CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 549

_id acadia12_199
id acadia12_199
authors Beorkrem, Chris ; Corte, Dan
year 2012
title Zero-Waste, Flat-Packed, Tri-Chord Truss: Continued Investigations of Structural Expression in Parametric Design"
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 199-208
doi https://doi.org/10.52842/conf.acadia.2012.199
summary The direct and rapid connections between scripting, modeling and prototyping allow for investigations of computation in fabrication. The manipulation of planar materials with two-dimensional CNC cuts can easily create complex and varied forms, volumes, and surfaces. However, the bulk of research on folding using CNC fabrication tools is focused upon surfaces, self-supporting walls and shell structures, which do not integrate well into more conventional building construction models. This paper attempts to explain the potential for using folding methodologies to develop structural members through a design-build process. Conventional building practice consists of the assembly of off-the-shelf parts. Many times, the plinth, skeleton, and skin are independently designed and fabricated, integrating multiple industries. Using this method of construction as an operative status quo, this investigation focused on a single structural component: the truss. Using folding methodologies and sheet steel to create a truss, this design investigation employed a recyclable and prolific building material to redefine the fabrication of a conventional structural member. The potential for using digital design and two-dimensional CNC fabrication tools in the design of a foldable truss from sheet steel is viable in the creation of a flat-packed, minimal waste structural member that can adapt to a variety of aesthetic and structural conditions. Applying new methods to a component of the conventional ‘kit of parts’ allowed for a novel investigation that recombines zero waste goals, flat-packing potential, structural expression and computational processes. This paper will expand (greatly) upon previous research into bi-chord truss designs, developing a tri-chord truss, which is parametrically linked to its structural moment diagram. The cross section of each truss is formed based on the loading condition for each beam. This truss design has been developed through a thorough series of analytical models and tests performed digitally, to scale and in full scale. The tri-chord truss is capable of resisting rotational failures well beyond the capacity of the bi-chord designs previously developed. The results are complex, and elegant expressions of structural logics embodied in a tightly constrained functional design.
keywords Parametric Design , Structural Expression , Material constraints
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id sigradi2012_247
id sigradi2012_247
authors Gomes, Lucas Ariel; Barbosa, Wilson; Araújo, André Luís; Celani, Gabriela
year 2012
title Exercício Projetual de uma Estrutura de Cobertura com a Utilização do Diagrama de Voronoi no plug-in Grasshopper [Design experiment with the use of Voronoi Diagrams in Grasshopper plug-in: a roof structure]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 636-640
summary This paper describes a design experiment with the use of Voronoi Diagrams, a systematic division of the metric space based on a set of points. Automated procedures were used in the process: a script that generated sets of random points and a plug in that automatically generated polygons based on these points. Computer models, scale models and full scale prototypes were produced in order to develop construction details and preview results. It was possible to conclude that the use of a generative method along with automated procedures is far from restricting creativity, allowing the quick exploration of multiple design alternatives.
keywords Roof structure; Voronoi Diagram; Grasshopper
series SIGRADI
email
last changed 2016/03/10 09:52

_id acadia12_391
id acadia12_391
authors Ajlouni, Rima
year 2012
title The Forbidden Symmetries
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 391-400
doi https://doi.org/10.52842/conf.acadia.2012.391
summary The emergence of quasi-periodic tiling theories in mathematics and material science is revealing a new class of symmetry, which had never been accessible before. Because of their astounding visual and structural properties, quasi-periodic symmetries can be ideally suited for many applications in art and architecture; providing a rich source of ideas for articulating form, pattern, surface and structure. However, since their discovery, the unique long-range order of quasi-periodic symmetries, is still posing a perplexing puzzle. As rule-based systems, the ability to algorithmically generate these complicated symmetries can be instrumental in understanding and manipulating their geometry. Recently, the discovery of quasi-periodic patterns in ancient Islamic architecture is providing a unique example of how ancient mathematics can inform our understanding of some basic theories in modern science. The recent investigation into these complex and chaotic formations is providing evidence to show that ancient designers, by using the most primitive tools (a compass and a straightedge) were able to resolve the complicated long-range principles of ten-fold quasi-periodic formations. Derived from these ancient principles, this paper presents a computational model for describing the long-range order of octagon-based quasi-periodic formations. The objective of the study is to design an algorithm for constructing large patches of octagon-based quasi-crystalline formations. The proposed algorithm is proven to be successful in producing an infinite and defect-free covering of the two-dimensional plane.
