CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 509

_id ecaade2012_237
id ecaade2012_237
authors Zarzycki, Andrzej
year 2012
title Component-based Design Approach Using BIM
doi https://doi.org/10.52842/conf.ecaade.2012.1.067
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 67-76
summary The promising directions in current design practice and teaching relate to creativity with digital tools in the context of building information modelling (BIM), performance analysis, and simulations as well as digital materiality (computational simulations of materials) and dynamics-based behaviour. This line of research combines spatial design with building and material technology in search of effective and effi cient architecture. It reconstitutes questions of what to design by interrelating them with questions of how and why to design. This paper focuses on the appropriation of BIM tools for architectural curriculum teaching, from the design studio to building technology courses. It specifically focuses on BIM-based parametric modeling in discussing construction details, assemblies, and design explorations in the design studio context.
wos WOS:000330322400006
keywords BIM; building information modeling; parametric construction details; construction assemblies
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia12_199
id acadia12_199
authors Beorkrem, Chris ; Corte, Dan
year 2012
title Zero-Waste, Flat-Packed, Tri-Chord Truss: Continued Investigations of Structural Expression in Parametric Design"
doi https://doi.org/10.52842/conf.acadia.2012.199
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 199-208
summary The direct and rapid connections between scripting, modeling and prototyping allow for investigations of computation in fabrication. The manipulation of planar materials with two-dimensional CNC cuts can easily create complex and varied forms, volumes, and surfaces. However, the bulk of research on folding using CNC fabrication tools is focused upon surfaces, self-supporting walls and shell structures, which do not integrate well into more conventional building construction models. This paper attempts to explain the potential for using folding methodologies to develop structural members through a design-build process. Conventional building practice consists of the assembly of off-the-shelf parts. Many times, the plinth, skeleton, and skin are independently designed and fabricated, integrating multiple industries. Using this method of construction as an operative status quo, this investigation focused on a single structural component: the truss. Using folding methodologies and sheet steel to create a truss, this design investigation employed a recyclable and prolific building material to redefine the fabrication of a conventional structural member. The potential for using digital design and two-dimensional CNC fabrication tools in the design of a foldable truss from sheet steel is viable in the creation of a flat-packed, minimal waste structural member that can adapt to a variety of aesthetic and structural conditions. Applying new methods to a component of the conventional ‘kit of parts’ allowed for a novel investigation that recombines zero waste goals, flat-packing potential, structural expression and computational processes. This paper will expand (greatly) upon previous research into bi-chord truss designs, developing a tri-chord truss, which is parametrically linked to its structural moment diagram. The cross section of each truss is formed based on the loading condition for each beam. This truss design has been developed through a thorough series of analytical models and tests performed digitally, to scale and in full scale. The tri-chord truss is capable of resisting rotational failures well beyond the capacity of the bi-chord designs previously developed. The results are complex, and elegant expressions of structural logics embodied in a tightly constrained functional design.
keywords Parametric Design , Structural Expression , Material constraints
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2012_125
id caadria2012_125
authors Hanafin, S.; S. Datta, B. Rolfe, M. Hobbs
year 2012
title Envelope tesselation with stochastic rotation of 4-fold penttiles
doi https://doi.org/10.52842/conf.caadria.2012.253
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 253–262
summary The challenge of developing adaptive, responsive low-energy architecture requires new knowledge about the complex and dynamic interaction between envelope architecture and optimisation between competing environmental performance metrics. Advances in modelling the geometry of building envelopes and control technologies for adaptive buildings now permit the sophisticated evaluation of alternative envelope configurations for a set of performance criteria. This paper reports on a study of the parametric control of a building envelope based on moveable façade components, acting as a shading device to reduce thermal gain within the building. This is investigated using a novel pentagonal tiling strategy considering the component design, tessellation and control methods.
