CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 551

_id ascaad2012_003
id ascaad2012_003
authors Elseragy, Ahmed
year 2012
title Creative Design Between Representation and Simulation
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 11-12
summary Milestone figures of architecture all have their different views on what comes first, form or function. They also vary in their definitions of creativity. Apparently, creativity is very strongly related to ideas and how they can be generated. It is also correlated with the process of thinking and developing. Creative products, whether architectural or otherwise, and whether tangible or intangible, are originated from ‘good ideas’ (Elnokaly, Elseragy and Alsaadani, 2008). On one hand, not any idea, or any good idea, can be considered creative but, on the other hand, any creative result can be traced back to a good idea that initiated it in the beginning (Goldschmit and Tatsa, 2005). Creativity in literature, music and other forms of art is immeasurable and unbounded by constraints of physical reality. Musicians, painters and sculptors do not create within tight restrictions. They create what becomes their own mind’s intellectual property, and viewers or listeners are free to interpret these creations from whichever angle they choose. However, this is not the case with architects, whose creations and creative products are always bound with different physical constraints that may be related to the building location, social and cultural values related to the context, environmental performance and energy efficiency, and many more (Elnokaly, Elseragy and Alsaadani, 2008). Remarkably, over the last three decades computers have dominated in almost all areas of design, taking over the burden of repetitive tasks so that the designers and students can focus on the act of creation. Computer aided design has been used for a long time as a tool of drafting, however in this last decade this tool of representation is being replaced by simulation in different areas such as simulation of form, function and environment. Thus, the crafting of objects is moving towards the generation of forms and integrated systems through designer-authored computational processes. The emergence and adoption of computational technologies has significantly changed design and design education beyond the replacement of drawing boards with computers or pens and paper with computer-aided design (CAD) computer-aided engineering (CAE) applications. This paper highlights the influence of the evolving transformation from Computer Aided Design (CAD) to Computational Design (CD) and how this presents a profound shift in creative design thinking and education. Computational-based design and simulation represent new tools that encourage designers and artists to continue progression of novel modes of design thinking and creativity for the 21st century designers. Today computational design calls for new ideas that will transcend conventional boundaries and support creative insights through design and into design. However, it is still believed that in architecture education one should not replace the design process and creative thinking at early stages by software tools that shape both process and final product which may become a limitation for creative designs to adapt to the decisions and metaphors chosen by the simulation tool. This paper explores the development of Computer Aided Design (CAD) to Computational Design (CD) Tools and their impact on contemporary design education and creative design.
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_003.pdf
last changed 2012/05/15 20:46

_id sigradi2023_108
id sigradi2023_108
authors Passos, Aderson, Jorge, Luna, Cavalcante, Ana, Sampaio, Hugo, Moreira, Eugenio and Cardoso, Daniel
year 2023
title Urban Morphology and Solar Incidence in Public Spaces - an Exploratory Correlation Analysis Through a CIM System
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1655–1666
summary The walkability of open spaces has been highlighted in current discussions about the production of designed environments in urban contexts (Matan, 2011). To contribute to this theme, this work selects the environmental comfort of open spaces as its element of study. The production of urban space was investigated, specifically in regard to urban morphology, understanding that city design directly influences environmental comfort (Jacobs, 1996). This work addresses the geographic context of low latitudes, specifically in hot and humid climate zones of Brazil, and, in this context, according to NBR 15220 (national performance standards), shading is one of the main comfort strategies, so solar incidence was the approached environmental phenomenon. Thus, this work presents a digital system that performs exploratory analysis on the correlations between urban form indicators and environmental performance indicators, specifically solar incidence. The method consists of three steps: urban form modeling (1), indicator measurement (2) and correlation analysis (3). In the first stage, different spatial sections of a city in Brazil were represented in the digital environment (1). This work’s implementation instrument is based on a City Information Modeling framework (Beirao et al., 2012). Visual Programming Interface (VPI) and Geographic Information Systems (GIS) tools were used, in addition to a Relational Database Management System (RDBMS). Then, for each urban clipping, the values of morphological indicators and the incidence of solar radiation were measured (2). Based on the values of the indicators, an exploration of their correlation was carried out by statistical methods (3). The results of the correlation analysis and their correspondent scatter plots are presented. Finally, possible applications of the results for the creation of prescriptive urban planning systems are discussed, seeking to promote a sustainable urban environment.
