CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 551

_id ijac201210303
id ijac201210303
authors Bohnenberger, Sascha; Chin Koi Khoo, Daniel Davis, et al.
year 2012
title Sensing Material Systems - Novel Design Strategies
source International Journal of Architectural Computing vol. 10 - no. 3, 361-375
summary The development of new building materials has decisively influenced the progression of architecture through the link between built form and available material systems. The new generation of engineered materials are no exception. However, to fully utilise these materials in the design process, there is a need for designers to understand how these new materials perform. In this paper we propose a method for sensing and representing the response of materials to external stimuli, at the early design stage, to help the designer establish a material awareness. We present a novel approach for embedding capacitive sensors into material models in order to improve material performance of designs. The method was applied and tested during two workshops, both discussed in this paper. The outcome is a method for anticipating engineered material behaviour.
series journal
last changed 2019/05/24 09:55

_id caadria2012_109
id caadria2012_109
authors Gerber, David; Mohamed M. ElSheikh and Aslihan Senel Solmaz
year 2012
title Associative parametric design and financial optimisation - 'Cash Back 1.0': Parametric design for visualising and optimising Return on Investment for early stage design decision-making
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 47–56
doi https://doi.org/10.52842/conf.caadria.2012.047
summary Cash-Back 1.0 presents research on the development of methodologies and technologies to simulate the cause and effect of early stage geometric design alternatives of buildings and the real time results upon financial pro-forma. Through the encoding of design rules and their associative relationships to financial pro-forma the research illustrates enhanced visualization of early stage building design decisions and their cumulative impact on financial goals and constraints. The research presents value an associative parametric design process affords often-disparate domains through correlation and visualization. The paper describes incorporation of a feedback loop between pro-forma and geometric models in conjunction with an optimization method. Given the level of uncertainty in early stage design decision making the research contributes partial solutions to the domain problems of design decision uncertainty and design cycle latency and is further argumentation for increased use of parametric design methods and automation to support design domain integration.
keywords Parametric design; genetic algorithm; design decision support; multi domain optimisation; domain integration
series CAADRIA
email dgerber@usc.edu
last changed 2022/06/07 07:51

_id sigradi2012_153
id sigradi2012_153
authors Kaufmann, Stefan; Petzold, Frank
year 2012
title Cybernetic models in building fabrication. A three stage training approach to digital fabrication in architecture
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 243-245
summary In the time since European architects first began using computers in the building design process, the digital revolution has transformed how architects use planning tools completely. Today, digital tools are an indispensable part of planning practice. Besides a wide variety of digital modeling tools, parametric tools offer architects diverse options for generating cybernetic building models as BIM-models or homeostatic parametric geometry models. Cybernetic models help us to describe the buildings as a system and can improve planning efficiency. The aim of planning is to construct or fabricate an end result. The integration of digital fabrication methods in the digital chain is a fundamental goal if architects are to benefit from the progressive development of computer controlled machine tools. Fabrication integrated digital models can automate the planning process up to the production stage and enable the efficient fabrication of building components. The increased efficiency of planning and fabrication has facilitated a growing proliferation of buildings of increasing geometric complexity. Computers can open a door to the realization of new forms, spaces and construction systems to architects that understand the principles of fabrication-integrated cybernetic modeling.
keywords didactic; parametric design; digital fabrication; CIM;
series SIGRADI
email kaufmann@ai.ar.tum.de
last changed 2016/03/10 09:53

_id acadia12_47
id acadia12_47
authors Aish, Robert ; Fisher, Al ; Joyce, Sam ; Marsh, Andrew
year 2012
title Progress Towards Multi-Criteria Design Optimisation Using Designscript With Smart Form, Robot Structural Analysis and Ecotect Building Performance Analysis"
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 47-56
doi https://doi.org/10.52842/conf.acadia.2012.047
summary Important progress towards the development of a system that enables multi-criteria design optimisation has recently been demonstrated during a research collaboration between Autodesk’s DesignScript development team, the University of Bath and the engineering consultancy Buro Happold. This involved integrating aspects of the Robot Structural Analysis application, aspects of the Ecotect building performance application and a specialist form finding solver called SMART Form (developed by Buro Happold) with DesignScript to create a single computation environment. This environment is intended for the generation and evaluation of building designs against both structural and building performance criteria, with the aim of expediently supporting computational optimisation and decision making processes that integrate across multiple design and engineering disciplines. A framework was developed to enable the integration of modeling environments with analysis and process control, based on the authors’ case studies and experience of applied performance driven design in practice. This more generalised approach (implemented in DesignScript) enables different designers and engineers to selectively configure geometry definition, form finding, analysis and simulation tools in an open-ended system without enforcing any predefined workflows or anticipating specific design strategies and allows for a full range of optimisation and decision making processes to be explored. This system has been demonstrated to practitioners during the Design Modeling Symposium, Berlin in 2011 and feedback from this has suggested further development.
keywords Design Optimisation , Scripting , Form Finding , Structural Analysis , Building Performance
series ACADIA
type normal paper
email robert.aish@autodesk.com
last changed 2022/06/07 07:54

