CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 142

_id acadia12_315
id acadia12_315
authors Imbern, Matias ; Raspall, Felix ; Su, Qi
year 2012
title Tectonic Tessellations: A Digital Approach to Ceramic Structural Surfaces
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 315-321
doi https://doi.org/10.52842/conf.acadia.2012.315
summary From the beginning of digital revolution, structural surfaces drew significant attention as a realm that interweaves formal explorations, form-finding and structural optimization. However, after successful experimentation in the virtual domain, it became evident that some of the main challenges lay on how to translate these structural forms into architectural assemblies at the scale of buildings. The development of digital fabrication is crucial in this task, as means to overcome traditional constraints such as need for modular pieces, scaffolding and optimal assembly sequences.This research focuses on digital workflows that combine form finding with robotic fabrication, surface tessellation and panelization. In the past years, the use of digital tools to assemble identical modules into complex formations has achieved significant results for loadbearing walls. Expanding this line of research, the proposed fabrication system carries these experiments on additive fabrication into the production of structural surfaces. The assembly sequence involves a two-step fabrication: off-site panel manufacturing and on-site assembly. The main components of the system consist of two triangular ceramic pieces that provide structural resistance, refined surface finish, and formwork for thin reinforced-concrete layer. Panelization strategies reduce the requirements on-site work and formwork.The paper describes background research, concept, construction process, methodology, results and conclusions.
keywords Digital Fabrication , Complex Geometry , Reinforced Ceramic , Structural Surfaces , Reduced Formwork
series ACADIA
type panel paper
email
last changed 2022/06/07 07:50

_id acadia12_157
id acadia12_157
authors Schwinn, Tobias ; Krieg, Oliver David ; Menges, Achim ; Mihaylov, Boyan ; Reichert, Steffen
year 2012
title Machinic Morphospaces: Biomimetic Design Strategies for the Computational Exploration of Robot Constraint Spaces for Wood Fabrication
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 157-168
doi https://doi.org/10.52842/conf.acadia.2012.157
summary The paper presents research into computational design processes that integrate not only criteria of physical producibility but also characteristics of design intelligence and performance. In the first part, the use of an industrial robot’s design space for developing differentiated finger joint connections for planar sheets of plywood is being introduced. Subsequently, biomimetics is proposed as a filter for the possible geometric differentiations with respect performative capacities. The second part focuses on the integration of fabricational and biomimetic principles with structural and architectural demands, as well as by the development of a custom digital data structure for the fabrication of finger joint plate structures resulting in the construction of a full scale prototype. The paper concludes with evaluating the tolerances inherent in construction through 3D laser scan validation of the physical model.
keywords Computational Design , Robotic Manufacturing , Digital Fabrication , Biomimetics , 3D Scanning
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id acadia12_187
id acadia12_187
authors Mei-Ling, Lin ; Han, Ling ; Kothapuram, Shankara ; Jiawei, Song
year 2012
title Digital Vernacular
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 187-195
doi https://doi.org/10.52842/conf.acadia.2012.187
summary Digital Vernacular investigates the potential of the process of depositing a paste like material with precision using a CNC device which has produced an innovative system for design and fabrication of environmentally responsive housing. Architectural practice has been greatly impacted by technical innovations in the past, usually new building types emerge as part of new ideologies. Yet the current revolution in computer-aided design and fabrication has architecture focusing on form – without questioning what these new processes can bring for the masses. The research project 'Digital Vernacular' has investigated the potential of using CNC technology for the production of housing. It has focused on the design of the machinic devices as well as computational design tools, and revolves around the concept of fabrication on site. Using an additive and layered manufacturing process and locally available material, the project proposes a revolutionary new digital design and fabrication system that is based on one of the oldest and most sustainable construction methods in the world. The main potentials of this method are not to create complex forms for the sake of design, but to use parametric control to adapt each design to the specificities of its site. Using geometrical rules found during many research experiments with real material behaviour, a new architectural language is created that merges several environmental functionalities into a single integrated design.
keywords Digital , Vernacular , CNC , CAM , Housing , fabrication , environmental
series ACADIA
type panel paper
email
last changed 2022/06/07 07:58

