CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 69

_id acadia12_97
id acadia12_97
authors Lilley, Brian ; Hudson, Roland ; Plucknett, Kevin ; Macdonald, Rory ; Cheng, Nancy Yen-Wen ; Nielsen, Stig Anton ; Nouska, Olympia ; Grinbergs, Monika ; Andematten, Stephen ; Baumgardner, Kyle ; Blackman, Clayton ; Kennedy, Matthew ; Chatinthu, Monthira ; Tianchen, Dai ; Sheng-Fu, Chen
year 2012
title Ceramic Perspiration: Multi-Scalar Development of Ceramic Material
doi https://doi.org/10.52842/conf.acadia.2012.097
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 97-108
summary Ceramic building material is a useful passive modulator of the environment. The subject area is based on traditional cultural and material knowledge of clay properties: from amphora to rammed earth building; and ranges to present uses: from desiccants and space shuttle tile patterns to bio-ceramics. The primary consideration is to control material density and porosity in a tile component, in response to specific environmental conditions. This depends on a number of key physical principles: the ability of the material to absorb thermal energy, the ability to absorb and then ‘wick’ moisture within the pore structure, and the decrement factor or ‘time lag’ of the effect. The interplay between these properties point to the importance of directionality in the porous microstructure, at the boundary layer. Material characteristics have been investigated in the laboratory at a micron scale and in the ceramics workshop at full scale, with some interplay between the two. Recent work done on monitoring has led to the development of software tools that allow feedback (approaching real time)- a visual representation of the dynamic thermal and hygrometric properties involved.
keywords Synthetic tectonics , composite materials , smart assemblies , emerging material processes , Responsive environments , sensing , real-time computation , feedback loops , Information Visualization
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id acadia12_79
id acadia12_79
authors Nicholas, Paul ; Tamke, Martin ; Thomsen, Matte Ramsgard ; Jungjohann, Hauke ; Markov, Ivan
year 2012
title Graded Territories: Towards the Design, Specification and Simulation of Materially Graded Bending Active Structures"
doi https://doi.org/10.52842/conf.acadia.2012.079
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 79-86
summary The ability to make materials with bespoke behavior affords new perspectives on incorporating material properties within the design process not available through natural materials. This paper reports the design and assembly of two bending-active, fibre-reinforced composite structures. Within these structures, the property of bending is activated and varied through bespoke material means so as to match a desired form. Within the architectural design process, formal control depends upon design approaches for material specification and simulation that consider behavior at the level of the material element as well as the structure. We describe an evolving approach to material specification and simulation, and highlight the digital and material considerations that frame the process.
keywords graded materials , composite materials , bending-active structures , material properties , material behaviour , simulation , material specification , performance-based design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ecaade2012_93
id ecaade2012_93
authors Nicholas, Paul; Tamke, Martin
year 2012
title Composite Territories: Engaging a Bespoke Material Practice in Digitally Designed Materials
doi https://doi.org/10.52842/conf.ecaade.2012.2.691
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 691-699
summary Today, material performance is regarded as one of the richest sources of innovation. Accordingly, architecture is shifting to practices by which the computational generation of form is directly driven by material characteristics. At the same time, there is a growing technological means for the varied composition of material, an extension of the digital chain that foregrounds a new need to engage materials at multiple scales within the design process. Recognising that the process of making materials affords perspectives not available with found materials, this paper reports the design and assembly of the fi bre reinforced composite structure Composite Territories, in which the property of bending is activated and varied so as to match solely through material means a desired form. This case study demonstrates how one might extend the geometric model so that it is able to engage and reconcile physical parameters that occur at different scales.
wos WOS:000330320600074
keywords Composites; Material properties; Multi-scale
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia20_58
id acadia20_58
authors Yogiaman, Christine; P. Pambudi, Christyasto; Kumar Jayashankar, Dhileep; Chia, Peizhi; Quek, Yuhan; Tracy, Kenneth
year 2020
title Knitted Bio-Material Assembly
doi https://doi.org/10.52842/conf.acadia.2020.1.058
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 58-65.