keywords Responsive envelopes; moveable façade components; parametric modelling; tiling geometry; stochastic rotation
series CAADRIA
email
last changed 2022/06/07 07:50

_id ascaad2012_002
id ascaad2012_002
authors Maher, Mary Lou
year 2012
title Designing CAAD for Creativity
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 7-9
summary Can we design CAAD to enhance creativity? CAAD is often considered a tool that assists architects in design by managing documentation and facilitating visualization. While there has been anecdotal concern that CAAD inhibits creativity, there is empirical evidence that CAAD can enhance creativity. The challenge is to develop principles for designing CAAD for creativity based on theoretical and empirical research on recognizing and enhancing individual and distributed creative cognition. This presentation describes three concepts that can lead to principles for designing CAAD to enhance human creativity: recognition, perception, and diversity. // 1. Recognition: A framework for recognizing and evaluating creative design, shown in Figure 1, is developed based on research in psychology and design science that includes novelty, value, and surprise. This framework provides a basis for comparing and evaluating the impact of CAAD on creativity. 2. Perception: Perception affects cognition and therefore interaction design is a critical component of designing CAAD for creativity. The results of an empirical study, shown in Figure 2, using a protocol analysis find that changing perception to include tangible user interfaces has a positive effect on creative cognition. These results lead to design principles for increasing perceptual modalities in future CAAD systems. 3. Diversity: A theoretical framework for social and collective intelligence in design show how an increase in cognitive diversity leads to an increase in innovation. Using this framework we can develop design processes that combine the benefits of individual, team, and crowdsourced design ideas, as shown in Figure 3.
series ASCAAD
type keynote paper
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_002.pdf
last changed 2012/05/15 20:46

_id sigradi2012_274
id sigradi2012_274
authors Maing, Minjung
year 2012
title Virtual Mock-up Simulation of Building Skins for Design to Fabrication Integration
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 467-470
summary With the growing demand for mock-up integration into late design and pre-construction phases, there is an increasing gap between the virtual design model of the building and the construction model. The gap is reinforced by lack of strong iterative exchanges between design and fabrication and consequently the construction of the building skin systems. This paper will discuss the research being conducted using virtual mock-ups as an earlier insertion of fabrication parameters into design process and presents a solution to bridge this gap. Studies of model integration will be introduced using component-based 3D-CAD modeling to link front and end user scenarios.
keywords virtual mock-up; fabrication; integration; building skin ; simulation
series SIGRADI
email
last changed 2016/03/10 09:55

_id acadia12_47
id acadia12_47
authors Aish, Robert ; Fisher, Al ; Joyce, Sam ; Marsh, Andrew
year 2012
title Progress Towards Multi-Criteria Design Optimisation Using Designscript With Smart Form, Robot Structural Analysis and Ecotect Building Performance Analysis"
doi https://doi.org/10.52842/conf.acadia.2012.047
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 47-56
summary Important progress towards the development of a system that enables multi-criteria design optimisation has recently been demonstrated during a research collaboration between Autodesk’s DesignScript development team, the University of Bath and the engineering consultancy Buro Happold. This involved integrating aspects of the Robot Structural Analysis application, aspects of the Ecotect building performance application and a specialist form finding solver called SMART Form (developed by Buro Happold) with DesignScript to create a single computation environment. This environment is intended for the generation and evaluation of building designs against both structural and building performance criteria, with the aim of expediently supporting computational optimisation and decision making processes that integrate across multiple design and engineering disciplines. A framework was developed to enable the integration of modeling environments with analysis and process control, based on the authors’ case studies and experience of applied performance driven design in practice. This more generalised approach (implemented in DesignScript) enables different designers and engineers to selectively configure geometry definition, form finding, analysis and simulation tools in an open-ended system without enforcing any predefined workflows or anticipating specific design strategies and allows for a full range of optimisation and decision making processes to be explored. This system has been demonstrated to practitioners during the Design Modeling Symposium, Berlin in 2011 and feedback from this has suggested further development.
keywords Design Optimisation , Scripting , Form Finding , Structural Analysis , Building Performance
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2012_057
id ecaade2012_057
authors Bielik, Martin ; Schneider, Sven ; König, Reinhard
year 2012
title Parametric Urban Patterns: Exploring and integrating graph-based spatial properties in parametric urban modelling
doi https://doi.org/10.52842/conf.ecaade.2012.1.701
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 701-708.
