CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 551

_id ecaade2012_95
id ecaade2012_95
authors Ladurner, Georg; Gabler, Markus; Menges, Achim; Knippers, Jan
year 2012
title Interactive Form-Finding for Biomimetic Fibre Structures: Development of a Computational Design Tool and Physical Fabrication Technique Based on the Biological Structure of the Lichen
doi https://doi.org/10.52842/conf.ecaade.2012.2.519
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 519-529
summary This contribution shows a biomimetic approach to design and produce fibrous structural elements derived from the morphology of the biologic archetype ‘the lichen’. The physical form fi nding strategy allows for a novel self-organised reinforcement for fibrous composite systems. A computational design tool has been developed, based on the fi ndings of various physical models. The digital device allows for shape control and therefore an interaction to and manipulation of the fabrication process. Since the form fi nding algorithms of the tool are based on physical experiments,every geometry is derived through the program and has its counterpart in production. For example: the fibre density in the model can be adjusted which leads to different geometries. In production the chosen denseness is utilised, thus, the production yields automatically to the desired load-optimized geometry found in the form-finding tool.
wos WOS:000330320600055
keywords Biomimetics; Form-finding; Self-organization; Emergence; Fibre structures
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia12_47
id acadia12_47
authors Aish, Robert ; Fisher, Al ; Joyce, Sam ; Marsh, Andrew
year 2012
title Progress Towards Multi-Criteria Design Optimisation Using Designscript With Smart Form, Robot Structural Analysis and Ecotect Building Performance Analysis"
doi https://doi.org/10.52842/conf.acadia.2012.047
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 47-56
summary Important progress towards the development of a system that enables multi-criteria design optimisation has recently been demonstrated during a research collaboration between Autodesk’s DesignScript development team, the University of Bath and the engineering consultancy Buro Happold. This involved integrating aspects of the Robot Structural Analysis application, aspects of the Ecotect building performance application and a specialist form finding solver called SMART Form (developed by Buro Happold) with DesignScript to create a single computation environment. This environment is intended for the generation and evaluation of building designs against both structural and building performance criteria, with the aim of expediently supporting computational optimisation and decision making processes that integrate across multiple design and engineering disciplines. A framework was developed to enable the integration of modeling environments with analysis and process control, based on the authors’ case studies and experience of applied performance driven design in practice. This more generalised approach (implemented in DesignScript) enables different designers and engineers to selectively configure geometry definition, form finding, analysis and simulation tools in an open-ended system without enforcing any predefined workflows or anticipating specific design strategies and allows for a full range of optimisation and decision making processes to be explored. This system has been demonstrated to practitioners during the Design Modeling Symposium, Berlin in 2011 and feedback from this has suggested further development.
keywords Design Optimisation , Scripting , Form Finding , Structural Analysis , Building Performance
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2012_131
id caadria2012_131
authors Ambrose, Michael A.
year 2012
title Digital conception(s): Architectural concepts of digital design and making
doi https://doi.org/10.52842/conf.caadria.2012.699
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 699–708
summary This paper presents an investigation of probative works of architectural thought and production executed in various forms of digital design and computational media. The applied design research focuses on an examination of the procedure or process constructed to both develop exact, precise digital models and constructed processes that result in design outcomes that cannot be pre-visioned. The changing position of the conceptualisation within the design process continually changes the relationship of the digital work and the computational framework. The work challenges one to interpret design processes of translation and transformation, through the continual oscillation between developed in pursuit of known results and constructed methods for making, in an effort to unravel the pretext of the singular point of view to reveal the intention of the design conception(s). The projects discussed here focus on relationships between the projection of space in architectural representation and the production of architectural form through complex geometries relative to discontinuities and the way in which they agitate and alter one another. DIGITAL conception(s) operate across three primary areas of research; animation, conceptualisation and fabrication. The work oscillates between digital and physical artefacts that intertwine digital/physical workflows while simultaneously engaging temporal issues of time based media through motion graphics and animate constructs.