summary Bio-fabrication of materials opens up novel opportunities for designers to innovate the functional possibilities of the designed output through variations in fabrication processes. Literature has seen an increased interest in this emerging material design practice that has recently been defined as “growing design” (Myers 2012). Our research work expands on the definition of this emerging material design practice to engage digital design and fabrication procedures in the intersection of biology, craft, and design. The aim is to cultivate a new material type—knitted textile mycelium composite that has the capability to augment final material composite properties and provide formal freedom to designers. 3D CNC knitting enables the fabrication of knitted textile that has control over the specificity of each knit loop, opening up design possibilities to grade functional differentiation when the knitted textile is used as a sacrificial mold for the cultivation of mycelium composite. The research presents various design-to-fabrication workflows that facilitate working with the indeterminate nature of 3D-knitted membrane and the dynamic nature of cultivating mycelium composite growth. Two architecture-scale prototype units were fabricated and cultivated, demonstrating the range of design freedom for this new material type.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2012_95
id ecaade2012_95
authors Ladurner, Georg; Gabler, Markus; Menges, Achim; Knippers, Jan
year 2012
title Interactive Form-Finding for Biomimetic Fibre Structures: Development of a Computational Design Tool and Physical Fabrication Technique Based on the Biological Structure of the Lichen
doi https://doi.org/10.52842/conf.ecaade.2012.2.519
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 519-529
summary This contribution shows a biomimetic approach to design and produce fibrous structural elements derived from the morphology of the biologic archetype ‘the lichen’. The physical form fi nding strategy allows for a novel self-organised reinforcement for fibrous composite systems. A computational design tool has been developed, based on the fi ndings of various physical models. The digital device allows for shape control and therefore an interaction to and manipulation of the fabrication process. Since the form fi nding algorithms of the tool are based on physical experiments,every geometry is derived through the program and has its counterpart in production. For example: the fibre density in the model can be adjusted which leads to different geometries. In production the chosen denseness is utilised, thus, the production yields automatically to the desired load-optimized geometry found in the form-finding tool.
wos WOS:000330320600055
keywords Biomimetics; Form-finding; Self-organization; Emergence; Fibre structures
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2012_058
id caadria2012_058
authors Matthews, Linda and Gavin Perin
year 2012
title Materialising the pixel: A productive synergy
doi https://doi.org/10.52842/conf.caadria.2012.475
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 475–484
summary The composite photoreceptive field of the human eye receives photons emitted from a source and converts this energy into image information within the brain. The internal mechanisms of the contemporary camera imaging technologies represent yet another in a long history of attempts to technically replicate this procedure. The critical difference between the capacity of the human eye to receive quanta events or photons and that of a camera transmitting to a digital display device, rests in how much of the original signal can be recovered. This paper aims to show how the ‘information deficit’ associated with this technological conversion can be enhanced by the deliberate exploitation and re-arrangement of the camera’s image sensor mechanism. The paper will discuss how the mapping of pixel grid geometries and colour filter array patterns at the vastly increased scale of building façades, imparts a materiality to urban form that modifies the visibility and performance of the corresponding virtual screen image. The exploration of the material adaptation of pixel geometries leads to a new technique that extends the working gamut of pixel-based RGB colour space and both establishes an index to develop material performance criteria and modifies the limitations of traditional viewing technologies.
keywords Pixels; sensor; CCTV; imaging; array; façades
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2012_000
id ecaade2012_000
authors Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejdan, Dana (eds.)
year 2012
title Digital Physicality
doi https://doi.org/10.52842/conf.ecaade.2012.1
source Proceedings of the 30th International Conference on Education and research in Computer Aided Architectural Design in Europe - Volume 1 [ISBN 978-9-4912070-2-0], Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, 762 p.