keywords computational model , quasi-crystalline , symmetries , algorithms , complex geometry
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia12_87
id acadia12_87
authors Menicovich, David ; Gallardo, Daniele ; Bevilaqua, Riccardo ; Vollen, Jason
year 2012
title Generation and Integration of an Aerodynamic Performance Data Base Within the Concept Design Phase of Tall Buildings
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 87-96
doi https://doi.org/10.52842/conf.acadia.2012.087
summary Despite the fact that tall buildings are the most wind affected architectural typology, testing for aerodynamic performance is conducted during the later design phases well after the overall geometry has been developed. In this context, aerodynamic performance studies are limited to evaluating an existing design rather than a systematic performance study of design options driving form generation. Beyond constrains of time and cost of wind tunnel testing, which is still more reliable than Computational Fluid Dynamics (CFD) simulations for wind conditions around buildings, aerodynamic performance criteria lack an immediate interface with parametric design tools. This study details a framework for empirical data collection through wind tunnel testing of building mechatronic models and the expansion of the collected dataset by determining a mathematical interpolating model using an Artificial Neural Network (ANN) algorithm developing an Aerodynamic Performance Data Base (APDB). Frederick Keisler called the interacting of forces CO-REALITY, which he defined as The Science of Relationships. In the same article Keisler proclaims that the Form Follows Function is an outmoded understanding that design must demonstrate continuous variability in response to interactions of competing forces. This topographic space is both constant and fleeting where form is developed through the broadcasting of conflict and divergence as a system seeks balance and where one state of matter is passing by another; a decidedly fluid system. However, in spite of the fact that most of our environment consists of fluids or fluid reactions, instantaneous and geologic, natural and engineered, we have restricted ourselves to approaching the design of buildings and their interactions with the environment through solids, their properties and geometry; flow is considered well after the concept design stage and as validation of form. The research described herein explores alternative relations between the object and the flows around it as an iterative process, moving away from the traditional approach of Form Follows Function to Form Follows Flow.
keywords Tall Buildings , Mechatronics , Artificial Neural Network , Aerodynamic Performance Data Base
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id caadria2012_010
id caadria2012_010
authors Dave, Bharat and Gwyl Jahn
year 2012
title Tagged and interactive diagrams of design intent and rationale
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 669–678
doi https://doi.org/10.52842/conf.caadria.2012.669
summary This paper describes our experiments with diagrammatic representations to think about design compositions and to learn from shared accretion of design knowledge. We describe here implementation of an online prototype that, on the one hand, offers interactive functionalities to externalize thinking about design compositions in the form of diagrams and, on the other hand, which acts also as a repository of diagrams that can be dynamically interrogated to find other proximate compositional thinking and ideas related to a particular design position. Put differently, the prototype helps both notate design thinking and draw out associations between separately notated design thinking.
keywords Diagrams; compositional logic; design representations; knowledge accretion; reflective thinking
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2012_117
id caadria2012_117
authors Karakiewicz, Justyna and Thomas Kvan
year 2012
title Diagramming in a digital environment
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 151–160
doi https://doi.org/10.52842/conf.caadria.2012.151
summary Research into digital design environments has explored modelling, generating and testing design propositions. When considering the broader design literature, however, we notice that a significant contribution to design is absent, that of diagramming. In the realm of architectural theory discourse in the past few years, diagramming has been much discussed with many interpretations of the activity. This paper will demonstrate that the development of digital techniques can change dramatically our ability to conceptualise and produce generative diagrams as previously not possible. The paper will follow the work done at the in the Melbourne School of Design. We will demonstrate how students are introduced to diagramming techniques and shown how to formulate a concept, then a program generator and to test a final proposal. The paper will also demonstrate how digital techniques can dramatically change the way we conceptualise and approach design problems. In this repeated teaching technique, we illustrate how digital systems contribute to conceptual diagrams and this contributes to the larger theoretical debate on diagramming techniques by introducing digital perspectives. The paper will therefore contribute to discussion on the ways in which digital systems can be engaged in substantive architectural teaching beyond the rote application of proprietary software and representative approaches.