keywords Design representation; visualisation; design theory
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2012_5
id ecaade2012_5
authors Biloria, Nimish; Chang, Jia-Rey
year 2012
title HyperCell: A Bio-Inspired Information Design Framework for Real-Time Adaptive Spatial Components
doi https://doi.org/10.52842/conf.ecaade.2012.2.573
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 573-581
summary Contemporary explorations within the evolutionary computational domain have been heavily instrumental in exploring biological processes of adaptation, growth and mutation. On the other hand a plethora of designers owing to the increasing sophistication in computer aided design software are equally enthused by the formal aspects of biological organisms and are thus meticulously involved in form driven design developments. This focus on top-down appearance and surface condition based design development under the banner of organic architecture in essence contributes to the growing misuse of bio-inspired design and the inherent meaning associated with the terminology. HyperCell, a bio-inspired information design framework for real-time adaptive spatial components, is an ongoing research, at Hyperbody, TU Delft, which focuses on extrapolating bottom-up generative design and real-time interaction based adaptive spatial re-use logics by understanding processes of adaptation, multi-performance and self sustenance in natural systems. Evolutionary developmental biology is considered as a theoretical basis for this research.
wos WOS:000330320600061
keywords Adaptation; Swarms; Evo-Devo; Simulation: Cellular component
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2012_141
id ecaade2012_141
authors Castro e Costa, Eduardo; Coutinho, Filipe; Duarte, José Pinto; Krüger, Mário
year 2012
title Modelling Alberti’s Column System: Generative Modelling and Digital Fabrication of Classical Architectural Elements
doi https://doi.org/10.52842/conf.ecaade.2012.2.469
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 469-477
summary The research presented further is part of the Digital Alberti research project, which aims to assess the infl uence of Leon Batista Alberti’s theory on Portuguese architecture, through the use of digital technologies. One of the project tasks implied computational and physical modelling of Alberti’s column system. Development of the computational model implied decoding Alberti’s treatise on architecture De re aedifi catoria into a consistent set of parameters and relationships, and then implementing these into generative parametric computer programs through visual programming language Grasshopper. This computational model is able to automatically generate physical models of classical columns according to Alberti’s canons. These digital models were then materialized through production of physical models, through rapid prototyping and digital fabrication technologies. Special attention is given to the CNC stone milling of a Corinthian capital.
wos WOS:000330320600049
keywords Alberti; De re aedifi catoria; Column system; Generative modelling; Digital fabrication
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia12_295
id acadia12_295
authors Dierichs, Karola ; Menges, Achim
year 2012
title Functionally Graded Aggregate Structures: Digital Additive Manufacturing With Designed Granulates
doi https://doi.org/10.52842/conf.acadia.2012.295
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 295-304
summary In recent years, loose granulates have come to be investigated as architectural systems in their own right. They are defined as large numbers of elements in loose contact, which continuously reconfigure into variant stable states. In nature they are observed in systems like sand or snow. In architecture, however, they were previously known only from rare vernacular examples and geoengineering projects, and are only now being researched for their innate material potentials. Their relevance for architecture lies in being entirely reconfigurable and in allowing for structures that are functionally graded on a macro level. Hence they are a very relevant yet unexplored field within architectural design. The research presented here is focused on the potential of working with designed granulates, which are aggregates where the individual particles are designed to accomplish a specific architectural effect. Combining these with the use of a computer-controlled emitter-head, the process of pouring these aggregate structures can function as an alternative form of 3D printing or digital additive manufacturing, which allows both for instant solidification, consequent reconfiguration, and graded material properties. In its first part, the paper introduces the field of research into aggregate architectures. In its second part, the focus is laid on designed aggregates, and an analytical design tool for the individual grains is discussed. The third part presents research conducted into the process of additive manufacturing with designed granulates. To conclude, further areas of investigation are outlined especially with regard to the development of the additive manufacturing of functionally graded architectural structures. The potentials of the methodologies developed in this process are shown through the fabrication of a full-scale installation. By integrating material, fabrication, and design constraints into a streamlined computational methodology, the process also serves as a model for a more intuitive production workflow, expanding the understanding of glass as a material with wide-ranging possibilities for a more performative architecture.