summary The article presents a graph-based spatial analysis toolset (“decoding spaces”components) which we have recently developed as an extension of the visual scripting language Grasshopper3D for Rhino. These tools directly integrate spatial analysis methods into CAD design software which can have a signifi cant effect on current design workfl ows. However,grasshopper doesn’t only enable the results of analyses to be used in the standard Rhino modelling environment. It also makes it possible to integrate spatial analysis into a parametric design approach as discussed in this paper. The functionality of this toolset is demonstrated using a simple urban design scenario where we introduce the idea of parametric patterns based on graph-measures.
wos WOS:000330322400074
keywords Spatial analysis; parametric modelling; urban layout; design process; decoding spaces
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2012_317
id ecaade2012_317
authors Boeykens, Stefan ; Himpe, Caroline ; Martens, Bob
year 2012
title A Case Study of Using BIM in Historical Reconstruction: The Vinohrady synagogue in Prague
doi https://doi.org/10.52842/conf.ecaade.2012.1.729
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 729-737.
summary This article refl ects on the digital reconstruction of the Vinohrady Synagogue in Prague, which was demolished in 1951. Based on an international collaboration through the Erasmus program, expertise derived from other Viennese synagogue reconstructions at TU Vienna was combined with a resource organization methodology developed at KU Leuven. The reconstruction process is carried out using BIM software, which poses some particular attention on the software methodology and model structure, but at the same time illustrates the added value of a BIM approach, when comparing with more traditional CAD modelling systematics. Of particular interest is the approach for modelling complex geometry, integrating with more traditional 2D documents and for visualizing reconstruction assumptions within the 3D model representation.
wos WOS:000330322400077
keywords Virtual reconstruction; destroyed synagogue; 3D-modeling; BIM; urban context
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia12_139
id acadia12_139
authors Erioli, Alessio ; Zomparelli, Alessandro
year 2012
title Emergent Reefs
doi https://doi.org/10.52842/conf.acadia.2012.139
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 139-148
summary The Emergent Reefs project thrives on the potential that emerge from a coherent utilization of the environment’s inherent ecological structure for its own transformation and evolution, using an approach based on digitally simulated ecosystems and sparkled by the possibilities and potential of large-scale 3D printing technology. Considering tourism as an inevitable vector of environmental change, the project aims to direct its potential and economic resources towards a positive transformation, providing a material substrate for the human-marine ecosystem integration with the realization of spaces for an underwater sculpture exhibition. Such structures will also provide a pattern of cavities which, expanding the gradient of microenvironmental conditions, break the existing homogeneity in favor of systemic heterogeneity, providing the spatial and material preconditions for the repopulation of marine biodiversity. Starting from a digital simulation of a synthetic local ecosystem, a generative technique based on multi-agent systems and continuous cellular automata (put into practice from the theoretical premises in Alan Turing’s paper “The Chemical basis of Morphogenesis” through reaction-diffusion simulation) is implemented in a voxel field at several scales giving the project a twofold quality: the implementation of reaction diffusion generative strategy within a non-isotropic 3-dimensional field and integration with the large-scale 3D printing fabrication system patented by D-Shape®. Out of these assumptions and in the intent of exploiting the expressive and tectonic potential of such technology, the project has been tackled exploring voxel-based generative strategies. Working with a discrete lattice eases the simulation of complex systems and processes across multiple scales (including non-linear simulations such as Computational Fluid-Dynamics) starting from local interactions using, for instance, algorithms based on cellular automata, which then can be translated directly to the physical production system. The purpose of Emergent-Reefs is to establish, through strategies based on computational design tools and machine-based fabrication, seamless relationships between three different aspects of the architectural process: generation, simulation and construction, which in the case of the used technology can be specified as guided growth.