_id sigradi2012_223
id sigradi2012_223
authors Alvarado, Rodrigo Garcia; Mardones, Oscar Otárola
year 2012
title Eco-losas: desarrollo de componentes constructivos más eficientes por análisis topológico y diseño paramétrico. [Eco-slabs: development of more efficient building components by topological analysis and parametric design]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 630-632
summary It exposes a design and construction system for horizontal plates to work as slabs in regular concrete buildings. Based to an evolutionary finite-element analysis of the topological configuration to get a curved design with a 50% reduction of traditional volume, that provide lower cost, less carbon foot-print, better performance and innovative ceiling. A library of profiles is elaborated according different loads, support and dimensions and implemented in a parametric design system, in order to produce geometries for study theirs integration in the building and to elaborate digital fabrication files. Different constructive strategies are been studied, making several prototypes.
keywords Losas, Análisis Topológico, Diseño Paramétrico, Fabricación Digital
series SIGRADI
email rgarcia@ubiobio.cl
last changed 2016/03/10 09:47

_id caadria2012_132
id caadria2012_132
authors Baerlecken, Daniel and David Duncan
year 2012
title Junk: Design build studio
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 305–314
doi https://doi.org/10.52842/conf.caadria.2012.305
summary The paper presents a design build studio that investigates the role of waste as building material and develops a proposal for an installation that uses CAAD and CAM tools in combination with traditional fabrication tools to design and build an installation out of waste materials. The paper describes the concept development and the construction process through the help of computational tools. Recycling is in the process of becoming an integral part of sustainable architecture. However, there are very few digital design projects that use re-used or recycled materials in combination with their architectural and aesthetic qualities and potentials. The potential of such an investigation is explored within a design build studio. What is junk? What is a building material? What are the aesthetics of junk?
keywords Education in CAAD; digital fabrication and construction; practice-based and interdisciplinary CAAD; parametric modelling
series CAADRIA
email dbaerlecken3@mail.gatech.edu
last changed 2022/06/07 07:54

_id ijac201210406
id ijac201210406
authors Biswas, Tajin; Ramesh Krishnamurti
year 2012
title Data Sharing for Sustainable Building Assessment
source International Journal of Architectural Computing vol. 10 - no. 4, 555-574
summary Sustainable design assessment requires information, which is aggregated from different phases of a building design, and evaluated according to criteria specified in a ‘sustainable building rating system.’ In the architecture engineering and construction (AEC) domain much of the necessary information is available through open source data standards such as Industry Foundation Classes (IFC). However, no single standard that provides support for sustainability assessment completely suffices as a data structure. This paper explores the augmentation of the Construction Operations Building information exchange (COBie) model, as an intermediary data structure, to bridge between requirements of the Leadership in Energy and Environmental Design (LEED) rating system and a building information model. Development of a general framework for data sharing and information management for LEED assessments is illustrated through an implementation of a prototype using functional databases.The prototype checks and augments available data as needed, which is used to populate LEED submission templates.
series journal
last changed 2019/05/24 09:55