keywords Urban planning, Environmental comfort, Walkability, Urban morphology, Statistical methods.
series SIGraDi
email
last changed 2024/03/08 14:09

_id acadia12_269
id acadia12_269
authors Lally, Sean
year 2012
title Architecture of an Active Context
doi https://doi.org/10.52842/conf.acadia.2012.269
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 269-276
summary As we stand with our feet on earth’s outermost surface we build an architecture today that is much like it was several thousand years earlier, in an attempt to extend that outer shell with one of our own making. Artificial masses are built from a refinement of this existing geologic layer into materials of stone, steel, concrete, and glass that assemble to produce new pockets of space through the buildings they create. However, the sixth century BC writer Thales of Miletus put a different perspective on this: he insisted that we live, in reality, not on the summit of a solid earth but at the bottom of an ocean of air (Holmyard 1931). And so, as architecture continues to build up the outermost layer of earth’s surface through a mimicking, embellishing, and enhancing of the materials which it comes from, it raises the question of why we have not brought a similar relationship to the materialities at the bottom of this “ocean” of air to create the spaces we call architecture. If you were looking to level a complaint with the architectural profession, stating that it has not been ambitious enough in scope would not be one. Architects have never shied away from the opportunity to design everything from the building’s shell to the teaspoon used to stir your sugar in its matching cup. But it would seem that the profession has developed a rather large blind spot in terms of what it sees as a malleable material with which to engage. Architects have made assumptions as to what is beyond our scope of action, refraining from engaging a range of material variables due to a belief that the task would be too great or simply beyond our physical control. So even though we are enveloped by them continuously, both on the exterior as well as the interior of our buildings, it must be assumed that the particles, waves, and frequencies of energy that move around us are thought by architects to be too faint and shaky to unload upon them any heavy obligations, that they are too unwieldy for us to control to create the physical boundaries of separation, security, and movement required of architecture. This has resulted in a cultivated set of blinders that essentially defines architecture as a set of mediation devices (surfaces, walls, and inert masses) for tempering the environmental context it is situated in from the individuals and activities within. The spaces we inhabit are defined by their ability to decide what gets in and what stays out (sunlight, precipitation, winds). We place our organizational demands and aesthetic opinions on the surfaces that mediate these variables rather than seeing them as available for manipulation as a building material on their own. The intention here is to recalibrate the materialities that make up that environmental context to build architecture. The starting point is a rather naive question: can we design the energy systems that course in and around us daily as an architectural material so as to take on the needs of activities, securities, and lifestyles associated with architecture? Can the variables that we would normally mediate against instead be heightened and amplified so as to become the architecture itself? That which many would incorrectly dismiss as simply “air” today—thought to be homogeneous, scale-less, and vacant due in part to the limits of our human sensory system to perceive more fully otherwise—might tomorrow be further articulated, populated, and layered so as to become a materiality that will build spatial boundaries, define activities of individuals and movement, and act as architectural space. Our environmental context consists of a diverse range of materials (particles and waves of energy, spectrum of light, sound waves, and chemical particles) that can be manipulated and formed to meet our needs. The opportunity before us today is to embrace the needs of organizational structures and aesthetics by designing the active context that surrounds us through the material energies that define it.
keywords Material energies
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id sigradi2012_27
id sigradi2012_27
authors de Morais, Lívia Paula Zanelli; Sperling, David Moreno
year 2012
title MVRDV e Regionmaker: arquitetura e espacialização da informação [MVRDV and Regionmaker: architecture and information spacialization]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 566-569
summary This paper is part of an ongoing research that analyzes the housing projects of the Dutch office MVRDV through their theoretical research and design processes. The text focuses on the use of parametric software according to two key aspects that qualify their production: research and conceptual creative potential. Since the late 1990s, the architects are positioning their practice under a strategy that combines collection, processing and interpretation of large amounts of data, what means the conversion of statistical information into concrete and inventive form. With this demand the office developed parametric software as Regionmaker, the case study presented here.
