements. The idea is to use such rules as part of a transformation grammar-based methodology for the rehabilitation of existing dwellings. The developed grammar is a specifi c grammar to inform the rehabilitation of a particular type of building in Portugal – “rabo-de-bacalhau”. In this article the goal is to explore how the “rabo-the-bacalhau” transformation grammar can be transformed in a general rehabilitation grammar in order to inform the rehabilitation of various types of housing buildings.
wos WOS:000330322400048
keywords Multifamiliar housing building; shape grammars; transformations; housing rehabilitation
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia12_139
id acadia12_139
authors Erioli, Alessio ; Zomparelli, Alessandro
year 2012
title Emergent Reefs
doi https://doi.org/10.52842/conf.acadia.2012.139
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 139-148
summary The Emergent Reefs project thrives on the potential that emerge from a coherent utilization of the environment’s inherent ecological structure for its own transformation and evolution, using an approach based on digitally simulated ecosystems and sparkled by the possibilities and potential of large-scale 3D printing technology. Considering tourism as an inevitable vector of environmental change, the project aims to direct its potential and economic resources towards a positive transformation, providing a material substrate for the human-marine ecosystem integration with the realization of spaces for an underwater sculpture exhibition. Such structures will also provide a pattern of cavities which, expanding the gradient of microenvironmental conditions, break the existing homogeneity in favor of systemic heterogeneity, providing the spatial and material preconditions for the repopulation of marine biodiversity. Starting from a digital simulation of a synthetic local ecosystem, a generative technique based on multi-agent systems and continuous cellular automata (put into practice from the theoretical premises in Alan Turing’s paper “The Chemical basis of Morphogenesis” through reaction-diffusion simulation) is implemented in a voxel field at several scales giving the project a twofold quality: the implementation of reaction diffusion generative strategy within a non-isotropic 3-dimensional field and integration with the large-scale 3D printing fabrication system patented by D-Shape®. Out of these assumptions and in the intent of exploiting the expressive and tectonic potential of such technology, the project has been tackled exploring voxel-based generative strategies. Working with a discrete lattice eases the simulation of complex systems and processes across multiple scales (including non-linear simulations such as Computational Fluid-Dynamics) starting from local interactions using, for instance, algorithms based on cellular automata, which then can be translated directly to the physical production system. The purpose of Emergent-Reefs is to establish, through strategies based on computational design tools and machine-based fabrication, seamless relationships between three different aspects of the architectural process: generation, simulation and construction, which in the case of the used technology can be specified as guided growth.
keywords emergence , reef , underwater , 3D printing , ecology , ecosystem , CFD , agency , architecture , tourism , culture , Open Source
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadia12_67
id acadia12_67
authors Gerber, Dr. David Jason ; Lin, Shih-Hsin
year 2012
title Synthesizing Design Performance: An Evolutionary Approach to Multidisciplinary Design Search
doi https://doi.org/10.52842/conf.acadia.2012.067
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 67-75
summary Design is a goal oriented decision-making activity. Design is ill defined and requiring of synthetic approaches to weighing and understanding tradeoffs amongst soft and hard objectives, and the imprecise and or computationally explicit criteria and goals. In this regard designers in contemporary practice face a crisis of sorts. How do we achieve performance under large degrees of uncertainty and limited design cycle time? How do we better design for integrating performance? Fundamentally design teams, are not typically given enough time nor the best tools to design explore, to generate design alternatives, and then evolve solution quality to search for best fit through expansive design solution spaces. Given the complex criteria for defining performance in architecture our research approach experiments upon an evolutionary and integrative computational strategy to expand the solution space of a design problem as well as pre-sort and qualify candidate designs. We present technology and methodology that supports rapid development of design problem solution spaces in which three design domains objectives have multi-directional impact on each other. The research describes the use of an evolutionary approach in which a genetic algorithm is used as a means to automate the design alternative population as well as to facilitate multidisciplinary design domain optimization. The paper provides a technical description of the prototype design, one that integrates associative parametric modeling with an energy use intensity evaluation and with a financial pro forma. The initial results of the research are presented and analyzed including impacts on design process; the impacts on design uncertainty and design cycle latency; and the affordances for ‘designing-in’ performance and managing project complexity. A summary discussion is developed which describes a future cloud implementation and the future extensions into other domains, scales, tectonic and system detail.