_id caadria2012_115
id caadria2012_115
authors Biswas, Tajin; Tsung-Hsien Wang and Ramesh Krishnamurti
year 2012
title Data sharing for sustainable assessments: Using functional databases for interoperating multiple building information structures
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 193–202
doi https://doi.org/10.52842/conf.caadria.2012.193
summary This paper presents the development and implementation of an automatic sustainable assessment prototype using functional databases. For the practical purpose, we use Leadership in Energy and Environmental Design (LEED) as the exemplar standard to demonstrate the integrative process from building information aggregation to final evaluation. We start with a Building Information model, and use Construction Operations Building Information Exchange (COBie) as a bridge to integrate LEED requirements. At present, the process of sustainable building assessment requires information exchange from various building professionals. However, there is no procedure to manage, or use, information pertaining to sustainability. In our research, we translate rules from LEED into computable formulas and develop a prototype application to produce templates for LEED submission.
keywords Building information databases; sustainable assessment
series CAADRIA
email tajin@cmu.edu
last changed 2022/06/07 07:52

_id ecaade2012_314
id ecaade2012_314
authors Bourdakis, Vassilis; Pentazou, Ioulia
year 2012
title Real City Museum/Virtual City Model: Real Datasets/Virtual Interactions
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 337-341
doi https://doi.org/10.52842/conf.ecaade.2012.2.337
wos WOS:000330320600034
summary Creating virtual city models at different scales, emphases and overall orientations is a topic that has attracted great interest in architectural and urban planning context over at least the last two decades. However the complexity of the city as a historical formation demands new methods of representation embracing interactive technologies. The work discussed in this paper is part of a large multidisciplinary project for the development of the Volos city museum. Enhancing the interaction between the public and the museum exhibits is essential. The paper focuses on the definition, complexity and orientation of the data structures and the integration of 3D contemporary and historic data that is the backbone for the digital representations and the interactive applications developed for the museum.
keywords Database design; XML; Dublin Core metadata; history; 3D modelling; geo-referencing
series eCAADe
email vas@uth.gr
last changed 2022/06/07 07:54

_id sigradi2012_291
id sigradi2012_291
authors Braida, Frederico; Marques, Aline Calazans; Pedroso, Emmanuel Sá Resende; Lima, Fernando Tadeu de Araújo
year 2012
title O papel das impressoras 3D nas diversas etapas do projeto [O papel das impressoras 3D nas diversas etapas do projeto The 3D printer paper at various stages of project]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 580-583
summary This article aims to address the use of 3D printers in the stages of design, development and final presentation in projects of architecture and urbanism. To evaluate the performance of 3D printers, we emphasize in each of these stages of the project, the representational demands and cognitive processes involved as well as analytical categories taken as cost, running time, accuracy and level finish, the representation of materials, scale and size of three-dimensional models and possibilities for intervention in the models themselves.
keywords Impressoras 3D; Prototipagem rápida; Projeto; Fabricação Digital; Modelagem tridimensional
series SIGRADI
email frederico.braida@ufjf.edu.br
last changed 2016/03/10 09:47

_id ascaad2012_003
id ascaad2012_003
authors Elseragy, Ahmed
year 2012
title Creative Design Between Representation and Simulation
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 11-12
summary Milestone figures of architecture all have their different views on what comes first, form or function. They also vary in their definitions of creativity. Apparently, creativity is very strongly related to ideas and how they can be generated. It is also correlated with the process of thinking and developing. Creative products, whether architectural or otherwise, and whether tangible or intangible, are originated from ‘good ideas’ (Elnokaly, Elseragy and Alsaadani, 2008). On one hand, not any idea, or any good idea, can be considered creative but, on the other hand, any creative result can be traced back to a good idea that initiated it in the beginning (Goldschmit and Tatsa, 2005). Creativity in literature, music and other forms of art is immeasurable and unbounded by constraints of physical reality. Musicians, painters and sculptors do not create within tight restrictions. They create what becomes their own mind’s intellectual property, and viewers or listeners are free to interpret these creations from whichever angle they choose. However, this is not the case with architects, whose creations and creative products are always bound with different physical constraints that may be related to the building location, social and cultural values related to the context, environmental performance and energy efficiency, and many more (Elnokaly, Elseragy and Alsaadani, 2008). Remarkably, over the last three decades computers have dominated in almost all areas of design, taking over the burden of repetitive tasks so that the designers and students can focus on the act of creation. Computer aided design has been used for a long time as a tool of drafting, however in this last decade this tool of representation is being replaced by simulation in different areas such as simulation of form, function and environment. Thus, the crafting of objects is moving towards the generation of forms and integrated systems through designer-authored computational processes. The emergence and adoption of computational technologies has significantly changed design and design education beyond the replacement of drawing boards with computers or pens and paper with computer-aided design (CAD) computer-aided engineering (CAE) applications. This paper highlights the influence of the evolving transformation from Computer Aided Design (CAD) to Computational Design (CD) and how this presents a profound shift in creative design thinking and education. Computational-based design and simulation represent new tools that encourage designers and artists to continue progression of novel modes of design thinking and creativity for the 21st century designers. Today computational design calls for new ideas that will transcend conventional boundaries and support creative insights through design and into design. However, it is still believed that in architecture education one should not replace the design process and creative thinking at early stages by software tools that shape both process and final product which may become a limitation for creative designs to adapt to the decisions and metaphors chosen by the simulation tool. This paper explores the development of Computer Aided Design (CAD) to Computational Design (CD) Tools and their impact on contemporary design education and creative design.
series ASCAAD
email ahmed.elseragy@aast.edu
more http://www.ascaad.org/conference/2012/papers/ascaad2012_003.pdf
last changed 2012/05/15 20:46