keywords emergence , reef , underwater , 3D printing , ecology , ecosystem , CFD , agency , architecture , tourism , culture , Open Source
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id caadria2012_036
id caadria2012_036
authors Kaushik, Vignesh Srinivas and Patrick Janssen
year 2012
title Multi-criteria evolutionary optimisation of building enveloped during conceptual stages of design
doi https://doi.org/10.52842/conf.caadria.2012.497
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 497–506
summary This paper focuses on using evolutionary algorithms during conceptual stages of design process for multi-criteria optimisation of building envelopes. An experiment is carried out in optimising a panelled building envelope. The design scenario for the experiment is based on the scenario described in Shea et al. (2006) for the building envelope of the Media Centre Building in Paris. However, in their research, the optimisation process only allowed panel configuration to be optimised. In this paper, the task is to approach the optimisation of the envelope of the same building, assuming it to be in the early phases of the design process. The space of possible solutions is therefore assumed to be much wider, and as a result both external building form and internal layout of functional activities are allowed to vary. The performance intent of the experiment remains the same as that of Shea et al. (2006), which was to maximise daylight and minimise afternoon direct sun hours in the building at certain specific locations.
keywords Multi-criteria optimisation; building envelopes; conceptual stages of design evolutionary algorithms; parametric design
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2012_102
id caadria2012_102
authors Manahl, Markus; Heimo Schimek, Emmanuel Ruffo Calderon Dominguez and Albert Wiltsche
year 2012
title Ornamental discretisation of free-form surfaces: Developing digital tools to integrate design rationalisation with the form finding process
doi https://doi.org/10.52842/conf.caadria.2012.347
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 347–356
summary The adoption of digital planning methods has given rise to an unprecedented formal freedom in architectural design. Free-form shapes enjoy considerable popularity in architectural production today. However, these shapes prove to be notoriously hard to fabricate. This paper reports on an ongoing research project investigating the approximation of continuous double-curved surfaces by discrete meshes consisting solely of planar facets, which can be constructed efficiently by using standardised, mass-produced building materials. We introduce our geometrical approach, which is based on the intersection of tangent planes to the surface, and present the digital tools we conceived to integrate the processes of design rationalisation and form-finding.
keywords Digital tool-making; parametric design; free-form surfaces; design rationalisation; planar discretisation
series CAADRIA
email
last changed 2022/06/07 07:59

_id ijac201210408
id ijac201210408
authors Manahl, Markus; Milena Stavric, Albert Wiltsche
year 2012
title Ornamental Discretisation of Free-form Surfaces
source International Journal of Architectural Computing vol. 10 - no. 4, 595-612
summary The adoption of digital planning methods has given rise to an unprecedented formal freedom in architectural design. Free-form shapes enjoy considerable popularity in architectural production today. However, these shapes prove to be notoriously hard to fabricate. In the course of a funded research project we investigated the approximation of continuous double-curved surfaces by discrete meshes consisting solely of planar facets, which can be fabricated efficiently using standardised, mass-produced building materials.We introduce our geometrical approach, which is based on the intersection of tangent planes to the surface, and present the digital tools we conceived to integrate the processes of design rationalisation and form-finding.
series journal
last changed 2019/05/24 09:55

_id caadria2012_074
id caadria2012_074
authors Markova, Stanimira and Andreas Dieckmann
year 2012
title An IFC based design check approach for the optimisation of material efficiency in the built environment
doi https://doi.org/10.52842/conf.caadria.2012.275
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 275–284
summary Compared to other industries, the built environment is still the largest and one of the least efficient consumers of resources. Existing measures and procedures for resource recovery and reuse are focused on the demolition phase, when the composition of materials and structures is mostly unknown and hard to be analysed. Therefore, these measures are somewhat inefficient for overall high-rate material recovery. The enhancement of the integrated semantic planning process by the introduction of the IFC unified data standard and BIM technology is a first-time opportunity to track, analyse, document and simulate all relevant players, parameters and processes with an impact on the resource and material efficiency through the entire life cycle of a building in the design phase of a building project. The presented work explores the potential of IFC to serve as a framework for achieving a higher material efficiency in the built environment. A proposed design check approach for the simulation and optimisation of material efficiency in a building over its life cycle is based on a system of key parameters and actions organised in logic trees. The parameters and actions are translated into IFC objects. Additionally required IFC objects and properties are identified and described.