keywords Parametric Design , Domain Integration , Design Methods , Multidisciplinary Design Optimization (MDO) , Evolutionary Algorithms , Design Decision Support , Generative Design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id ecaade2023_318
id ecaade2023_318
authors Imam, Chowdhury Ali, Othman, Hanin Abdel Salam and Çapunaman, Özgüç Bertug
year 2023
title Robotic Plaster Carving: Formalizing subtractive detailing of plaster surfaces for construction and crafts
doi https://doi.org/10.52842/conf.ecaade.2023.1.397
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 397–406
summary Plaster has been a fundamental material in numerous interior and exterior applications in architectural construction due to its fire-resistant properties and capabilities for intricate detailing. Moreover, prior to the widespread adoption of computer-aided design tools, plaster played a crucial role in historic preservation and architectural education (Mankouche & Schulte, 2012). While the use of decorative plaster elements in architectural construction has waned in popularity, the renewed interest in plaster within the context of advanced robotic fabrication offers a compelling basis for research. This paper presents an investigation into robotic plaster carving for adding detail and texture to plaster surfaces. Within the scope of this study, we identify and systematically examine various fabrication and material parameters for emergent geometries and fabrication defects, subsequently formalizing this robotic workflow for diverse applications in construction and crafts. Among these parameters, we primarily concentrate on toolpath geometry, tool orientation, carving speed, carving profile, and aggregation of carving strokes. Through this bottom-up approach, our objective is to enhance the understanding of tool-material interaction during the fabrication process and achieve improved control over the resulting artifact. Building on these insights, we demonstrate how the proposed robotic plaster carving workflow can be employed for subtractive surface detailing in architectural construction and digital crafts.
keywords Robotic Fabrication, Plaster Carving, Surface Detailing, Digital Craft
series eCAADe
email
last changed 2023/12/10 10:49

_id acadia12_15
id acadia12_15
authors Johnson, Jason Kelly; Cabrinha, Mark; Steinfeld, Kyle
year 2012
title Synthetic Digital Ecologies
doi https://doi.org/10.52842/conf.acadia.2012.015
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 15-17
summary Why use the terms synthetic and ecology in the context of a conference dedicated to the field of digital architecture, computation and fabrication? How do we begin to unpack the synthetic union of diverse elements, processes, collaborators, and code underlying any single contemporary design or research project? What could our field gain by interrogating these diverse ecologies? What are the relationships and interactions between our design processes, including our various tools and techniques, and the multiple environments with which we routinely work, collaborate and make? It is these questions and more that we hope to address at this year’s “Synthetic Digital Ecologies” conference. A quick scan of the papers and projects that will be presented at ACADIA reveals an extraordinary ecology of experimental research that emerged by working between messy labs, studios, workshops, hacker spaces and the like. In many ways today’s so-called “digital architects” do not feel compelled to distinguish between what is digitally designed and what is not. They are leading the way through a promiscuous and synthetic mixing of skill sets, of pens and paper, hardware and software, electronics and g-code. In a single research project these designers might collaborate with a computer scientist, a robotics expert and a glass blower, and in many cases they might even attempt to do all of these things themselves. It was with this in mind that we put forth an international call inviting, “… architects, fabricators, engineers, media artists, technologists, software developers, hackers and others in related fields of inquiry …” to submit papers and projects for this year’s conference. This year the proceedings have been organized into twelve synthetic categories based around the potential for diverse research topics to inform new and unexpected conversations. Instead of organizing peer-reviewed papers and projects through their formal characteristics, we were interested in forming new synthetic categories by curating unexpected juxtapositions. This ecology of ideas and research was meant to provoke and inspire new ways of thinking, making, building and collaborating.
series ACADIA
type introduction
email
last changed 2022/06/07 07:52

_id acadia12_000
id acadia12_000
authors Johnson, Jason; Cabrina, Mark and Steinfeld, Kyle (eds.)
year 2012
title ACADIA 12: Synthetic Digital Ecologies
doi https://doi.org/10.52842/conf.acadia.2012
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), 588p.