keywords Diagramming; parametric; design; urbanism; abstraction
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2012_059
id ecaade2012_059
authors Wurzer, Gabriel ; Popov, Nikolay ; Lorenz, Wolfgang E.
year 2012
title Meeting Simulation Needs of Early-Stage Design Through Agent-Based Simulation
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 613-620.
doi https://doi.org/10.52842/conf.ecaade.2012.1.613
wos WOS:000330322400064
summary During early-stage planning, numerous design decisions are taken in an argumentative manner, based on occupation with the building site according to the different infl uencing aspects (e.g. topology, wind, visibility, circulation, activities etc.). In this context, sketches, diagrams and spreadsheets are the workhorses for elaboration. However, some of these phenomena are dynamic by nature, and are rather poorly modeled when utilizing static media. In our work, we thus show how agent-based simulation can be used to compute and visualize dynamic factors, in order to inform the decision process on a qualitative level. As a matter of fact, simulations may be used as a design tool in their own right, for analysis and objectifi ed comparison among multiple design variations.
keywords Agent-Based Simulation; Early-Stage Planning; NetLogo; Design Process.
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia12_439
id acadia12_439
authors As, Imdat ; Angelico, Maria
year 2012
title Crowdsourcing Architecture: A Disruptive Model in Architectural Practice
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 439-443
doi https://doi.org/10.52842/conf.acadia.2012.439
summary This paper discusses the use of crowdsourcing as a new approach for architectural design acquisition. We will give an overview of the concept of crowdsourcing, and elaborate on its particular application in architecture via concrete projects executed on Arcbazar, a firstof- its-kind crowdsourcing platform for architectural design services. We argue that online crowdsourcing platforms can have an immense impact on smaller-scale design challenges, e.g., home remodeling projects and landscape and interior design challenges, and can potentially carry these often neglected projects into the architectural design sphere. In this paper we will discuss the methods and techniques of architectural crowdsourcing and illustrate the processes and outcomes through a series of projects: a remodeling project for a closet; an interior design challenge for a dining space; and a layout problem for an apartment complex. We will then evaluate the protocol and outcome of architectural crowdsourcing, and convey the professional and popular media response to this new method of architectural design acquisition.
keywords crowdsourcing , competitions , networking , interaction , collaboration
series ACADIA
type panel paper
email
last changed 2022/06/07 07:54

_id acadia12_231
id acadia12_231
authors Bell, Brad
year 2012
title Parametric Precast Concrete Panel System
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 231-238
doi https://doi.org/10.52842/conf.acadia.2012.231
summary The working hypothesis of this research focuses on the potential of utilizing a digital toolset to engage information within a surrounding context for the purpose of creating a more intelligent pre-cast concrete panel system. The Parametric Pre-Cast Concrete Panel System is a research project attempting to parametrically define geometry for the purpose of producing formwork based on quantitative information related to issues such as environmental control systems, sound abatement, as well as qualitative information like non-standard variation paneling, and aesthetic composition.
keywords Energy , form , structures , performance , simulation , prototyping , precast , concrete
series ACADIA
type panel paper
email
last changed 2022/06/07 07:54

_id acadia12_149
id acadia12_149
authors Besler, Erin
year 2012
title Low Fidelity
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 149-153
doi https://doi.org/10.52842/conf.acadia.2012.149
summary Low Fidelity engages in the translational discrepancies that occur through mediums of architectural representation, not as instances of dilemma but as opportunities to subdue tautology and augment the seductive latency of representation(1). Where some might contend the discrepant as unlawful, the methodology that this thesis argues for engages the digital and machinic, and explores the translational discrepancies that challenge and interrupt our interface with matters of materialization and excite material propensities. The discrepant becomes a dynamic catalyst through the engagement of tools and techniques that subvert the homogeneity of digital design. Low Fidelity engages the sphere of translation by reevaluating the role of architectural representation as generator and generated its originations and its limitations. In an attempt to negotiate the digital and physical, this thesis situates itself within the feedback loop between the mediums of translation through ideas their formal logics, material propensities and back again.