_id acadia12_169
id acadia12_169
authors Helm, Volker ; Ercan, Selen ; Gramazio, Fabio ; Kohler, Matthias
year 2012
title In-Situ Robotic Construction: Extending the Digital Fabrication Chain in Architecture
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 169-176
doi https://doi.org/10.52842/conf.acadia.2012.169
summary In this paper, viable applications of mobile robotic units on construction sites are explored. While expanding on potential objectives for in-situ fabrication in the construction sector, the intention is also to build upon innovative man-machine interaction paradigms to deal with the imprecision and tolerances often faced on construction sites. By combining the precision of the machine with the cognitive environmental human skills, a simple but effective mobile fabrication system is experimented for the building of algorithmically designed additive assemblies that would not be possible through conventional manual methods if the large amount of individual building blocks and the size of the structure to be built are taken into account. It is believed that this new approach to man-machine collaboration, aimed at a deeper integration of human ability with the strengths of digitally controlled machines, will result in advances in the construction sector, thus opening up new design and application fields for architects and planners.
keywords in-situ robotic fabrication , mobile robotics , 1:1 scale fabrication , additive assembly , algorithmically designed structures , man-machine interaction , cognitive , object recognition , construction site
series ACADIA
type normal paper
email
last changed 2022/06/07 07:49

_id ecaade2012_152
id ecaade2012_152
authors Krieg, Oliver David; Mihaylov, Boyan; Schwinn, Tobias; Reichert, Steffen; Menges, Achim
year 2012
title Computational Design of Robotically Manufactured Plate Structures Based on Biomimetic Design Principles Derived from Clypeasteroida
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 531-540
doi https://doi.org/10.52842/conf.ecaade.2012.2.531
wos WOS:000330320600056
summary The paper presents the current development of an ongoing research project about the integration of robotic fabrication strategies in computational design through morphological and functional principles derived from natural systems. Initially, a developed plate structure material system based on robotically fabricated fi nger joints is being informed by biomimetic principles from the sea urchin Clypeasteroida in order to be able to adapt effi ciently to its building environment. Consequently, the paper’s main focus lies on translating the biomimetic design principles into a computational design tool, also integrating fabrication parameters as well as structural and architectural demands. The design tool’s capability to integrate these parameters is shown by the design, development and realization of a full-scale research pavilion. The paper concludes with discussing the performative capacity of the developed material system and the introduced methodology.
keywords Biomimetics; Digital Simulation; Parametric Design; Robotic Manufacturing
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia12_287
id acadia12_287
authors McGee, Wes ; Newell, Catie ; Willette, Aaron
year 2012
title Glass Cast: A Reconfigurable Tooling System for Free-Form Glass Manufacturing
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 287-294
doi https://doi.org/10.52842/conf.acadia.2012.287
summary Despite glass’s ubiquity in the modern built environment it is rarely applied in applications requiring complex curvature. The high temperatures and complexity of techniques utilized in forming curved glass panels are typically very expensive to employ, requiring dedicated hard-tooling which ultimately limits the formal variation that can be achieved. This combination of economic and manufacturing barriers limits both the formal possibilities and potentially the overall envelope-performance characteristics of the glazing system. This research investigates a methodology for utilizing reconfigurable tooling to form glass into doubly curved geometries, offering the potential for improved structural and environmental performance in a material that has remained largely unchanged since the advent of its industrial manufacturing. A custom built forming kiln has been developed and tested, integrated through a parametric modeling workflow to provide manufacturing constraint feedback directly into the design process. The research also investigates the post-form trimming of glass utilizing robotic abrasive waterjet cutting, allowing for the output of machine control data directly from the digital model. The potentials of the methodologies developed in this process are shown through the fabrication of a full-scale installation. By integrating material, fabrication, and design constraints into a streamlined computational methodology, the process also serves as a model for a more intuitive production workflow, expanding the understanding of glass as a material with wide-ranging possibilities for a more performative architecture.
keywords Digital Fabrication , Robotic Fabrication , Computational Design , Material Computation
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id caadria2012_110
id caadria2012_110
authors McGee, Wes; David Pigram and Maciej P. Kaczynski
year 2012
title Robotic reticulations: A method for the integration of multi-axis fabrication processes with algorithmic form-finding techniques
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 295–304
doi https://doi.org/10.52842/conf.caadria.2012.295
summary This paper addresses the design and fabrication of non-uniform structural shell systems. Structural shells, particularly gridshells, have a long history but due to their complexity and the accompanying high cost of construction, their application has been limited. The research proposes a method for integrating the design and fabrication processes such that complex double curved reticulated frames can be constructed efficiently, from prefabricated components, requiring significantly less formwork than is typical. A significant aspect of the method has been the development of software tools that allow for both algorithmic form-finding and the direct control of robotic fabrication equipment from within the same modelling package. A recent case-study is examined where the methodology has been applied to construct a reticulated shell structure in the form of a partial vault. Components were prefabricated using 6-axis robotic fabrication equipment. Individual parts are designed such that the assembly of components guides the form of the vault, requiring no centring to create the desired shape. Algorithmically generated machine instructions controlled a sequence of three tool changes for each part, using a single modular fixture, greatly increasing accuracy. The complete integration of computational design techniques and fabrication methodologies now enables the economical deployment of non-uniform structurally optimised reticulated frames.
keywords Reticulated frame; robotic fabrication; dynamic relaxation; form-finding; computational design
series CAADRIA
email
last changed 2022/06/07 07:58