keywords processos de projeto; softwares paramétricos; Regionmaker; MVRDV; otimização
series SIGRADI
email
last changed 2016/03/10 09:50

_id 75d6
id 75d6
authors Derix, C and Gamlesaeter, A
year 2012
title Behavioural Prototypes In Spatial Design Computation
source In Petruschat and Adenauer (eds), Neue Formen des Prototypings in Gestaltungsprozessen, Form+Zweck, Berlin, 2012
summary Architects by profession, Christian Derix and Asmund Gamlesæter are interested in expanding the capabilities of digital technology to inform, support and enrich the design process in architecture and spatial planning. The computational prototypes they develop range from form studies to visualization of complex processes in spatial planning such as movement behaviors of people in a city. They work analytically as well as generatively and the approach is deeply affected by the understanding that computing systems should not define solutions but offer creative freedom and create a symbiosis between the designer and the algorithmic intelligence. They are rather designed to help the designer view the design problem and consequences of decisions from different perspectives. Encouraging the designer to play through different narratives. They are rather tools for thinking through multiple solutions and allow the designer to play with the possibilities. The generation of the final design is inspired and validated by the tools but remains in the hands of the designer.
keywords algorithmic behaviour, design evolution, computational design
series book
type normal paper
email
more http://www.formundzweck.de/de/buecher/prototype-physical-virtual-hybrid-smart/beschreibung.html
last changed 2012/09/20 14:12

_id sigradi2012_149
id sigradi2012_149
authors Diniz, Nancy; Anderson, Bennedict; Liang, Hai-Ning; Laing, Richard
year 2012
title Mapping the Experience of Space
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 550-553
summary This paper aims to contribute to the discussion and our understanding of time-based mapping of visual information. Our approach is to enhance the traditional contextual static analysis through the acknowledgement of the body and the senses as key indicators of perceptual spatial experience. The time-based mapping paradigms have produced different ways of designing space by leveraging perceptual and other sensorial understanding, leading to the formation of variables (or parameters) which at the same time turn themselves as catalysts for other variables. The potential for a constantly evolving reinterpretation of the perceptual experience and for associated paradigm to shift suggest a multiplicity of design possibilities for urban areas that also need to adapt to the new requirements of contemporary living. In essence, the paper will bring to light the deployment of tools (digital and analogue) to turn static invisible data to dynamic visible data. In other words, we want to explore how the data can be treated as a generative system, enabling students and tutors alike to experience space which accounts for sensory performances and behaviours within the space.
keywords Time-based design processes; dynamic data visualization; digital pedagogies, phenomenology, design process
series SIGRADI
email
last changed 2016/03/10 09:50

_id caadria2012_042
id caadria2012_042
authors Globa, Anastasia and Michael Donn
year 2012
title Digital to physical: Comparative evaluation of three main CNC fabrication technologies adopted for physical modelling in architecture
doi https://doi.org/10.52842/conf.caadria.2012.327
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 327–336
summary Recently, digital fabrication, being a logical extension of computer-aided technology to the material world, was introduced into the field of computational design in architecture. The objective of this experimental study is to investigate and systematise data regarding the production issues and limitations of the main Computer Numerically Controlled (CNC) fabrication technologies adopted for physical modelling in architecture. This study also aims to observe the value of potential feedback to the design process from different types of digitally fabricated architectural models. This experimental research systematically explores digital fabrication as a computer-aided modelling tool, using two international architectural competition projects as case studies: the design of a skyscraper and relocatable schools. Developed by authors especially for this research paper, each case study acts as a test bed to compare and evaluate digital production techniques adopted for physical modelling in architecture. Designs go through a process of refinement using CNC fabrication as an integral part of the design process. Each step in the process is closely evaluated as to its effectiveness according to a matrix of feedback criteria.