summary Digital Physicality is the first volume of the conference proceedings of the 30th eCAADe conference, held from 12-14 september 2012 in Prague at the Faculty of Architecture of Czech Technical University in Prague. The companion volume is called Physical Digitality. Together, both volumes contain 154 papers that were submitted to this conference.Physicality means that digital models increasingly incorporate information and knowledge of the world. This extends beyond material and component databases of building materials, but involves time, construction knowledge, material properties, space logic, people behaviour, and so on. Digital models therefore, are as much about our understanding of the world as they are about design support. Physical is no longer the opposite part of digital models. Models and reality are partly digital and partly physical. The implication of this condition is not clear however, and it is necessary to investigate its potential. New strategies are necessary that acknowledge the synergetic qualities of the physical and the digital. This is not limited to our designs but it also influences the process, methods, and what or how we teach.The subdivision of papers in these volumes follow the distinction made in the conference theme. The papers in Digital Physicality have their orientation mainly in the digital realm, and reach towards the physical part. It has to be granted that this distinction is rather crude, because working from two extremes (digital versus physical) tends to ignore the arguably most interesting middle ground.
keywords Digital physicality; physical digitality
series eCAADe
email
last changed 2022/06/07 07:49

_id lasg_whitepapers_2019_367
id lasg_whitepapers_2019_367
authors Atelier Iris van Herpen
year 2019
title Exploring New Forms of Craft
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.367 - 392
summary Dutch fashion designer Iris van Herpen and Canadian architect Philip Beesley have been united by friendship and a mutual interest in esoteric, experimental craft since 2012. Together they collaborated on various dresses, techniques and materials, featured in six of Iris van Herpen's Couture collections. Since her first show in 2007, van Herpen has been preoccupied with inventing new forms and methods of sartorial expression by combining the most traditional and the most radical materials and garment construction methods into her unique aesthetic vision.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id caadria2012_132
id caadria2012_132
authors Baerlecken, Daniel and David Duncan
year 2012
title Junk: Design build studio
doi https://doi.org/10.52842/conf.caadria.2012.305
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 305–314
summary The paper presents a design build studio that investigates the role of waste as building material and develops a proposal for an installation that uses CAAD and CAM tools in combination with traditional fabrication tools to design and build an installation out of waste materials. The paper describes the concept development and the construction process through the help of computational tools. Recycling is in the process of becoming an integral part of sustainable architecture. However, there are very few digital design projects that use re-used or recycled materials in combination with their architectural and aesthetic qualities and potentials. The potential of such an investigation is explored within a design build studio. What is junk? What is a building material? What are the aesthetics of junk?
keywords Education in CAAD; digital fabrication and construction; practice-based and interdisciplinary CAAD; parametric modelling
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2012_280
id ecaade2012_280
authors Baerlecken, Daniel; Reitz, Judith; Duncan, David
year 2012
title Junk: Reuse of Waste Materials
doi https://doi.org/10.52842/conf.ecaade.2012.2.143
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 143-150
summary The paper presents a series of design build studio that investigate the role of waste as building material. The series develops proposals for constructions that use CAAD and CAM tools in combination with traditional fabrication tools to design and build an installation out of waste materials. The fi rst construction uses waste to create two installations that questions human consumption, The second project is a future project, that intends the use of waste as an actual building material. Recycling is in the process of becoming an integral part of sustainable architecture. However, there are very few digital design projects that use re-used or recycled materials in combination with their architectural and aesthetic qualities and potentials. The potential of such an investigation is explored within these design build studios. What is junk? What is a building material? What are the aesthetics of junk?