keywords Robotic Fabrication , Digital Machinic , Material Propensity , Technological Fidelity , Generative Representation , Translation through Mediums
series ACADIA
type panel paper
email
last changed 2022/06/07 07:52

_id acadia12_511
id acadia12_511
authors Borowski, Darrick ; Poulimeni, Nikoletta ; Janssen, Jeroen
year 2012
title Edible Infrastructures: Emergent Organizational Patterns for the Productive City
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 511-526
doi https://doi.org/10.52842/conf.acadia.2012.511
summary Edible Infrastructures is an investigation into a projective mode of urbanism which considers food as an integral part of a city's metabolic infrastructure. Working with algorithms as design tools, we explore the generative potential of such a system to create an urban ecology that: provides for its residents via local, multi-scalar, distributed food production, reconnects urbanites with their food sources, and de-couples food costs from fossil fuels by limiting transportation at all levels, from source to table. The research is conducted through the building up of a sequence of algorithms, beginning with the ‘Settlement Simulation’, which couples consumers to productive surface area within a cellular automata type computational model. Topological analysis informs generative operations, as each stage builds on the output of the last. In this way we explore the hierarchical components for a new Productive City, including: the structure and programming of the urban circulatory network, an emergent urban morphology based around productive urban blocks, and opportunities for new architectural typologies. The resulting prototypical Productive City questions the underlying mechanisms that shape modern urban space and demonstrates the architectural potential of mathematical modeling and simulation in addressing complex urban spatial and programmatic challenges.
keywords Urban Agriculture , Urban Ecologies and Food Systems , Productive Cities , Urban Metabolism , Computational Modeling and Simulation , Algorithmic/ Procedural Design Methodologies , Emergent Organization , Self-Organizing Systems
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia12_127
id acadia12_127
authors Burry, Jane ; Burry, Mark ; Tamke, Martin ; Thomsen, Mette Ramsgard ; Ayres, Phil ; Leon, Alex Pena de ; Davis, Daniel ; Deleuran, Abders ; Nielson, Stig ; Riiber, Jacob
year 2012
title Process Through Practice: Synthesizing a Novel Design and Production Ecology
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 127-138
doi https://doi.org/10.52842/conf.acadia.2012.127
summary This paper describes the development of a design and prototype production system for novel structural use of networked small components of wood deploying elastic and plastic bending. The design process engaged with a significant number of different overlapping and interrelated design criteria and parameters, a high level of complexity, custom component geometry and the development of digital tools and procedures for real time feedback and productivity. The aims were to maximize learning in the second order cybernetic sense through empirical experience from analogue modeling, measurement and digital visual feedback and to capture new knowledge specifically regarding intrinsic material behavior applied and tested in a heterogeneous networked context. The outcome was a prototype system of design ideation, conceptualization, development and production that integrated real time material performance simulation and feedback. The outcome was amplified through carrying out the research over a series of workshops with distinct foci and participation. Two full scale demonstrators have so far been constructed and exhibited as outputs of the process.
keywords Material behavior , Complex modeling feedback , progressive synthetic learning
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia12_325
id acadia12_325
authors Chronis, Angelos ; Tsigkari, Martha ; Davis, Adam ; Aish, Francis
year 2012
title Design Systems, Ecology, and Time Angelos Chronis, Martha Tsigkari, Adam Davis, Francis Aish"
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 325-332
doi https://doi.org/10.52842/conf.acadia.2012.325
summary Discussion of architecture in ecological terms usually focuses on the spatial and material dimensions of design practice. Yet there is an equally critical temporal dimension in ecology that is just as relevant to design. At the micro scale is the question of 'real time' feedback from our design systems. At the macro scale is the issue of sustainability, in other words long term -- and potentially disastrous -- feedback from terrestrial ecosystems. In between are numerous different units for quantizing time in design and computation. In this paper, we examine some of these units -- 'real time', 'design time', 'development time' -- to suggest how they interact with the ecology of design technology and practice. We contextualize this discussion by reference to relevant literature from the field of ecology and to our work applying custom design and analysis tools on architectural projects within a large interdisciplinary design practice.