keywords Design process; digital fabrication; architectural model
series CAADRIA
email
last changed 2022/06/07 07:51

_id ijac201210401
id ijac201210401
authors Globa, Anastasia; Michael Donn, Simon Twose
year 2012
title Digital To Physical: Comparative Evaluation Of Three Main CNC Fabrication Technologies Adopted For Physical Modelling In Architecture
source International Journal of Architectural Computing vol. 10 - no. 4, 461-480
summary The objective of this experimental study is to investigate and systematise data regarding the production issues and limitations of Computer Numerically Controlled fabrication technologies typically adopted for physical modelling in architecture.This study also aims to observe the value of potential feedback to the design process from different types of digitally fabricated architectural models.This experimental research systematically explores digital fabrication as a computer-aided modelling tool using two international architectural competition projects as case studies: the design of a skyscraper and relocatable schools. Developed by the authors especially for this research paper, each case study acts as a test bed to compare and evaluate digital production techniques adopted for physical modelling in architecture. Designs go through a process of refinement using CNC fabrication as an integral part of the design process. Each step in the process is closely evaluated as to its effectiveness according to a matrix of feedback criteria.
series journal
last changed 2019/05/24 09:55

_id ecaade2012_104
id ecaade2012_104
authors Liapi, Marianthi; Oungrinis, Konstantinos-Alketas; Voyatzaki, Maria
year 2012
title Sensponsive Playscapes: A Pedagogical Design Approach to Manifest and Promote the Physical Digital Continuum
doi https://doi.org/10.52842/conf.ecaade.2012.2.343
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 343-351
summary This paper chronicles an intensive student workshop on sensponsive architecture, from the educators’ point of view, underlying the pedagogical notes on this new design approach that employs digital design tools and electronic assemblies to creatively experiment with human-computer interaction. The workshop presented the theoretical, computational and fabricating frameworks for a human-centered approach to spaces with sensponsive partitions that respond timely with sense, displaying an adaptive behavior through time. The workshop theme was further specialized to direct the design outcome toward sensponsive environments for children that can help them perceive, experience and develop a meaningful understanding of the world around them through play.
wos WOS:000330320600035
keywords Sensponsive architecture; student workshop; arduino assemblies; children’s spaces
series eCAADe
email
last changed 2022/06/07 07:59

_id caadria2012_074
id caadria2012_074
authors Markova, Stanimira and Andreas Dieckmann
year 2012
title An IFC based design check approach for the optimisation of material efficiency in the built environment
doi https://doi.org/10.52842/conf.caadria.2012.275
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 275–284
summary Compared to other industries, the built environment is still the largest and one of the least efficient consumers of resources. Existing measures and procedures for resource recovery and reuse are focused on the demolition phase, when the composition of materials and structures is mostly unknown and hard to be analysed. Therefore, these measures are somewhat inefficient for overall high-rate material recovery. The enhancement of the integrated semantic planning process by the introduction of the IFC unified data standard and BIM technology is a first-time opportunity to track, analyse, document and simulate all relevant players, parameters and processes with an impact on the resource and material efficiency through the entire life cycle of a building in the design phase of a building project. The presented work explores the potential of IFC to serve as a framework for achieving a higher material efficiency in the built environment. A proposed design check approach for the simulation and optimisation of material efficiency in a building over its life cycle is based on a system of key parameters and actions organised in logic trees. The parameters and actions are translated into IFC objects. Additionally required IFC objects and properties are identified and described.
keywords BIM; IFC; integrative design; material efficiency design
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia12_287
id acadia12_287
authors McGee, Wes ; Newell, Catie ; Willette, Aaron
year 2012
title Glass Cast: A Reconfigurable Tooling System for Free-Form Glass Manufacturing
doi https://doi.org/10.52842/conf.acadia.2012.287
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 287-294
summary Despite glass’s ubiquity in the modern built environment it is rarely applied in applications requiring complex curvature. The high temperatures and complexity of techniques utilized in forming curved glass panels are typically very expensive to employ, requiring dedicated hard-tooling which ultimately limits the formal variation that can be achieved. This combination of economic and manufacturing barriers limits both the formal possibilities and potentially the overall envelope-performance characteristics of the glazing system. This research investigates a methodology for utilizing reconfigurable tooling to form glass into doubly curved geometries, offering the potential for improved structural and environmental performance in a material that has remained largely unchanged since the advent of its industrial manufacturing. A custom built forming kiln has been developed and tested, integrated through a parametric modeling workflow to provide manufacturing constraint feedback directly into the design process. The research also investigates the post-form trimming of glass utilizing robotic abrasive waterjet cutting, allowing for the output of machine control data directly from the digital model. The potentials of the methodologies developed in this process are shown through the fabrication of a full-scale installation. By integrating material, fabrication, and design constraints into a streamlined computational methodology, the process also serves as a model for a more intuitive production workflow, expanding the understanding of glass as a material with wide-ranging possibilities for a more performative architecture.