keywords Aggregate Architectures , Digital Additive Manufacturing , Functionally Graded Materials
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadia12_217
id acadia12_217
authors Dourtme, Stella ; Ernst, Claudia ; Garcia, Manuel Jimenez ; Garcia, Roberto
year 2012
title Digital Plaster: A Prototypical Design System
doi https://doi.org/10.52842/conf.acadia.2012.217
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 217-230
summary Contemporary computational design processes offer more potential in the design of complex formal architectural outcomes when material processes and fabrication techniques are incorporated within a digital working methodology. This paper discusses the research project “Digital Plaster” which show-cases the development of such an architectural machine that enabled a digital design process to incorporate fabrication and structural form finding processes within flexible formwork plaster casting by the means of digitally depicting a material ecology.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ascaad2012_003
id ascaad2012_003
authors Elseragy, Ahmed
year 2012
title Creative Design Between Representation and Simulation
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 11-12
summary Milestone figures of architecture all have their different views on what comes first, form or function. They also vary in their definitions of creativity. Apparently, creativity is very strongly related to ideas and how they can be generated. It is also correlated with the process of thinking and developing. Creative products, whether architectural or otherwise, and whether tangible or intangible, are originated from ‘good ideas’ (Elnokaly, Elseragy and Alsaadani, 2008). On one hand, not any idea, or any good idea, can be considered creative but, on the other hand, any creative result can be traced back to a good idea that initiated it in the beginning (Goldschmit and Tatsa, 2005). Creativity in literature, music and other forms of art is immeasurable and unbounded by constraints of physical reality. Musicians, painters and sculptors do not create within tight restrictions. They create what becomes their own mind’s intellectual property, and viewers or listeners are free to interpret these creations from whichever angle they choose. However, this is not the case with architects, whose creations and creative products are always bound with different physical constraints that may be related to the building location, social and cultural values related to the context, environmental performance and energy efficiency, and many more (Elnokaly, Elseragy and Alsaadani, 2008). Remarkably, over the last three decades computers have dominated in almost all areas of design, taking over the burden of repetitive tasks so that the designers and students can focus on the act of creation. Computer aided design has been used for a long time as a tool of drafting, however in this last decade this tool of representation is being replaced by simulation in different areas such as simulation of form, function and environment. Thus, the crafting of objects is moving towards the generation of forms and integrated systems through designer-authored computational processes. The emergence and adoption of computational technologies has significantly changed design and design education beyond the replacement of drawing boards with computers or pens and paper with computer-aided design (CAD) computer-aided engineering (CAE) applications. This paper highlights the influence of the evolving transformation from Computer Aided Design (CAD) to Computational Design (CD) and how this presents a profound shift in creative design thinking and education. Computational-based design and simulation represent new tools that encourage designers and artists to continue progression of novel modes of design thinking and creativity for the 21st century designers. Today computational design calls for new ideas that will transcend conventional boundaries and support creative insights through design and into design. However, it is still believed that in architecture education one should not replace the design process and creative thinking at early stages by software tools that shape both process and final product which may become a limitation for creative designs to adapt to the decisions and metaphors chosen by the simulation tool. This paper explores the development of Computer Aided Design (CAD) to Computational Design (CD) Tools and their impact on contemporary design education and creative design.