keywords real time feedback , performance driven design , integration
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia12_109
id acadia12_109
authors Comodromos, Demetrios A ; Ellinger, Jefferson
year 2012
title Material Intensities
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 109-113
doi https://doi.org/10.52842/conf.acadia.2012.109
summary As host organizers of the Smartgeometry 2012 Conference, professors of Architecture, and as principals in design firms, our work aims to use as a productive resistance the notion of Material Intensity described below as both a foil and measure to current concepts of simulation and intensive modeling in architectural computation. The holding of SG 2012 aimed to stage this resistance in the form of workshop, round-table discussions, lectures and symposia, with the outcome attempting to define a new synthetic notion of material intensities in modes of architectural production. This paper aims to form the basis of a continued exploration and development of this work. In summary we focused on: 1-Intensive thinking as derived from the material sciences as an actual and philosophical framework that emphasizes qualitative attributes, which is likened to behavior, simulation, and dynamic modeling. Extensive attributes lead to analytical, representational and static modeling. 2-Material practices can also be formed and as a result of this method of thinking. As demonstrated by the glasswork of Evan Douglis, ‘paintings’ by Perry Hall—the managed complexity possible by working with materials during intensive states of change allow for scalar, morphological and performative shifts according to a designer’s criteria. 3- Although both are necessary and actually complement each other, architects need to ‘catch-up’ to intensive thinking in process and modeling strategies. Our methods rely on static modeling that yield often complicated frameworks and results, wherein accepting methods of dynamic modeling suggests the capacity to propose complex and nuanced relationships and frameworks.
keywords Material Intensities , Intensive Thinking , Material Practice
series ACADIA
type panel paper
email
last changed 2022/06/07 07:56

_id acadia12_295
id acadia12_295
authors Dierichs, Karola ; Menges, Achim
year 2012
title Functionally Graded Aggregate Structures: Digital Additive Manufacturing With Designed Granulates
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 295-304
doi https://doi.org/10.52842/conf.acadia.2012.295
summary In recent years, loose granulates have come to be investigated as architectural systems in their own right. They are defined as large numbers of elements in loose contact, which continuously reconfigure into variant stable states. In nature they are observed in systems like sand or snow. In architecture, however, they were previously known only from rare vernacular examples and geoengineering projects, and are only now being researched for their innate material potentials. Their relevance for architecture lies in being entirely reconfigurable and in allowing for structures that are functionally graded on a macro level. Hence they are a very relevant yet unexplored field within architectural design. The research presented here is focused on the potential of working with designed granulates, which are aggregates where the individual particles are designed to accomplish a specific architectural effect. Combining these with the use of a computer-controlled emitter-head, the process of pouring these aggregate structures can function as an alternative form of 3D printing or digital additive manufacturing, which allows both for instant solidification, consequent reconfiguration, and graded material properties. In its first part, the paper introduces the field of research into aggregate architectures. In its second part, the focus is laid on designed aggregates, and an analytical design tool for the individual grains is discussed. The third part presents research conducted into the process of additive manufacturing with designed granulates. To conclude, further areas of investigation are outlined especially with regard to the development of the additive manufacturing of functionally graded architectural structures. The potentials of the methodologies developed in this process are shown through the fabrication of a full-scale installation. By integrating material, fabrication, and design constraints into a streamlined computational methodology, the process also serves as a model for a more intuitive production workflow, expanding the understanding of glass as a material with wide-ranging possibilities for a more performative architecture.