keywords Digital Fabrication , Robotic Fabrication , Computational Design , Material Computation
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id acadia15_211
id acadia15_211
authors Melsom, James; Girot, Christophe; Hurkxkens, Ilmar
year 2015
title Directed Deposition: Exploring the Roles of Simulation and Design in Erosion and Landslide Processes
doi https://doi.org/10.52842/conf.acadia.2015.211
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 211-221
summary Working with and against environmental processes, such as the movement of water, earth, and rock, and terrain, has been a perpetual challenge since the dawn of civilisation. While it has been possible to gradually tame many landscapes to perform in a predictable manner, there are many circumstances where we are forced to live with and around such processes in everyday life. This research is primarily interested in the potential of design to interact with such processes. Specifically, we are interested in the designed redirection of erosion and landslide processes already observable in nature, taking the urbanised hillsides of the Alps as test case scenario. The research specialisation continues a research and design focus specialised on processes material deposition of river and flood systems, further down the water catchment chain (REF: ANON 2012). This specific alpine research is compelling in the context of Anthropocene processes, we are specifically focussed in the appraisal, harnessing and redirection of existing environmental phenomena, given what can be understood as our inevitable interaction with these processes (Sijmons 2015). Within this broader research, which has ecological, cultural, and formal potential, this paper shall explore the practical aspects of connecting design, and the designer, with the potential for understanding and designing these evolving mountain landscapes. There is a long history behind the development of landscape elements which control avalanches, mud, rock, and landslides. The cultural, functional and aesthetic role of such elements in the landscape is relatively undiscussed, epitomising an approach that is primarily pragmatic in both engineering and expense. It is perhaps no surprise that these elements have a dominant physical and visual presence in the contemporary landscape. Through the investigation of synergies with other systems, interests, and design potential for such landscape elements, it is proposed that new potential can be found in their implementation. This research proposes that the intuitive linking of common design software to direct landslide simulation, design of and cultural use can interact with these natural processes. This paper shall demonstrate methods to within which design can enter the process of landscape management, linking the modelling processes of the landscape designer with the simulation capabilities of the specialised engineer.
keywords Landscape Design Workflows, Landscape Simulation, Terrain Displacement, Material Flow, Erosion Processes, Interdisciplinary Workflows
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id acadia12_87
id acadia12_87
authors Menicovich, David ; Gallardo, Daniele ; Bevilaqua, Riccardo ; Vollen, Jason
year 2012
title Generation and Integration of an Aerodynamic Performance Data Base Within the Concept Design Phase of Tall Buildings
doi https://doi.org/10.52842/conf.acadia.2012.087
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 87-96
summary Despite the fact that tall buildings are the most wind affected architectural typology, testing for aerodynamic performance is conducted during the later design phases well after the overall geometry has been developed. In this context, aerodynamic performance studies are limited to evaluating an existing design rather than a systematic performance study of design options driving form generation. Beyond constrains of time and cost of wind tunnel testing, which is still more reliable than Computational Fluid Dynamics (CFD) simulations for wind conditions around buildings, aerodynamic performance criteria lack an immediate interface with parametric design tools. This study details a framework for empirical data collection through wind tunnel testing of building mechatronic models and the expansion of the collected dataset by determining a mathematical interpolating model using an Artificial Neural Network (ANN) algorithm developing an Aerodynamic Performance Data Base (APDB). Frederick Keisler called the interacting of forces CO-REALITY, which he defined as The Science of Relationships. In the same article Keisler proclaims that the Form Follows Function is an outmoded understanding that design must demonstrate continuous variability in response to interactions of competing forces. This topographic space is both constant and fleeting where form is developed through the broadcasting of conflict and divergence as a system seeks balance and where one state of matter is passing by another; a decidedly fluid system. However, in spite of the fact that most of our environment consists of fluids or fluid reactions, instantaneous and geologic, natural and engineered, we have restricted ourselves to approaching the design of buildings and their interactions with the environment through solids, their properties and geometry; flow is considered well after the concept design stage and as validation of form. The research described herein explores alternative relations between the object and the flows around it as an iterative process, moving away from the traditional approach of Form Follows Function to Form Follows Flow.