wos WOS:000330320600014
keywords Education in CAAD; digital fabrication and construction; practice-based and interdisciplinary CAAD; parametric modeling
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia12_199
id acadia12_199
authors Beorkrem, Chris ; Corte, Dan
year 2012
title Zero-Waste, Flat-Packed, Tri-Chord Truss: Continued Investigations of Structural Expression in Parametric Design"
doi https://doi.org/10.52842/conf.acadia.2012.199
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 199-208
summary The direct and rapid connections between scripting, modeling and prototyping allow for investigations of computation in fabrication. The manipulation of planar materials with two-dimensional CNC cuts can easily create complex and varied forms, volumes, and surfaces. However, the bulk of research on folding using CNC fabrication tools is focused upon surfaces, self-supporting walls and shell structures, which do not integrate well into more conventional building construction models. This paper attempts to explain the potential for using folding methodologies to develop structural members through a design-build process. Conventional building practice consists of the assembly of off-the-shelf parts. Many times, the plinth, skeleton, and skin are independently designed and fabricated, integrating multiple industries. Using this method of construction as an operative status quo, this investigation focused on a single structural component: the truss. Using folding methodologies and sheet steel to create a truss, this design investigation employed a recyclable and prolific building material to redefine the fabrication of a conventional structural member. The potential for using digital design and two-dimensional CNC fabrication tools in the design of a foldable truss from sheet steel is viable in the creation of a flat-packed, minimal waste structural member that can adapt to a variety of aesthetic and structural conditions. Applying new methods to a component of the conventional ‘kit of parts’ allowed for a novel investigation that recombines zero waste goals, flat-packing potential, structural expression and computational processes. This paper will expand (greatly) upon previous research into bi-chord truss designs, developing a tri-chord truss, which is parametrically linked to its structural moment diagram. The cross section of each truss is formed based on the loading condition for each beam. This truss design has been developed through a thorough series of analytical models and tests performed digitally, to scale and in full scale. The tri-chord truss is capable of resisting rotational failures well beyond the capacity of the bi-chord designs previously developed. The results are complex, and elegant expressions of structural logics embodied in a tightly constrained functional design.
keywords Parametric Design , Structural Expression , Material constraints
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ijac201210303
id ijac201210303
authors Bohnenberger, Sascha; Chin Koi Khoo, Daniel Davis, et al.
year 2012
title Sensing Material Systems - Novel Design Strategies
source International Journal of Architectural Computing vol. 10 - no. 3, 361-375
summary The development of new building materials has decisively influenced the progression of architecture through the link between built form and available material systems. The new generation of engineered materials are no exception. However, to fully utilise these materials in the design process, there is a need for designers to understand how these new materials perform. In this paper we propose a method for sensing and representing the response of materials to external stimuli, at the early design stage, to help the designer establish a material awareness. We present a novel approach for embedding capacitive sensors into material models in order to improve material performance of designs. The method was applied and tested during two workshops, both discussed in this paper. The outcome is a method for anticipating engineered material behaviour.
series journal
last changed 2019/05/24 09:55

_id ascaad2012_016
id ascaad2012_016
authors Bourbia, Fatiha ; Yasmina Bouchahm and Ouarda Mansouri
year 2012
title The Influence of Albedo on the Urban Microclimatic Street Canyon
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 159-169
summary In city, when temperatures run higher than those in suburban and rural areas, this generate a phenomenon called Urban Heat Island (UHI), this effect occurs, primarily because growing numbers of buildings have supplanted vegetation and trees. The main causes of the different microclimatic conditions in cities are linked among other parameters to urban geometry which influences incoming and outgoing radiations as well as surface material properties, such as color and texture. In hot climates the elevated surface temperatures of materials directly affect, not only the urban microclimate, but also thermal comfort conditions in urban open spaces. In order to evaluate the microclimate variation of urban street canyon compared to the variation of walls and ground surfaces materials, series of field simulation are used by software tool , Envi-met v3.0, in down town of Constantine, Algeria.