_id ecaade2012_105
id ecaade2012_105
authors Foged, Isak Worre ; Pasold, Anke ; Jensen, Mads Brath ; Poulsen, Esben Skouboe
year 2012
title Acoustic Environments: Applying Evolutionary Algorithms for Sound Based Morphogenesis
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 347-353
doi https://doi.org/10.52842/conf.ecaade.2012.1.347
wos WOS:000330322400035
summary The research investigates the application of evolutionary computation in relation to sound based morphogenesis. It does so by using the Sabine equation for performance benchmark in the development of the spatial volume and refl ectors, effectively creating the architectural expression as a whole. Additional algorithms are created and used to organise the entire set of 200 refl ector components and manufacturing constraints based upon the GA studies. An architectural pavilion is created based upon the studies illustrating the applicability of both developed methods and techniques.
keywords Evolutionary Computation; Algorithmic Design; Architectural Acoustics; CAAD/CAM processes
series eCAADe
email isak@studio-area.net
last changed 2022/06/07 07:51

_id ecaade2018_243
id ecaade2018_243
authors Gardner, Nicole
year 2018
title Architecture-Human-Machine (re)configurations - Examining computational design in practice
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 139-148
doi https://doi.org/10.52842/conf.ecaade.2018.2.139
summary This paper outlines a research project that explores the participation in, and perception of, advanced technologies in architectural professional practice through a sociotechnical lens and presents empirical research findings from an online survey distributed to employees in five large-scale architectural practices in Sydney, Australia. This argues that while the computational design paradigm might be well accepted, understood, and documented in academic research contexts, the extent and ways that computational design thinking and methods are put-into-practice has to date been less explored. In engineering and construction, technology adoption studies since the mid 1990s have measured information technology (IT) use (Howard et al. 1998; Samuelson and Björk 2013). In architecture, research has also focused on quantifying IT use (Cichocka 2017), as well as the examination of specific practices such as building information modelling (BIM) (Cardoso Llach 2017; Herr and Fischer 2017; Son et al. 2015). With the notable exceptions of Daniel Cardoso Llach (2015; 2017) and Yanni Loukissas (2012), few scholars have explored advanced technologies in architectural practice from a sociotechnical perspective. This paper argues that a sociotechnical lens can net valuable insights into advanced technology engagement to inform pedagogical approaches in architectural education as well as strategies for continuing professional development.
keywords Computational design; Sociotechnical system; Technology adoption
series eCAADe
email n.gardner@unsw.edu.au
last changed 2022/06/07 07:51

_id caadria2012_107
id caadria2012_107
authors Gerber, David and A. Senel Solmaz
year 2012
title PARA-Typing the making of difference: Associative parametric design methodologies for teaching the prototyping of material affect
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 233–242
doi https://doi.org/10.52842/conf.caadria.2012.233
summary PARA-Typing the Making of Difference presents design research and instruction into the use of constraint based digital and analogue modelling techniques and the development of associative parametric models to simulate highly differentiated fabricated form. These design research projects were conceived as manual analogue generative processes for prototyping modularity and serial differentiation. Then through associative parametric design technologies and methodologies, modular fields were design explored and developed in concert with material properties and constraints. Utilising digital fabrication full-scale installations were designed, manufactured, and constructed as tiled walls that created differentiated space within site-specific configurations.
keywords Generative design; parametric modelling; prototyping; digital fabrication; tectonics
series CAADRIA
email dgerber@usc.edu
last changed 2022/06/07 07:51