keywords Tall Buildings , Mechatronics , Artificial Neural Network , Aerodynamic Performance Data Base
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ecaade2012_82
id ecaade2012_82
authors Mohammad, Kareem El Sayed; Hanafi, Mohammad Assem; Nasr, Mohammad
year 2012
title A Closer Perspective on Fabrication Realities
doi https://doi.org/10.52842/conf.ecaade.2012.2.169
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 169-179
summary Digital Fabrication has arguably stirred the return of the architect to the long-held position as a master builder. The close engagement with materials offered by the digital fabrication technologies places necessary limitations and calls the architects for a deeper understanding of and awareness about the fabrication realities during the design process. The research conducted uses parametric modeling for the alteration of the design according to a wide range of infl uences, one of which is fabrication. This paper offers a close perspective on some fabrication necessities and limitations that emerged through the manufacturing of a number of scaled models of a parametrically designed shed and a full scale pavilion. The scope of this work falls into the realm of physical testing, tolerance, structure and assembly. It also points out the fabrication parameters that were part of the digital setting used to create the physical models. The paper argues that craft is still practically alive when deploying digital technologies as it has been ever present in the pre-digital era.
wos WOS:000330320600017
keywords Digital fabrication; tolerances; parametric design; assembly; Laser cutting
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2012_292
id ecaade2012_292
authors Reinhardt, Dagmar ; Martens, William ; Miranda, Luis
year 2012
title Acoustic Consequences of Performative Structures Modelling Dependencies between Spatial Formation and Acoustic Behaviour
doi https://doi.org/10.52842/conf.ecaade.2012.1.577
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 577-586
summary The paper discusses an interdisciplinary exchange between parametric design and acoustic simulation. It reviews a strategic development of temporary dynamic structures that can be manipulated by intersecting variations of formation in generative architecture with acoustic simulation. The research investigates drivers that interface knowledge between parametric design, structural engineering and fabrication, interaction design and acoustics, and theatre and performance. It reviews the simulation of a temporary theatre installation into an existent industrial hall, whereby different formation of a modular structure are explored, and the acoustic effects of this installation are evaluated in relation to an enhancement of the audiences spatial and acoustic experience. The research goes beyond the morphological, aesthetic or structural values that have become key aspects of contemporary digital architecture, and relates them to the field of auralisation (forecasting acoustic behaviour). In that manner, the simulation and analysis of a future (material, spatial) objects is developed through the communication of an interdisciplinary team, thus exploring synergetic qualities of the physical and the digital.
wos WOS:000330322400059
keywords Computational design; generative geometries; acoustic simulation
series eCAADe
email
last changed 2022/06/07 08:00

_id acadia12_157
id acadia12_157
authors Schwinn, Tobias ; Krieg, Oliver David ; Menges, Achim ; Mihaylov, Boyan ; Reichert, Steffen
year 2012
title Machinic Morphospaces: Biomimetic Design Strategies for the Computational Exploration of Robot Constraint Spaces for Wood Fabrication
doi https://doi.org/10.52842/conf.acadia.2012.157
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 157-168
summary The paper presents research into computational design processes that integrate not only criteria of physical producibility but also characteristics of design intelligence and performance. In the first part, the use of an industrial robot’s design space for developing differentiated finger joint connections for planar sheets of plywood is being introduced. Subsequently, biomimetics is proposed as a filter for the possible geometric differentiations with respect performative capacities. The second part focuses on the integration of fabricational and biomimetic principles with structural and architectural demands, as well as by the development of a custom digital data structure for the fabrication of finger joint plate structures resulting in the construction of a full scale prototype. The paper concludes with evaluating the tolerances inherent in construction through 3D laser scan validation of the physical model.