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_016.pdf
last changed 2012/05/15 20:46

_id sigradi2012_291
id sigradi2012_291
authors Braida, Frederico; Marques, Aline Calazans; Pedroso, Emmanuel Sá Resende; Lima, Fernando Tadeu de Araújo
year 2012
title O papel das impressoras 3D nas diversas etapas do projeto [O papel das impressoras 3D nas diversas etapas do projeto The 3D printer paper at various stages of project]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 580-583
summary This article aims to address the use of 3D printers in the stages of design, development and final presentation in projects of architecture and urbanism. To evaluate the performance of 3D printers, we emphasize in each of these stages of the project, the representational demands and cognitive processes involved as well as analytical categories taken as cost, running time, accuracy and level finish, the representation of materials, scale and size of three-dimensional models and possibilities for intervention in the models themselves.
keywords Impressoras 3D; Prototipagem rápida; Projeto; Fabricação Digital; Modelagem tridimensional
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2012_303
id ecaade2012_303
authors Cheng, Nancy Yen-wen
year 2012
title Shading With Folded Surfaces: Designing With Material, Visual and Digital Considerations
doi https://doi.org/10.52842/conf.ecaade.2012.2.613
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 613-620
summary This paper analyses a hybrid design approach; how physical and digital processes can inform each other in a multivalent design cycle. It describes the design of origami-inspired window shades, part of the Shaping Light project that explores how adjustable surface structures can modulate light levels and heat gain in response to the changing seasons. The screen uses sloped surfaces to diffuse light and create apertures that close when the screen is stretched and open when the screen is folded. The project complements digital methods for pattern proportioning and kinetic simulation with manual manipulation to generate 3D folding motifs and refi ne assemblies. Physical prototypes can shape digital refi nement by revealing visual and structural characteristics of materials, along with joint and production considerations. Physical models for simulating sunny and cloudy daylighting conditions provide a direct connection between spatial confi guration and visual effects. The paper concludes with guidelines for material-based digital-analog creation.
wos WOS:000330320600066
keywords Architectural design process; digital fabrication; shading devices; origami
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2012_304
id sigradi2012_304
authors Chiarella, Mauro; Alvarado, Rodrigo Garcia
year 2012
title Composiciones Plegadas. Propiedades espaciales y materiales (envolventes y componentes) [Folded Compositions. Spatial Properties and Materials (enclosures and components)]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 500-504
summary The folded compositions in architecture enable creatively rethink the methods and instruments of ideation and manufacturing. Displace conventional architectural graphic (Descriptive Geometry and Perspective) of autonomy and historical determinism that has characterized (obsessive stylistic control of the design object and spatial structure inherited under the canons of classical geometry). The material expression of these settings provides an important link between: the formal conceptualization, the digital geometric operation, its manufacturing and responsive review, similar to the design process used. At the same time reveals limitations of scale, materiality and design limitations, which condition the models implemented.
keywords Compositions Fold. Parametric Design. Digital Fabrication
series SIGRADI
email
last changed 2016/03/10 09:48

_id acadia12_109
id acadia12_109
authors Comodromos, Demetrios A ; Ellinger, Jefferson
year 2012
title Material Intensities
doi https://doi.org/10.52842/conf.acadia.2012.109
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 109-113
summary As host organizers of the Smartgeometry 2012 Conference, professors of Architecture, and as principals in design firms, our work aims to use as a productive resistance the notion of Material Intensity described below as both a foil and measure to current concepts of simulation and intensive modeling in architectural computation. The holding of SG 2012 aimed to stage this resistance in the form of workshop, round-table discussions, lectures and symposia, with the outcome attempting to define a new synthetic notion of material intensities in modes of architectural production. This paper aims to form the basis of a continued exploration and development of this work. In summary we focused on: 1-Intensive thinking as derived from the material sciences as an actual and philosophical framework that emphasizes qualitative attributes, which is likened to behavior, simulation, and dynamic modeling. Extensive attributes lead to analytical, representational and static modeling. 2-Material practices can also be formed and as a result of this method of thinking. As demonstrated by the glasswork of Evan Douglis, ‘paintings’ by Perry Hall—the managed complexity possible by working with materials during intensive states of change allow for scalar, morphological and performative shifts according to a designer’s criteria. 3- Although both are necessary and actually complement each other, architects need to ‘catch-up’ to intensive thinking in process and modeling strategies. Our methods rely on static modeling that yield often complicated frameworks and results, wherein accepting methods of dynamic modeling suggests the capacity to propose complex and nuanced relationships and frameworks.