_id sigradi2012_144
id sigradi2012_144
authors Vergara, Mauricio Loyola; Keagy, Jeremy
year 2012
title Uso de sistemas robóticos en la producción de componentes constructivos con complejidad geométrica [Use of robotic systems in the production of geometrically complex building components.]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 681-683
summary This study examines the role and potential of robotic and automated systems in the production of geometrically complex building components. The article discusses the development of a design experiment considering the intensive use of advanced techniques of parametric design and automated manufacturing."p
keywords CAD/CAM; Robótica; Automatización
series SIGRADI
email
last changed 2016/03/10 10:02

_id acadia12_295
id acadia12_295
authors Dierichs, Karola ; Menges, Achim
year 2012
title Functionally Graded Aggregate Structures: Digital Additive Manufacturing With Designed Granulates
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 295-304
doi https://doi.org/10.52842/conf.acadia.2012.295
summary In recent years, loose granulates have come to be investigated as architectural systems in their own right. They are defined as large numbers of elements in loose contact, which continuously reconfigure into variant stable states. In nature they are observed in systems like sand or snow. In architecture, however, they were previously known only from rare vernacular examples and geoengineering projects, and are only now being researched for their innate material potentials. Their relevance for architecture lies in being entirely reconfigurable and in allowing for structures that are functionally graded on a macro level. Hence they are a very relevant yet unexplored field within architectural design. The research presented here is focused on the potential of working with designed granulates, which are aggregates where the individual particles are designed to accomplish a specific architectural effect. Combining these with the use of a computer-controlled emitter-head, the process of pouring these aggregate structures can function as an alternative form of 3D printing or digital additive manufacturing, which allows both for instant solidification, consequent reconfiguration, and graded material properties. In its first part, the paper introduces the field of research into aggregate architectures. In its second part, the focus is laid on designed aggregates, and an analytical design tool for the individual grains is discussed. The third part presents research conducted into the process of additive manufacturing with designed granulates. To conclude, further areas of investigation are outlined especially with regard to the development of the additive manufacturing of functionally graded architectural structures. The potentials of the methodologies developed in this process are shown through the fabrication of a full-scale installation. By integrating material, fabrication, and design constraints into a streamlined computational methodology, the process also serves as a model for a more intuitive production workflow, expanding the understanding of glass as a material with wide-ranging possibilities for a more performative architecture.
keywords Aggregate Architectures , Digital Additive Manufacturing , Functionally Graded Materials
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id caadria2017_142
id caadria2017_142
authors Kaijima, Sawako, Tan, Ying Yi and Lee, Tat Lin
year 2017
title Functionally Graded Architectural Detailing using Multi-Material Additive Manufacturing
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 427-436
doi https://doi.org/10.52842/conf.caadria.2017.427
summary The paper presents a future architectural detailing strategy enabled by the design of functionally graded materials (FGM). In specific, our proposal suggests the possibility of removing mechanical fasteners and adhesives from joint details. This is achieved by combining the principles of interlocking joineries found in traditional timber structures and current Multi-Material Additive Manufacturing (MMAM) technology to materialise FGMs. FGM belongs to a class of advanced materials characterised by variation in properties as the dimension varies by combining two or more materials at a microscopic scale (Mahamood et al. 2012). FGM is ubiquitous in nature and, when properly designed, can exhibit superior performance characteristics compared to objects comprised of homogeneous material properties. With the aim of developing interlocking details with improved performance, reliability, and design flexibility, we focus on controlling material stiffness, joint fitting, and geometry through the design of the microscopic material layout. A case study design will be presented to illustrate the process.