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_003.pdf
last changed 2012/05/15 20:46

_id caadria2012_038
id caadria2012_038
authors Kato, Kody and Hyoung-June Park
year 2012
title Toward a performance-oriented architecture: An integrated design approach to a real time responsive structure
doi https://doi.org/10.52842/conf.caadria.2012.059
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 59–68
summary This paper started from the study of “performance-oriented architecture” for the purpose of developing a real time responsive prototype that can enclose large expansive interior space. Questions regarding the relationship between the structural arrangement of systems and the natural environment initiated an investigation in Phyllotaxis. It has been found in plant systems for the optimisation of photosynthesis with harvesting maximum amounts of solar energy. In the design of a real time responsive prototype, an algorithmic approach is introduced with the mathematical interpretation of Phyllotaxis and its translation into the global geometry of the prototype. Also, the usage of a Voronoi diagram is parametrically configured to form the local geometry of the prototype. The interactive mechanism of the prototype was achieved with an assorted computational application. Furthermore, with the demonstration of the aforementioned prototype in both digital and physical environments, its implementation process is explained.
keywords Performance-oriented architecture; phyllotaxis; Voronoi diagram; real-time-responsive structure
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2012_110
id caadria2012_110
authors McGee, Wes; David Pigram and Maciej P. Kaczynski
year 2012
title Robotic reticulations: A method for the integration of multi-axis fabrication processes with algorithmic form-finding techniques
doi https://doi.org/10.52842/conf.caadria.2012.295
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 295–304
summary This paper addresses the design and fabrication of non-uniform structural shell systems. Structural shells, particularly gridshells, have a long history but due to their complexity and the accompanying high cost of construction, their application has been limited. The research proposes a method for integrating the design and fabrication processes such that complex double curved reticulated frames can be constructed efficiently, from prefabricated components, requiring significantly less formwork than is typical. A significant aspect of the method has been the development of software tools that allow for both algorithmic form-finding and the direct control of robotic fabrication equipment from within the same modelling package. A recent case-study is examined where the methodology has been applied to construct a reticulated shell structure in the form of a partial vault. Components were prefabricated using 6-axis robotic fabrication equipment. Individual parts are designed such that the assembly of components guides the form of the vault, requiring no centring to create the desired shape. Algorithmically generated machine instructions controlled a sequence of three tool changes for each part, using a single modular fixture, greatly increasing accuracy. The complete integration of computational design techniques and fabrication methodologies now enables the economical deployment of non-uniform structurally optimised reticulated frames.
keywords Reticulated frame; robotic fabrication; dynamic relaxation; form-finding; computational design
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia12_87
id acadia12_87
authors Menicovich, David ; Gallardo, Daniele ; Bevilaqua, Riccardo ; Vollen, Jason
year 2012
title Generation and Integration of an Aerodynamic Performance Data Base Within the Concept Design Phase of Tall Buildings
doi https://doi.org/10.52842/conf.acadia.2012.087
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 87-96
summary Despite the fact that tall buildings are the most wind affected architectural typology, testing for aerodynamic performance is conducted during the later design phases well after the overall geometry has been developed. In this context, aerodynamic performance studies are limited to evaluating an existing design rather than a systematic performance study of design options driving form generation. Beyond constrains of time and cost of wind tunnel testing, which is still more reliable than Computational Fluid Dynamics (CFD) simulations for wind conditions around buildings, aerodynamic performance criteria lack an immediate interface with parametric design tools. This study details a framework for empirical data collection through wind tunnel testing of building mechatronic models and the expansion of the collected dataset by determining a mathematical interpolating model using an Artificial Neural Network (ANN) algorithm developing an Aerodynamic Performance Data Base (APDB). Frederick Keisler called the interacting of forces CO-REALITY, which he defined as The Science of Relationships. In the same article Keisler proclaims that the Form Follows Function is an outmoded understanding that design must demonstrate continuous variability in response to interactions of competing forces. This topographic space is both constant and fleeting where form is developed through the broadcasting of conflict and divergence as a system seeks balance and where one state of matter is passing by another; a decidedly fluid system. However, in spite of the fact that most of our environment consists of fluids or fluid reactions, instantaneous and geologic, natural and engineered, we have restricted ourselves to approaching the design of buildings and their interactions with the environment through solids, their properties and geometry; flow is considered well after the concept design stage and as validation of form. The research described herein explores alternative relations between the object and the flows around it as an iterative process, moving away from the traditional approach of Form Follows Function to Form Follows Flow.