_id ijac201210403
id ijac201210403
authors Gerber, David J.
year 2012
title PARA-Typing Informing Form and the Making of Difference
source International Journal of Architectural Computing vol. 10 - no. 4, 501-520
summary This paper presents design research and instruction into the use of constraint based digital and analogue modelling techniques and the development of associative parametric models to simulate highly differentiated fabricated form. One set of these design research projects were conceived as manual analogue generative processes for prototyping modularity and serial differentiation.Then through parametric design techniques, modular aggregations were design explored and developed in concert with material properties and constraints. Utilizing digital fabrication full-scale installations were designed, manufactured, and for site-specific configurations. A second set of projects provides an extension of the design instruction that includes the integration of performance criteria into these design objectives.The objectives of the research are to present benefits and limitations of the incorporation of parametric design, performance analysis, and prototyping techniques in comprehensive studio instruction.The paper discusses the resultant informed materialized difference and the impacts on achieving reinforced and hands on learning objectives.
keywords Generative design; parametric modelling; prototyping; digital fabrication; design pedagogy; performative design
series journal
last changed 2019/05/24 09:55

_id ecaade2012_022
id ecaade2012_022
authors Ham, Jeremy J. ; Schnabel, Marc Aurel ; Datta, Sambit
year 2012
title Developing Online Construction Technology Resources in Tectonic Design Education
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 135-142
doi https://doi.org/10.52842/conf.ecaade.2012.1.135
wos WOS:000330322400013
summary We outline issues of importance in relation to tectonic design within the architectural profession and the relationship to architectural education in Australia. Twelve years of research and curriculum development at Deakin University is discussed, involving the creation of online resources and case studies, digitally-integrated projects relating to building construction and design studio education. The ethos behind the Construction Primer of engaging students as ‘amateur researchers’ in a way that ensures ‘that student research work is worth more than course assessment’ forms the pedagogical foundation of much of this work. A model of Socially Networked Construction Technology education has been developed that integrates social networks and the Internet to engage students in tectonic design within and outside the classroom through authentic curricula. Through the use of Virtual Galleries, Blogs, YouTube and social networks, a culture of peer learning and sharing has ben developed. Through shared knowledge facilitated through social networks, great potential lies for expanding the synergies between higher order learning and online resource development for design decision support.
keywords Construction technology; social network; online learning; design decision support
series eCAADe
email jjham@deakin.edu.au
last changed 2022/06/07 07:50

_id caadria2012_031
id caadria2012_031
authors Ji, Guohua; Ying Xu and Ying Wang
year 2012
title 3D urban space information system: A preliminary prototype based on Google Earth plugin
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 359–368
doi https://doi.org/10.52842/conf.caadria.2012.359
summary 2D GIS has shown its limitations in many situations, especially when it’s applied in urban design. Many studies have been carried out to deal with the problem. Some attempted to link 3D visualisation to data stored within 2D GIS, and others tried to combine GIS, CAD and visualisation together. They all aim to meliorate current GIS for 3D applications. The authors of this paper developed a preliminary prototype of a 3D urban space information system based on Google Earth Plugin. It sets up a server to store and offer specific urban space information. With the desktop application that embeds Google Earth Plugin, user can upload and download models on the server, view them in the virtual 3D environment of Google earth, and make models directly in the 3D environment. A server-side database plays the role of managing information. This paper introduces the key ideas and methods of the system development, including system structure, set-up of the serve, server side information management, and interactive modelling functions.
keywords GIS; urban design; Google Earth plugin; VB.Net
series CAADRIA
email jgh3020@yahoo.com.cn
last changed 2022/06/07 07:52