keywords Functionality Graded Material; Multi-Material Additive Manufacturing ; Architectural Detailing; Interlocking Joints
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2012_025
id caadria2012_025
authors Braumann, Johannes and Sigrid Brell-Cokcan
year 2012
title Digital and physical computing for industrial robots in architecture: Interfacing Arduino with industrial robots
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 317–326
doi https://doi.org/10.52842/conf.caadria.2012.317
summary Customisation is one of the most important topics in architecture, as architects generally work on individual prototypes instead of mass-produced designs. By using customised design and fabrication tools, architects are able to individually respond to challenges, instead of relying on universal software tools. This paper proposes new software components for interfacing industrial robots with physical computing microcontrollers, thereby allowing the customisation of physical tools for industrial robots. By pairing physical computing with rapid prototyping, architects are able to design and prototype individual fabrication processes for industrial robots.
keywords Industrial robots; physical computing; interfaces; rapid prototyping; computer aided manufacturing
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2012_105
id ecaade2012_105
authors Foged, Isak Worre ; Pasold, Anke ; Jensen, Mads Brath ; Poulsen, Esben Skouboe
year 2012
title Acoustic Environments: Applying Evolutionary Algorithms for Sound Based Morphogenesis
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 347-353
doi https://doi.org/10.52842/conf.ecaade.2012.1.347
wos WOS:000330322400035
summary The research investigates the application of evolutionary computation in relation to sound based morphogenesis. It does so by using the Sabine equation for performance benchmark in the development of the spatial volume and refl ectors, effectively creating the architectural expression as a whole. Additional algorithms are created and used to organise the entire set of 200 refl ector components and manufacturing constraints based upon the GA studies. An architectural pavilion is created based upon the studies illustrating the applicability of both developed methods and techniques.
keywords Evolutionary Computation; Algorithmic Design; Architectural Acoustics; CAAD/CAM processes
series eCAADe
email
last changed 2022/06/07 07:51

_id sigradi2012_103
id sigradi2012_103
authors Folle, Daiane; Bruscato, Underléa Miotto; Pupo, Regiane Trevisan
year 2012
title Equipamentos Urbanos de Interesse Social: Racionalizando o Processo de Projeto [Social interest urban equipment: Optimizing the design process]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 527-529
summary This paper shows an experience where digital technologies are used in architecture and product design processes aiming collaboration, manufacturing and construction of urban equipments for a group of 210 households. The project is covered by a Federal Government Program called “My home My Life – Entities” which provides the community resources through a Neighborhood Association that will manage the projects. This article proposes a link that points out to the concept of Triple Helix, which involves the participation of a private enterprise and university in the process of promoting social-economic development. The project included a group of architects working with digital fabrication, design, design process and validation of an urban equipment that will be proposed to be inserted in this new community.
keywords Equipamento Urbano; Metodologia de Projeto; Prototipagem Rápida; Racionalização.
series SIGRADI
email
last changed 2016/03/10 09:52