keywords Tall Buildings , Mechatronics , Artificial Neural Network , Aerodynamic Performance Data Base
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ecaade2012_209
id ecaade2012_209
authors Prousalidou, Elena
year 2012
title A Digital Model for Fabric Formwork Panels: Using Physical Data to Train the Digital Model
doi https://doi.org/10.52842/conf.ecaade.2012.2.159
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 159-167
summary In the context of a wider inquiry on the integration of material properties and construction processes in computational models, this paper proposes a digital model for fabric formwork panels. Plaster cast in different types of fabric can produce a significant variation of resulting forms. The aim is to investigate whether data retrieved from physical models with 3D scanning techniques can improve the accuracy and efficiency of a simulation based on geometric principles, and better predict the behaviour of cast material in relation to the type of fabric. Setting up the computational model and choosing its parameters and constraints is based on the physical construction process, highlighting the relationship between material and form. As part of the cyclical exchange, evaluation of the digital model with physical testing demonstrates that the simulation can actually be trained by reducing the physical/ digital discrepancies.
wos WOS:000330320600016
keywords Fabric formwork; simulation; dynamic relaxation; 3d scanning; kinect
series eCAADe
email
last changed 2022/06/07 08:00

_id acadia20_340
id acadia20_340
authors Soana, Valentina; Stedman, Harvey; Darekar, Durgesh; M. Pawar, Vijay; Stuart-Smith, Robert
year 2020
title ELAbot
doi https://doi.org/10.52842/conf.acadia.2020.1.340
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 340-349.
summary This paper presents the design, control system, and elastic behavior of ELAbot: a robotic bending active textile hybrid (BATH) structure that can self-form and transform. In BATH structures, equilibrium emerges from interaction between tensile (form active) and elastically bent (bending active) elements (Ahlquist and Menges 2013; Lienhard et al. 2012). The integration of a BATH structure with a robotic actuation system that controls global deformations enables the structure to self-deploy and achieve multiple three-dimensional states. Continuous elastic material actuation is embedded within an adaptive cyber-physical network, creating a novel robotic architectural system capable of behaving autonomously. State-of-the-art BATH research demonstrates their structural efficiency, aesthetic qualities, and potential for use in innovative architectural structures (Suzuki and Knippers 2018). Due to the lack of appropriate motor-control strategies that exert dynamic loading deformations safely over time, research in this field has focused predominantly on static structures. Given the complexity of controlling the material behavior of nonlinear kinetic elastic systems at an architectural scale, this research focuses on the development of a cyber-physical design framework where physical elastic behavior is integrated into a computational design process, allowing the control of large deformations. This enables the system to respond to conditions that could be difficult to predict in advance and to adapt to multiple circumstances. Within this framework, control values are computed through continuous negotiation between exteroceptive and interoceptive information, and user/designer interaction.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2012_230
id ecaade2012_230
authors Tsiliakos, Marios
year 2012
title Swarm Materiality: A multi-agent approach to stress driven material organization
doi https://doi.org/10.52842/conf.ecaade.2012.1.301
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 301-309
summary This paper sets out to introduce and explore a computational tool, thus a methodological framework, for simulating stress driven material growth and organization by employing a multi-agent system based in swarm intelligence algorithms. It consists of an ongoing investigation that underlies the intention for the material system to be perceived as design itself. The algorithm, developed in the programming language Processing, is operating in a bottom-up manner where components and data fl ows are self-organized into design outputs. An evaluation process, via testing on different design cases, is providing a coherent understanding on the system’s capacity to address an acceptable, within the “state-of-the-art” context, solution to material optimization and innovative form-finding. The analysis of the exported data is followed by a possible reconfi guration of the algorithm’s structure and further development by introducing new elements.