keywords Computational Design , Robotic Manufacturing , Digital Fabrication , Biomimetics , 3D Scanning
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id sigradi2012_154
id sigradi2012_154
authors Soares, Luiza Dacier Lobato
year 2012
title EduCAAD: An X-ray of CAAD education in Brazil
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 255-258
summary The present work is offers the project of an online resource for investigating the actual Brazilian academic panorama concerning CAAD education. The access to this information is given through the development of a website, which introduces the visitors to the actual Brazilian CAAD education situation, offers a questionnaire, accessible by everyone and builds up a visual information mapping the current state of CAAD education in the different regions of Brazil. The questionnaire is 14 questions long, and it’s link has been sent via email to the addresses of the Brazilian faculties of architecture, being re-directed equally both to its students’ committees and courses’ coordinators. The objective is that, at its conclusion, the access to this information will lead to a better understanding of the CAAD education in Brazil. It can motivate discussions about curricula and CAAD’s pedagogy. Through the analysis of its visualizations, maps, tables and statistics, it points special features in Brazilian education system, as well as give directions for further researches and pedagogic proposals.
keywords panorama; CAAD education; questionnaire; data visualization
series SIGRADI
email
last changed 2016/03/10 10:00

_id caadria2012_123
id caadria2012_123
authors Urvi, Sheth
year 2012
title Parametricism: Indian social need in complexity and chaos
doi https://doi.org/10.52842/conf.caadria.2012.433
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 433–442
summary Indian society living in its physical context and administrative boundaries is complex. The contemporary built environment imitating perceived advance technology where development is purely measured by material consumption is chaos. The present approach to meet dynamic and diverse demands emerging from the complexity and economical boom is fragmented and superficial. The challenge is to find order – the hidden patterns - through an approach that analysis and interprets the complexity with the holistic vision to offer contextual variety inclusive of qualitative richness in the existing chaos. Considering that Parametricism is based on algorithms and mathematics it is generally understood as quantification where as it is also important to understand its qualitative impact. The paper is an inquiry on qualitative gains of Parametricism that helps shaping society in Indian context. This is demonstrated by bringing forward understanding on qualitative gains of Parametricism exemplified with an academic exploration and inter-relating them with Indian examples to showcase the opportunities.
keywords Parametricism; complexity; chaos
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2012_199
id ecaade2012_199
authors Varoudis, Tasos
year 2012
title Augmented Visibility: A Visibility Graph Analysis for Hybrid Architectural Spaces
doi https://doi.org/10.52842/conf.ecaade.2012.2.401
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 401-409
summary The introduction of digital technologies in architecture formed new relations between space and people that are affected by the redefi nitionof the spatial properties. Ambient projections can augment walls creating hybrid spatial confi gurations without changing the physical morphology of space. Such augmentations allow space to be transformed into a dynamic environment where visual boundaries are dissolved. This paper argues that in order to adapt our understanding of spatial analysis we need to look space as a dual system of physical and virtual properties incorporating human’s behavioural and perceptional changes.Extending the idea of visibility graph analysis by using the ‘augmented visibility’ representation, which includes a joined set of spaces in both physical and virtual domain, the paper presents interesting fi nding and correlations with data fromexperiment observations.
wos WOS:000330320600042
keywords Augmented visibility; ambient displays; human navigation; hybrid space; visibility graph analysis
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2012_130
id ecaade2012_130
authors Beirão, José ; Arrobas, Pedro ; Duarte, José
year 2012
title Parametric Urban Design: Joining morphology and urban indicators in a single interactive model
doi https://doi.org/10.52842/conf.ecaade.2012.1.167
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp.167-175
summary A parametric urban design system integrating GIS data in a CAD environment is proposed as a platform for discussing urban plans providing flexibility and information access in an interactive fashion. The proposed system links calculations of urban indicators with the parameter manipulation of the layout geometry, therefore allowing for a systematic update of indicators according to design modifi cations. Hence, design may be fine-tuned in an informed manner enhancing the quality of design decisions.
wos WOS:000330322400016
keywords Parametric urban design; density studies; design methods
series eCAADe
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_690057 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002