_id sigradi2012_397
id sigradi2012_397
authors Isaias, Hector Rocha; Cardoso, Daniel Ribeiro; Lenz, Daniel; Catunda, Natasha; Leite, Raquel Magalhães
year 2012
title Plataforma CIPP: desenho de um Sistema de Produção e Informação Inteligente para a área do Complexo Industrial e Portuário do Pecém [CIPP Platform: design of infomation and intelligent production system for the area of Pecém industrial and port complex]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 113-116
summary The initial framework of this paper was presented at the XV Congress of SIGraDi in Santa Fe. The work in progress will describe the evolution of the project focused on the development of a conceptual platform supporting a system that integrates Information and Communication Technologies to Advanced Manufacturing processes mediated by Artificial Intelligence.
keywords Urbanism; Artificial Intelligence; Intelligent Production Systems; Intelligent Information Systems
series SIGRADI
email
last changed 2016/03/10 09:53

_id caadria2012_046
id caadria2012_046
authors Lertsithichai, Surapong
year 2012
title Building Thailand's tallest Ganesh: CAD/CAM integration in conventional metal fabrication
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 337–346
doi https://doi.org/10.52842/conf.caadria.2012.337
summary Ganesh (Ganesa or Ganesha) is a Hindi god well known for his distinguishable elephant head and widely revered as the god of success or remover of obstacles. Patrons in Thailand have worshipped Ganesh and respected him by means of erecting statues of Ganesh in various poses and sizes throughout the country. In late 2008, the people of Chacheongsao, a province located East of Bangkok, decided to create Thailand’s tallest standing Ganesh statue made with bronze reaching heights up to 39 meters and situated on the Bangpakong river bank overseeing the city and its people. The author and design team was approached by representatives from Chacheongsao and commissioned to advise the process from conception to construction. The challenge started with seeking appropriate computer-aided design and manufacturing technologies and innovative processes to guide the design team throughout the production. The 0.60-meter bronze cast sculpture of the Ganesh was scanned using a 3D optical scanner to generate a solid model of the statue. A surface model was then extracted from the 3D model to firstly determine the most efficient structural support within the statue and secondly to generate surface strips for the foundry to create actual bronze casts. The construction of the project began early 2009 and the statue has since been erected from its base to currently its head. During construction, the author and design team has encountered several problems translating pixels to parts. Several errors have occurred during the mould and cast production process as well as construction errors on site causing mismatches of the structure and surface, misalignments, and protruding structural supports and joints. The lessons learned from this project is documented and analysed with hopes to create a more effective process for future projects with similar requirements.
keywords CAD/CAM; 3D scanner; CNC milling; metal fabrication
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia12_251
id acadia12_251
authors Winn, Kelly ; Vollen, Jason ; Dyson, Anna
year 2012
title Re-Framing Architecture for Emerging Ecological and Computational Design Trends for the Built Ecology
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 251-258
doi https://doi.org/10.52842/conf.acadia.2012.251
summary The dualities of ‘Humanity and Nature’, ‘Organic and Inorganic’, Artificial and Synthetic’ are themes that have permeated architectural discourse since the beginning of the 20th c. The interplay between nature and machine can be directly related to the 19th c. discussion of nature and industrialism that was exemplified in the works of Louis Sullivan and Frank Lloyd Wright that spawned the organic architect movement. Echoes of these dichotomous themes have been resuscitated with the introduction of computational and information processing as a fundamental part of contemporary theory and critical praxis. The ability to go beyond simplistic dualities is promised by the introduction of data informed multi-variable processes that allow for complex parametric processes that introduce a range of criteria within evaluative design frameworks. The investigations detailed herein focuses on surface morphology development that are explored and evaluated for their capacity to reintegrate the ideas from genetic and developmental biology into an architectural discourse that has historically been dominated by the mechanistic metaphor perpetuated throughout the modern era. Biological analogues in nature suggest that the zone of decoration plays an important role in the environmental response and climate adaptability of architecture. The building envelope represents the greatest potential energetic gain or loss, as much as 50 %, therefore the architectural envelope plays the most significant role in energy performance of the building. Indeed, from an environmental performance standpoint, the formal response of the envelope should tend toward complexity, as biology suggests, rather than the reduced modernist aesthetic. Information architecture coupled with environment and contextual data has the potential to return the focus of design to the rhizome, as the functional expressions of climatic performance and thermal comfort interplay within other cultural, social and economic frameworks informing the architectural artifact. Increasing the resolution that ornament requires in terms of geometric surface articulation has a reciprocal affect on the topological relationship between surface and space: the architectural envelope can respond through geometry on the surface scale in order to more responsively interface with the natural environment. This paper responds to increasing computational opportunities in architectural design and manufacturing; first by exploring the historical trajectory of discourse on nature vs. machine in architecture, then exploring the implications for utilizing environmental data to increase the energy performance of architecture at the building periphery, where building meets environment creating the synthetic Built Ecology.
keywords ecology , biomimicry , biophilia , natural , synthetic , artificial , parametric , digital , function , production , performance , modernism , form , ornament , decoration
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id acadia12_149
id acadia12_149
authors Besler, Erin
year 2012
title Low Fidelity
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 149-153
doi https://doi.org/10.52842/conf.acadia.2012.149
summary Low Fidelity engages in the translational discrepancies that occur through mediums of architectural representation, not as instances of dilemma but as opportunities to subdue tautology and augment the seductive latency of representation(1). Where some might contend the discrepant as unlawful, the methodology that this thesis argues for engages the digital and machinic, and explores the translational discrepancies that challenge and interrupt our interface with matters of materialization and excite material propensities. The discrepant becomes a dynamic catalyst through the engagement of tools and techniques that subvert the homogeneity of digital design. Low Fidelity engages the sphere of translation by reevaluating the role of architectural representation as generator and generated its originations and its limitations. In an attempt to negotiate the digital and physical, this thesis situates itself within the feedback loop between the mediums of translation through ideas their formal logics, material propensities and back again.
keywords Robotic Fabrication , Digital Machinic , Material Propensity , Technological Fidelity , Generative Representation , Translation through Mediums
series ACADIA
type panel paper
email
last changed 2022/06/07 07:52