wos WOS:000330322400030
keywords Swarm-intelligence; stress; material-organization; biomimetics; processing
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia12_251
id acadia12_251
authors Winn, Kelly ; Vollen, Jason ; Dyson, Anna
year 2012
title Re-Framing Architecture for Emerging Ecological and Computational Design Trends for the Built Ecology
doi https://doi.org/10.52842/conf.acadia.2012.251
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 251-258
summary The dualities of ‘Humanity and Nature’, ‘Organic and Inorganic’, Artificial and Synthetic’ are themes that have permeated architectural discourse since the beginning of the 20th c. The interplay between nature and machine can be directly related to the 19th c. discussion of nature and industrialism that was exemplified in the works of Louis Sullivan and Frank Lloyd Wright that spawned the organic architect movement. Echoes of these dichotomous themes have been resuscitated with the introduction of computational and information processing as a fundamental part of contemporary theory and critical praxis. The ability to go beyond simplistic dualities is promised by the introduction of data informed multi-variable processes that allow for complex parametric processes that introduce a range of criteria within evaluative design frameworks. The investigations detailed herein focuses on surface morphology development that are explored and evaluated for their capacity to reintegrate the ideas from genetic and developmental biology into an architectural discourse that has historically been dominated by the mechanistic metaphor perpetuated throughout the modern era. Biological analogues in nature suggest that the zone of decoration plays an important role in the environmental response and climate adaptability of architecture. The building envelope represents the greatest potential energetic gain or loss, as much as 50 %, therefore the architectural envelope plays the most significant role in energy performance of the building. Indeed, from an environmental performance standpoint, the formal response of the envelope should tend toward complexity, as biology suggests, rather than the reduced modernist aesthetic. Information architecture coupled with environment and contextual data has the potential to return the focus of design to the rhizome, as the functional expressions of climatic performance and thermal comfort interplay within other cultural, social and economic frameworks informing the architectural artifact. Increasing the resolution that ornament requires in terms of geometric surface articulation has a reciprocal affect on the topological relationship between surface and space: the architectural envelope can respond through geometry on the surface scale in order to more responsively interface with the natural environment. This paper responds to increasing computational opportunities in architectural design and manufacturing; first by exploring the historical trajectory of discourse on nature vs. machine in architecture, then exploring the implications for utilizing environmental data to increase the energy performance of architecture at the building periphery, where building meets environment creating the synthetic Built Ecology.
keywords ecology , biomimicry , biophilia , natural , synthetic , artificial , parametric , digital , function , production , performance , modernism , form , ornament , decoration
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id ijac201210303
id ijac201210303
authors Bohnenberger, Sascha; Chin Koi Khoo, Daniel Davis, et al.
year 2012
title Sensing Material Systems - Novel Design Strategies
source International Journal of Architectural Computing vol. 10 - no. 3, 361-375
summary The development of new building materials has decisively influenced the progression of architecture through the link between built form and available material systems. The new generation of engineered materials are no exception. However, to fully utilise these materials in the design process, there is a need for designers to understand how these new materials perform. In this paper we propose a method for sensing and representing the response of materials to external stimuli, at the early design stage, to help the designer establish a material awareness. We present a novel approach for embedding capacitive sensors into material models in order to improve material performance of designs. The method was applied and tested during two workshops, both discussed in this paper. The outcome is a method for anticipating engineered material behaviour.
series journal
last changed 2019/05/24 09:55

_id caadria2012_107
id caadria2012_107
authors Gerber, David and A. Senel Solmaz
year 2012
title PARA-Typing the making of difference: Associative parametric design methodologies for teaching the prototyping of material affect
doi https://doi.org/10.52842/conf.caadria.2012.233
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 233–242
summary PARA-Typing the Making of Difference presents design research and instruction into the use of constraint based digital and analogue modelling techniques and the development of associative parametric models to simulate highly differentiated fabricated form. These design research projects were conceived as manual analogue generative processes for prototyping modularity and serial differentiation. Then through associative parametric design technologies and methodologies, modular fields were design explored and developed in concert with material properties and constraints. Utilising digital fabrication full-scale installations were designed, manufactured, and constructed as tiled walls that created differentiated space within site-specific configurations.