keywords BIM; IFC; integrative design; material efficiency design
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2012_015
id ecaade2012_015
authors Schneider, Sven ; König, Reinhard
year 2012
title Exploring the Generative Potential of Isovist Fields: The Evolutionary Generation of Urban Layouts based on Isovist Field Properties
doi https://doi.org/10.52842/conf.ecaade.2012.1.355
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 355-363
summary Isovists and isovist fi elds can be used to numerically capture the visual properties of spatial confi gurations (e.g. fl oor plans or urban layouts). To a certain degree these properties allow one to make statements about how spaces affect people. The question that serves as the starting point of this study is to examine whether spatial confi gurations ca n generated on the basis of these properties. This question is explored using an experimental approach for the computer-based generation of two-dimensional urban layouts. The spatial arrangements of two-dimensional elements (building-footprints) within a given boundary is optimised in terms of the desired isovist fi eld properties by means of an evolutionary strategy. The paper presents the results of this optimisation and discusses the advantages of this method compared with pattern books as commonly used in architecture.
wos WOS:000330322400036
keywords Spatial Configuration; Generative Design; Evolutionary Strategy; Isovists; Visibility Based Design
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2012_256
id ecaade2012_256
authors Steinfeld, Kyle ; Schiavon, Stefano ; Moon, Dustin
year 2012
title Open Graphic Evaluative Frameworks: A climate analysis tool based on an open web-based weather data visualization platform
doi https://doi.org/10.52842/conf.ecaade.2012.1.675
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 675-682.
summary Buildings are the world’s largest consumer of energy, accounting for 34% of total use. In the United States residential and commercial buildings are responsible for 72% of electricity use and 40% of CO2 emissions. In order to reduce the impact of buildings on the environment and to utilize freely available environmental resources, building design must be based on site climate conditions, e.g. solar radiation and air temperature. This paper presents a web-based framework that enables the production of user-generated visualizations of weather data. The Open Graphic Evaluative Framework (Open GEF) was developed using the Graphic Evaluative Frameworks (GEF) approach to authoring design-assistant software, which is more appropriate than the now dominant ‘generalized design tool’ approach when supporting design processes that require a high level of calibration to the cyclic and acyclic shifting of environmental resources. Building on previous work that outlined the theoretical underpinnings and basic methodology of the GEF approach, technical specifi cations are presented here for the implementation of a Java driven web-based visualization platform. By enabling more nuanced and customizable views of weather data, the software offers designers an exploratory framework rather than a highly directed tool. Open GEF facilitates design processes more highly calibrated to climatic fl ows that could reduce the overall impact of buildings in the environment.
wos WOS:000330322400071
keywords Visualization; Sustainable architectural design; Climate analysis; Weather data
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2012_276
id ecaade2012_276
authors Trento, Armando ; Fioravanti, Antonio ; Simeone, Davide
year 2012
title Building-Use Knowledge Representation for Architectural Design: An ontology-based implementation
doi https://doi.org/10.52842/conf.ecaade.2012.1.683
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 683-689.
summary During building design processes, designers have to predict and evaluate future building performances oriented to its intended use and users. Current BIM and IFC technologies support designers allowing data exchange and information interoperability but, since their lack in semantics, they don’t provide any knowledge implementation about how the designed building will be actually used and how people will interact with it. The research described in this paper aims to overcome this shortcoming by developing a new modelling approach, oriented to representation and management of knowledge related to future building use and users. The proposed representation model is based on an already accepted ontology-based structure and will make this large amount of knowledge accessible and usable by designers during architectural design processes, in order to enhance the final quality of the design product.
wos WOS:000330322400072
keywords Design Knowledge Representation and Management; Ontology-based Systems; Building Use Process; Building Performances prediction and evaluation
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2012_124
id ecaade2012_124
authors Wierzbicki-Neagu, Madalina ; Silva, Clarence Wilfred de
year 2012
title Application of Fuzzy Logic for Optimizing Foldable Freeform Geometries: An example of a practical application – a foldable window shade
doi https://doi.org/10.52842/conf.ecaade.2012.1.709
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 709-717.