keywords Aggregate Architectures , Digital Additive Manufacturing , Functionally Graded Materials
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadia12_139
id acadia12_139
authors Erioli, Alessio ; Zomparelli, Alessandro
year 2012
title Emergent Reefs
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 139-148
doi https://doi.org/10.52842/conf.acadia.2012.139
summary The Emergent Reefs project thrives on the potential that emerge from a coherent utilization of the environment’s inherent ecological structure for its own transformation and evolution, using an approach based on digitally simulated ecosystems and sparkled by the possibilities and potential of large-scale 3D printing technology. Considering tourism as an inevitable vector of environmental change, the project aims to direct its potential and economic resources towards a positive transformation, providing a material substrate for the human-marine ecosystem integration with the realization of spaces for an underwater sculpture exhibition. Such structures will also provide a pattern of cavities which, expanding the gradient of microenvironmental conditions, break the existing homogeneity in favor of systemic heterogeneity, providing the spatial and material preconditions for the repopulation of marine biodiversity. Starting from a digital simulation of a synthetic local ecosystem, a generative technique based on multi-agent systems and continuous cellular automata (put into practice from the theoretical premises in Alan Turing’s paper “The Chemical basis of Morphogenesis” through reaction-diffusion simulation) is implemented in a voxel field at several scales giving the project a twofold quality: the implementation of reaction diffusion generative strategy within a non-isotropic 3-dimensional field and integration with the large-scale 3D printing fabrication system patented by D-Shape®. Out of these assumptions and in the intent of exploiting the expressive and tectonic potential of such technology, the project has been tackled exploring voxel-based generative strategies. Working with a discrete lattice eases the simulation of complex systems and processes across multiple scales (including non-linear simulations such as Computational Fluid-Dynamics) starting from local interactions using, for instance, algorithms based on cellular automata, which then can be translated directly to the physical production system. The purpose of Emergent-Reefs is to establish, through strategies based on computational design tools and machine-based fabrication, seamless relationships between three different aspects of the architectural process: generation, simulation and construction, which in the case of the used technology can be specified as guided growth.
keywords emergence , reef , underwater , 3D printing , ecology , ecosystem , CFD , agency , architecture , tourism , culture , Open Source
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadia12_491
id acadia12_491
authors Feringa, Jelle ; Søndergaard, Asbjørn
year 2012
title An Integral Approach to Structural Optimization and Fabrication
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 491-497
doi https://doi.org/10.52842/conf.acadia.2012.491
summary Abstract Integral structural optimization and fabrication seeks the synthesis of two original approaches; that of topological optimization (TO) and robotic hotwire cutting (HWC). TO allows for the reduction of up to 70% of the volume of concrete to support a given structure. A strength of the method is that it allows to come up with structural designs that lie beyond the grasp of traditional means of design. A design space is a discretized volume, delimiting where the optimization will take place. The number of cells used to discretize the design space thus sets the resolution of the TO. While the approach of the application of TO as a constitutive design tool centers on structural aspects in the design phase, the outcome of this process are structures that cannot be realized within a conventional budget. As such the ensuing design is optimal in a narrow sense; whilst optimal structurally though, construction can be prove to be prohibitively expensive. This paper reports ongoing research efforts on the development of a cost effective methodology for the realization of TO concrete structures using HWC.
keywords Topology optimization , robotics , hotwire cutting , ruled surfaces , advanced concrete structures , formwork , EPS
series ACADIA
type panel paper
email
last changed 2022/06/07 07:50

_id acadia12_383
id acadia12_383
authors Feringa, Jelle
year 2012
title Implicit Fabrication, Fabrication Beyond Craft: The Potential of Turing Completeness in Construction"
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 383-390
doi https://doi.org/10.52842/conf.acadia.2012.383
summary This paper addresses the limited shared vocabulary of landscape architecture and architectural design, evident in the application of terms such as “spatial design” and “spatial planning.” In their current usage, such terms emphasize the visible, terrestrial, pedestrian-perspective level, often to the absolute exclusion of a spatial, i.e., volumetric comprehension of the environment. This deficit is acutely evident in the teaching of landscape architecture and architecture and discussion of these fields’ shared ground. The dominant document type for mapping such analysis and design is the plan, or three-dimensional representations of the same, restricted to an extrusion or height map. GIS techniques in spatial design tend to be weighted toward visual, surface-based data (slope analysis, exposure, viewshed, etc.). Within this domain, our goal is to transform aspects of the intangible—the characteristics of open space itself—into a form that is legible, quantifiable, and malleable.