_id ecaade2012_113
id ecaade2012_113
authors Jutraz, Anja ; Zupancic, Tadeja
year 2012
title Digital system of tools for public participation and education in urban design: Exploring 3D ICC
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 383-392
doi https://doi.org/10.52842/conf.ecaade.2012.1.383
wos WOS:000330322400039
summary This article is a starting point for the development of experiential urban co-design interfaces to enhance public participation in local urban projects and to be also used as a communication and collaboration tool in urban design. It is based on the previous research involving 3D city models utilized as understandable design interfaces for the non-technical public (Jutraz, Zupancic, 2011), where we have already explored different views (pedestrian, intermediate and bird’s-eye view), as well as the means by which the information obtained from these different views may be combined by shifting between viewpoints. Previous work was conducted in the “street lab” as well as the Urban Experimental Lab, which was developed specifi cally for the public’s participation in urban planning (Voigt, Kieferle, Wössner, 2009). Presented in this article is the next step that explores the immersive collaboration environment 3D ICC [1], formerly known as Teleplace. The environment was developed for effi cient collaboration and remote communication and shifts the research focus towards questions regarding how to employ both labs as interfaces between the non-technical public and design professionals. As we are facing the lack of digital systems for public participation and education in urban design, different digital tools for communication and collaboration should be combined into a new holistic platform for design. A digital system of tools needs to be developed that supports the urban design decision-making process and focuses on improved final solutions and increased satisfaction amongst all participants. In this article the system of digital tools for public participation, which include communication, collaboration and education, will be also defi ned, with its basic characteristics and its elements.
keywords Digital system of tools; collaboration; 3D model; public participation; urban design
series eCAADe
email anja.jutraz@fa.uni-lj.si
last changed 2022/06/07 07:52

_id ecaade2012_95
id ecaade2012_95
authors Ladurner, Georg; Gabler, Markus; Menges, Achim; Knippers, Jan
year 2012
title Interactive Form-Finding for Biomimetic Fibre Structures: Development of a Computational Design Tool and Physical Fabrication Technique Based on the Biological Structure of the Lichen
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 519-529
doi https://doi.org/10.52842/conf.ecaade.2012.2.519
wos WOS:000330320600055
summary This contribution shows a biomimetic approach to design and produce fibrous structural elements derived from the morphology of the biologic archetype ‘the lichen’. The physical form fi nding strategy allows for a novel self-organised reinforcement for fibrous composite systems. A computational design tool has been developed, based on the fi ndings of various physical models. The digital device allows for shape control and therefore an interaction to and manipulation of the fabrication process. Since the form fi nding algorithms of the tool are based on physical experiments,every geometry is derived through the program and has its counterpart in production. For example: the fibre density in the model can be adjusted which leads to different geometries. In production the chosen denseness is utilised, thus, the production yields automatically to the desired load-optimized geometry found in the form-finding tool.
keywords Biomimetics; Form-finding; Self-organization; Emergence; Fibre structures
series eCAADe
email georg.ladurner@gmail.com
last changed 2022/06/07 07:52

_id acadia12_97
id acadia12_97
authors Lilley, Brian ; Hudson, Roland ; Plucknett, Kevin ; Macdonald, Rory ; Cheng, Nancy Yen-Wen ; Nielsen, Stig Anton ; Nouska, Olympia ; Grinbergs, Monika ; Andematten, Stephen ; Baumgardner, Kyle ; Blackman, Clayton ; Kennedy, Matthew ; Chatinthu, Monthira ; Tianchen, Dai ; Sheng-Fu, Chen
year 2012
title Ceramic Perspiration: Multi-Scalar Development of Ceramic Material
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 97-108
doi https://doi.org/10.52842/conf.acadia.2012.097
summary Ceramic building material is a useful passive modulator of the environment. The subject area is based on traditional cultural and material knowledge of clay properties: from amphora to rammed earth building; and ranges to present uses: from desiccants and space shuttle tile patterns to bio-ceramics. The primary consideration is to control material density and porosity in a tile component, in response to specific environmental conditions. This depends on a number of key physical principles: the ability of the material to absorb thermal energy, the ability to absorb and then ‘wick’ moisture within the pore structure, and the decrement factor or ‘time lag’ of the effect. The interplay between these properties point to the importance of directionality in the porous microstructure, at the boundary layer. Material characteristics have been investigated in the laboratory at a micron scale and in the ceramics workshop at full scale, with some interplay between the two. Recent work done on monitoring has led to the development of software tools that allow feedback (approaching real time)- a visual representation of the dynamic thermal and hygrometric properties involved.
keywords Synthetic tectonics , composite materials , smart assemblies , emerging material processes , Responsive environments , sensing , real-time computation , feedback loops , Information Visualization
series ACADIA
type normal paper
email brian.lilley@dal.ca
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_672429 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002