summary This paper concerns the current discourse on computer-aided design tools for architectural design. There are drawbacks of purely analytic design tools which hinder a system-level, end-effect oriented ideation. For instance, most freeform quadrilateral meshes are fully constrained and therefore not capable of folding. They can only fold under special circumstances – when their geometry satisfi es the conditions of over-constrained kinematics. However, such intent of folding cannot be captured using simple modeling based on parameters and constraints. Furthermore, algorithmization of mesh kinematics using formulas is infl exible, it cannot handle topological variations, and it inhibits the interactive control of the model. In this paper, a fuzzy logic algorithm which uses a goal-oriented, human-like reasoning to control the parametric model is proposed. The algorithm applies easily observable behaviors of the geometry to adjust the selected patches until the entire shell can be folded. The algorithm relies on designer-observable characteristics of motion rather than on formulaic representations. Such approach directs the designers’ focus on the desired outcome while avoiding the drawbacks of analytic modeling of complex kinematics.
wos WOS:000330322400075
keywords Folding structures; fuzzy logic; intent-driven design; freeform quadrilateral mesh
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2012_144
id ecaade2012_144
authors Wurzer, Gabriel ; Pak, Burak
year 2012
title Lawnmower: Designing a web-based visual programming environment that generates code to help students learn textual programming
doi https://doi.org/10.52842/conf.ecaade.2012.1.655
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 655-663.
summary Learning programming can be a challenging task for design students, especially when code is to be entered in textual form. Visual programming languages, such as McNeil’s Grasshopper, have helped students to engage in scripting without having to deal with lower level syntax that is often hindering them in expressing their thoughts. However, the problem with learning how to program textually is only postponed: When switching to a new platform, students may be forced to learn coding from scratch, and, even worse, to do so in a textual environment that is yet unfamiliar. Our idea is simple: Connect visual programming with textual coding, using code-generation as means. Using this approach enables students to think visually, and see the results textually. An added bonus is the possibility to use debugging, a feature that is yet lacking from Grasshopper. By this way, our language aims to enable students to gradually move from visual to textual programming in a comfortable manner.
wos WOS:000330322400069
keywords Visual Programming; Structured Code; Teaching; Code Generation
series eCAADe
email
last changed 2022/06/07 07:57

_id sigradi2012_65
id sigradi2012_65
authors Garagnani, Simone; Mingucci, Roberto; Luciani, Stefano Cinti
year 2012
title Collaborative design for existing architecture: the Building Information Modeling as a frontier for coordinated process
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 96-100
summary Building Information Modeling (BIM) has been considered as an emerging collaborative strategy since its introduction, meant for AEC industry and heading to benefits in terms of costs and design quality during the whole building lifecycle. BIM approach, originally developed for new projects, can be successfully applied to existing contexts using TLS surveys to collect point clouds and turn them later into smart digital models, taking advantage of new technologies and methods. This paper addresses these themes paying attention to issues and opportunities, considering BIM as a paramount tool to collect and manage data destined to multiple disciplines
keywords BIM; laser scanner; AEC digital tools; architectural modeling; collaborative design
series SIGRADI
email
last changed 2016/03/10 09:52

_id sigradi2012_153
id sigradi2012_153
authors Kaufmann, Stefan; Petzold, Frank
year 2012
title Cybernetic models in building fabrication. A three stage training approach to digital fabrication in architecture
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 243-245
summary In the time since European architects first began using computers in the building design process, the digital revolution has transformed how architects use planning tools completely. Today, digital tools are an indispensable part of planning practice. Besides a wide variety of digital modeling tools, parametric tools offer architects diverse options for generating cybernetic building models as BIM-models or homeostatic parametric geometry models. Cybernetic models help us to describe the buildings as a system and can improve planning efficiency. The aim of planning is to construct or fabricate an end result. The integration of digital fabrication methods in the digital chain is a fundamental goal if architects are to benefit from the progressive development of computer controlled machine tools. Fabrication integrated digital models can automate the planning process up to the production stage and enable the efficient fabrication of building components. The increased efficiency of planning and fabrication has facilitated a growing proliferation of buildings of increasing geometric complexity. Computers can open a door to the realization of new forms, spaces and construction systems to architects that understand the principles of fabrication-integrated cybernetic modeling.
keywords didactic; parametric design; digital fabrication; CIM;
series SIGRADI
email
last changed 2016/03/10 09:53

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 25HOMELOGIN (you are user _anon_309439 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002