summary Why use the terms synthetic and ecology in the context of a conference dedicated to the field of digital architecture, computation and fabrication? How do we begin to unpack the synthetic union of diverse elements, processes, collaborators, and code underlying any single contemporary design or research project? What could our field gain by interrogating these diverse ecologies? What are the relationships and interactions between our design processes, including our various tools and techniques, and the multiple environments with which we routinely work, collaborate and make? It is these questions and more that we hope to address at this year’s “Synthetic Digital Ecologies” conference. A quick scan of the papers and projects that will be presented at ACADIA reveals an extraordinary ecology of experimental research that emerged by working between messy labs, studios, workshops, hacker spaces and the like. In many ways today’s so-called “digital architects” do not feel compelled to distinguish between what is digitally designed and what is not. They are leading the way through a promiscuous and synthetic mixing of skill sets, of pens and paper, hardware and software, electronics and g-code. In a single research project these designers might collaborate with a computer scientist, a robotics expert and a glass blower, and in many cases they might even attempt to do all of these things themselves. It was with this in mind that we put forth an international call inviting, “... architects, fabricators, engineers, media artists, technologists, software developers, hackers and others in related fields of inquiry ...” to submit papers and projects for this year’s conference. This year the proceedings have been organized into twelve synthetic categories based around the potential for diverse research topics to inform new and unexpected conversations. Instead of organizing peer-reviewed papers and projects through their formal characteristics, we were interested in forming new synthetic categories by curating unexpected juxtapositions. This ecology of ideas and research was meant to provoke and inspire new ways of thinking, making, building and collaborating.
series ACADIA
email
last changed 2022/06/07 07:49

_id ecaade2012_95
id ecaade2012_95
authors Ladurner, Georg; Gabler, Markus; Menges, Achim; Knippers, Jan
year 2012
title Interactive Form-Finding for Biomimetic Fibre Structures: Development of a Computational Design Tool and Physical Fabrication Technique Based on the Biological Structure of the Lichen
doi https://doi.org/10.52842/conf.ecaade.2012.2.519
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 519-529
summary This contribution shows a biomimetic approach to design and produce fibrous structural elements derived from the morphology of the biologic archetype ‘the lichen’. The physical form fi nding strategy allows for a novel self-organised reinforcement for fibrous composite systems. A computational design tool has been developed, based on the fi ndings of various physical models. The digital device allows for shape control and therefore an interaction to and manipulation of the fabrication process. Since the form fi nding algorithms of the tool are based on physical experiments,every geometry is derived through the program and has its counterpart in production. For example: the fibre density in the model can be adjusted which leads to different geometries. In production the chosen denseness is utilised, thus, the production yields automatically to the desired load-optimized geometry found in the form-finding tool.
wos WOS:000330320600055
keywords Biomimetics; Form-finding; Self-organization; Emergence; Fibre structures
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2012_316
id ecaade2012_316
authors Pena de Leon, Alexander
year 2012
title Two Case-Studies of Freeform-Facade Rationalization
doi https://doi.org/10.52842/conf.ecaade.2012.2.501
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 501-509
summary This paper will demonstrate two effective facade rationalisation patterns developed at Gehry Technologies for mitigating the tradeoffs between project constructability constraints vs. project aesthetic constraints. The two Case-Studies will present, fi rstly a method for dealing with large amounts of component instantiations and second with the economical delivery of complex project geometry through panelling. Both projects use design technology as a strategy for the integration of specialized knowledge and trades, through an effective use of information technology. The Case Studies will present the development of the Gridshell Digital Mock-Up of the Yas Island Marina Hotel in Abu Dhabi designed by Asymptote Architects and secondly the Museo Soumaya facade system in Mexico City designed by Fernando Romero LAR. This document will report the development process for obtaining relevant construction information, essential for the assembly of the facade systems by a third-party sub-contractor in support of the facade system coordination. The report concludes on the implementations of bespoke tools in support of the coordination and geometry description tasks. The tailored tool making process extends the parametric modelling system Digital Project™ in the design support role of obtaining aesthetically pleasing decompositions of the buildings Master Design Surface MDS into feasible constructible components.