keywords Material Intensities , Intensive Thinking , Material Practice
series ACADIA
type panel paper
email
last changed 2022/06/07 07:56

_id acadia23_v3_115
id acadia23_v3_115
authors Dade-Robertson, Martyn
year 2023
title Designing with Agential Matter
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary There have been, very broadly, three eras in the understanding of matter in design. The first, associated with an Aristotelian view of matter as inert and as a receptacle of form, has dominated many of the formalisms in Architectural Design from the Renaissance through to Modernism. The second, sometimes described as “new materialism” (Menges 2012), considers matter as active through design processes which work with materials’ inherent tendencies and capacities. This has led to now-familiar design methods, including Material Based Design Computation (Oxman 2009), and many experiments with active materials such as bilayer metals and hygromorphs. These materials can be programmed to respond to their environments and often take inspiration from biology. I want to suggest that we are entering a new era of understanding matter, which I refer to as the “agential era.”
series ACADIA
type keynote
email
last changed 2024/04/17 13:59

_id sigradi2012_177
id sigradi2012_177
authors Davis, Felecia
year 2012
title Form Active Translations: Knitted Textiles to 3D Printed Textiles
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 392-396
summary Material translation as a driver of innovation through craft, specifically the translation from machine knitted textiles to 3D rapidly prototyped textiles is discussed in this paper. If architects and designers can develop methods to translate existing textile structures and behaviors, then architects and designers can harness the vast extant knowledge base that goes into the design and fabrication of geometric textile structures and resultant behaviors to develop new materials and tools to construct active building systems that use the pliability of textiles to advantage.
keywords 3D Printed Textiles, 3D Printing, Architextiles, Knitted Materials
series SIGRADI
email
last changed 2016/03/10 09:50

_id acadia12_295
id acadia12_295
authors Dierichs, Karola ; Menges, Achim
year 2012
title Functionally Graded Aggregate Structures: Digital Additive Manufacturing With Designed Granulates
doi https://doi.org/10.52842/conf.acadia.2012.295
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 295-304
summary In recent years, loose granulates have come to be investigated as architectural systems in their own right. They are defined as large numbers of elements in loose contact, which continuously reconfigure into variant stable states. In nature they are observed in systems like sand or snow. In architecture, however, they were previously known only from rare vernacular examples and geoengineering projects, and are only now being researched for their innate material potentials. Their relevance for architecture lies in being entirely reconfigurable and in allowing for structures that are functionally graded on a macro level. Hence they are a very relevant yet unexplored field within architectural design. The research presented here is focused on the potential of working with designed granulates, which are aggregates where the individual particles are designed to accomplish a specific architectural effect. Combining these with the use of a computer-controlled emitter-head, the process of pouring these aggregate structures can function as an alternative form of 3D printing or digital additive manufacturing, which allows both for instant solidification, consequent reconfiguration, and graded material properties. In its first part, the paper introduces the field of research into aggregate architectures. In its second part, the focus is laid on designed aggregates, and an analytical design tool for the individual grains is discussed. The third part presents research conducted into the process of additive manufacturing with designed granulates. To conclude, further areas of investigation are outlined especially with regard to the development of the additive manufacturing of functionally graded architectural structures. The potentials of the methodologies developed in this process are shown through the fabrication of a full-scale installation. By integrating material, fabrication, and design constraints into a streamlined computational methodology, the process also serves as a model for a more intuitive production workflow, expanding the understanding of glass as a material with wide-ranging possibilities for a more performative architecture.
keywords Aggregate Architectures , Digital Additive Manufacturing , Functionally Graded Materials
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3HOMELOGIN (you are user _anon_217647 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002