keywords evolutionary fabrication , computer vision , robotics , self-assembly , stigmergy
series ACADIA
type normal paper
email
last changed 2022/06/07 07:50

_id acadia12_429
id acadia12_429
authors Fox, Michael ; Polancic, Allyn
year 2012
title Conventions of Control: A Catalog of Gestures for Remotely Interacting With Dynamic Architectural Space
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 429-438
doi https://doi.org/10.52842/conf.acadia.2012.429
summary The intent of this project is to create a catalogue of gestures for remotely controlling dynamic architectural space. This research takes an essential first step towards facilitating the field of architecture in playing a role in developing an agenda for control. The process of the project includes a sequence carried out in four stages: 1) Research of gestural control 2) Creating an initial catalogue of spatial architectural gestures 3) Real-world testing and evaluation and 4) Refining the spatial architectural gestures. In creating a vocabulary for controlling dynamic architectural environments, the research builds upon the current state-of-the-art of gestural control which exists in integrated touch- and gesture-based languages of mobile and media interfaces. The next step was to outline architecturally specific dynamic situational activities as a means to explicitly understand the potential to build gestural control into systems that make up architectural space. A proposed vocabulary was then built upon the cross-referenced validity of existing intuitive gestural languages as applied to architectural situations. The proposed gestural vocabulary was then tested against user-generated gestures in the following areas: frequency of "invention", learnability, memorability, performability, efficiency, and opportunity for error. The means of testing was carried out through a test-cell environment with numerous kinetic architectural elements and a Microsoft Kinect Sensor to track gestures of the test subjects. We conclude that the manipulation of physical building components and physical space itself is more suited to gestural physical manipulation by its users instead of control via device, speech, cognition, or other. In the future it will be possible, if not commonplace to embed architecture with interfaces to allow users to interact with their environments and we believe that gestural language is the most powerful means control through enabling real physical interactions.
keywords Gesture , Interactive , Remote , Control , Architecture , Intuition , Physical , Interface
series ACADIA
type normal paper
email
last changed 2022/06/07 07:50

_id acadia12_67
id acadia12_67
authors Gerber, Dr. David Jason ; Lin, Shih-Hsin
year 2012
title Synthesizing Design Performance: An Evolutionary Approach to Multidisciplinary Design Search
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 67-75
doi https://doi.org/10.52842/conf.acadia.2012.067
summary Design is a goal oriented decision-making activity. Design is ill defined and requiring of synthetic approaches to weighing and understanding tradeoffs amongst soft and hard objectives, and the imprecise and or computationally explicit criteria and goals. In this regard designers in contemporary practice face a crisis of sorts. How do we achieve performance under large degrees of uncertainty and limited design cycle time? How do we better design for integrating performance? Fundamentally design teams, are not typically given enough time nor the best tools to design explore, to generate design alternatives, and then evolve solution quality to search for best fit through expansive design solution spaces. Given the complex criteria for defining performance in architecture our research approach experiments upon an evolutionary and integrative computational strategy to expand the solution space of a design problem as well as pre-sort and qualify candidate designs. We present technology and methodology that supports rapid development of design problem solution spaces in which three design domains objectives have multi-directional impact on each other. The research describes the use of an evolutionary approach in which a genetic algorithm is used as a means to automate the design alternative population as well as to facilitate multidisciplinary design domain optimization. The paper provides a technical description of the prototype design, one that integrates associative parametric modeling with an energy use intensity evaluation and with a financial pro forma. The initial results of the research are presented and analyzed including impacts on design process; the impacts on design uncertainty and design cycle latency; and the affordances for ‘designing-in’ performance and managing project complexity. A summary discussion is developed which describes a future cloud implementation and the future extensions into other domains, scales, tectonic and system detail.
keywords Parametric Design , Domain Integration , Design Methods , Multidisciplinary Design Optimization (MDO) , Evolutionary Algorithms , Design Decision Support , Generative Design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_813755 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002