wos WOS:000330320600053
keywords Facade Rationalization; Integration; Parametric Design; K-means Clustering
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2012_275
id ecaade2012_275
authors Sharaidin, Kamil; Burry, Jane; Salim, Flora
year 2012
title Integration of Digital Simulation Tools With Parametric Designs to Evaluate Kinetic Façades for Daylight Performance
doi https://doi.org/10.52842/conf.ecaade.2012.2.701
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 701-709
summary This research presents a solution for evaluation of kinetic façades system performance via experiences and lessons learnt from experiments. We bridge between architects and engineers to address limitations associated with incorporating performance criteria in the design of kinetic façades by integrating different simulation tools. The experiments focus on optimization of the daylight performance through the design and motion of kinetic façades using various integrated software. The research is developed using real time data feedback processed through various digital tools from three domains: (1) Architectural design, (2) day-lighting performance and (3) parametric design computation. From the evaluations, the paper demonstrates the analysis of kinetic motion for daylight optimization at the early design stage and suggests possible configurations for daylight performance.
wos WOS:000330320600075
keywords Kinetic façades; digital simulations; design considerations; early design stage
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2012_103
id ecaade2012_103
authors Thompson, Emine Mine
year 2012
title Cities and Landscapes. How do they merge in visualisation: An Overview
doi https://doi.org/10.52842/conf.ecaade.2012.1.145
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp.145-155
summary Tools and technologies are developing to help us to simulate the cities and landscapes for visualization, analytical and information modeling purposes. This paper, as well as offering an overview of the issues with regards to merging virtual city and landscape models in order to visualize the urban environment as a whole, is investigating various stakeholder requirements in relation to the Virtual NewcastleGateshead (VNG) project.
wos WOS:000330322400014
keywords 3D City Models; 3D Landscape Models; Virtual NewcastleGateshead; level of detail
series eCAADe
email
last changed 2022/06/07 07:58

_id sigradi2012_30
id sigradi2012_30
authors Angeluzzi, Gustavo; Hanns, Daniela Kutschat
year 2012
title Um levantamento de requisitos gerais para o desenvolvimento e posicionamento de DOOTERS – um aplicativo lúdico de listas de tarefas para iPhone [A survey of general requirements for developing and positioning DOOTERS - a to-do list application for iPhone]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 191-195
summary DOOTERS is a to-do list application for iPhone which entertains and motivates the user to get things done. It was developed based on requirements obtained trough: 1. the study of several personal information organizing methods (Covey, 1989; Allen, 2005; Foster, 2006); 2. answers to a task lists user focused questionnaire; 3. observation of to-do list users while creating lists and organizing tasks; 4. comparison of digital and non-digital task list media (paper, computer and mobile device); 5. analysis of profiles, behaviors and to-do list applications for iPhone. In this paper, the authors present the process of obtaining requirements for developing and positioning DOOTERS.
keywords information and interface design, requirements, to-do list application, iPhone, DOOTERS
series SIGRADI
email
last changed 2016/03/10 09:47

_id ascaad2012_022
id ascaad2012_022
authors Borham, Ahmad; Lobna Sherif and Osama Tolba
year 2012
title Resilient Rules - Culture and Computation in Traditional Built Environments
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 211-221
summary This study explores the influence of the socio-cultural rules, based upon Islamic jurisprudence (fiqh), on the complexity of the traditional built environment. This system of rules organized the societal activities, including decisions and activities related to design and construction in the Arab-Islamic city. Considering the city as a complex system, the study will try to show how this rules system made the Arab-Islamic city resilient and adaptive. Complex Adaptive Systems (CAS) are non-linear, self-organizing systems that have the ability to adapt to changing conditions through changing the rules that organize the random autonomous interactions between agents in the environment. This adaptation takes place through gradual gained experience that is reflected in the behavior of agents. This study attempts to interrelate different bodies of literature (Complexity/Chaos theory and built environment studies) in a single framework that aims to show that the socio-cultural rules system based on fiqh was a major factor in the resilience of the traditional built environment. These interrelations are illustrated using a graph called Computational Rules Graph (CRG). The CRG relates the traditional rules system to attributes of complex systems in a graph that can be modeled computationally. Traditional rules (codes of conduct) are proscriptive (non-deterministic), defining what is prohibited, thereby producing autonomous environments where agents had control over their immediate environment. In comparison, contemporary rules of the built environment (building codes) are prescriptive (deterministic), subscribing definite actions that need to take place by the stake-holder (agent) neglecting user needs and preferences. The application of these traditional rules system increased the agent’s autonomy and freedom of action. It also helped establish stronger social networks among agents, which resulted in a resilient environment.
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_022.pdf
last changed 2012/05/15 20:46

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_946213 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002