keywords Generative design; parametric modelling; prototyping; digital fabrication; tectonics
series CAADRIA
email
last changed 2022/06/07 07:51

_id ijac201210403
id ijac201210403
authors Gerber, David J.
year 2012
title PARA-Typing Informing Form and the Making of Difference
source International Journal of Architectural Computing vol. 10 - no. 4, 501-520
summary This paper presents design research and instruction into the use of constraint based digital and analogue modelling techniques and the development of associative parametric models to simulate highly differentiated fabricated form. One set of these design research projects were conceived as manual analogue generative processes for prototyping modularity and serial differentiation.Then through parametric design techniques, modular aggregations were design explored and developed in concert with material properties and constraints. Utilizing digital fabrication full-scale installations were designed, manufactured, and for site-specific configurations. A second set of projects provides an extension of the design instruction that includes the integration of performance criteria into these design objectives.The objectives of the research are to present benefits and limitations of the incorporation of parametric design, performance analysis, and prototyping techniques in comprehensive studio instruction.The paper discusses the resultant informed materialized difference and the impacts on achieving reinforced and hands on learning objectives.
keywords Generative design; parametric modelling; prototyping; digital fabrication; design pedagogy; performative design
series journal
last changed 2019/05/24 09:55

_id acadia12_391
id acadia12_391
authors Ajlouni, Rima
year 2012
title The Forbidden Symmetries
doi https://doi.org/10.52842/conf.acadia.2012.391
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 391-400
summary The emergence of quasi-periodic tiling theories in mathematics and material science is revealing a new class of symmetry, which had never been accessible before. Because of their astounding visual and structural properties, quasi-periodic symmetries can be ideally suited for many applications in art and architecture; providing a rich source of ideas for articulating form, pattern, surface and structure. However, since their discovery, the unique long-range order of quasi-periodic symmetries, is still posing a perplexing puzzle. As rule-based systems, the ability to algorithmically generate these complicated symmetries can be instrumental in understanding and manipulating their geometry. Recently, the discovery of quasi-periodic patterns in ancient Islamic architecture is providing a unique example of how ancient mathematics can inform our understanding of some basic theories in modern science. The recent investigation into these complex and chaotic formations is providing evidence to show that ancient designers, by using the most primitive tools (a compass and a straightedge) were able to resolve the complicated long-range principles of ten-fold quasi-periodic formations. Derived from these ancient principles, this paper presents a computational model for describing the long-range order of octagon-based quasi-periodic formations. The objective of the study is to design an algorithm for constructing large patches of octagon-based quasi-crystalline formations. The proposed algorithm is proven to be successful in producing an infinite and defect-free covering of the two-dimensional plane.
keywords computational model , quasi-crystalline , symmetries , algorithms , complex geometry
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2012_132
id caadria2012_132
authors Baerlecken, Daniel and David Duncan
year 2012
title Junk: Design build studio
doi https://doi.org/10.52842/conf.caadria.2012.305
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 305–314
summary The paper presents a design build studio that investigates the role of waste as building material and develops a proposal for an installation that uses CAAD and CAM tools in combination with traditional fabrication tools to design and build an installation out of waste materials. The paper describes the concept development and the construction process through the help of computational tools. Recycling is in the process of becoming an integral part of sustainable architecture. However, there are very few digital design projects that use re-used or recycled materials in combination with their architectural and aesthetic qualities and potentials. The potential of such an investigation is explored within a design build studio. What is junk? What is a building material? What are the aesthetics of junk?
keywords Education in CAAD; digital fabrication and construction; practice-based and interdisciplinary CAAD; parametric modelling
series CAADRIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_604913 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002