_id ijac201210405
id ijac201210405
authors Braumann, Johannes; Sigrid-Brell Cokcan
year 2012
title Digital and Physical Tools for Industrial Robots in Architecture: Robotic Interaction and Interfaces
source International Journal of Architectural Computing vol. 10 - no. 4, 541-554
summary The development of digital and physical tools is highly dependent on interfaces, which define the terms of interaction both between humans and machines, as well as between machines and other machines.This research explores how new, advanced human machine interfaces, that are built upon concepts established by entertainment electronics can enhance the interaction between users and complex, kinematic machines. Similarly, physical computing greatly innovates machine-machine interaction, as it allows designers to easily customize microcontroller boards and to embed them into complex systems, where they drive actuators and interact with other machines such as industrial robots.These approaches are especially relevant in the creative industry, where customized soft- and hardware is now enabling innovative and highly effective fabrication strategies that have the potential to compete with high-tech industry applications.
series journal
last changed 2019/05/24 09:55

_id ecaade2012_60
id ecaade2012_60
authors Dierichs, Karola; Menges Achim
year 2012
title Material and Machine Computation of Designed Granular Matter: Rigid-Body Dynamics Simulations as a Design Tool for Robotically-Poured Aggregate Structures Consisting of Polygonal Concave Particles
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 711-719
doi https://doi.org/10.52842/conf.ecaade.2012.2.711
wos WOS:000330320600076
summary Loose granulates are a relevant yet rarely deployed architectural material system. Their significance lies in their capacity to combine fluid-like amorphousness with solid-like rigidity, resulting in potential architectural structures capable of continuous reconfi guration. In addition aggregates allow for functional grading. Especially if custom designed concave particles are used, full-scale architectural structures can be poured using a six-axis industrial robot, combining the precise travel of the emitter-head with the self-organizational capacity of granular substances. In this context, the paper proposes Rigid-Body Dynamics (RBD) simulations as a design-tool for the robotic pouring of loose granular structures. The notions of material and machine computation are introduced and RBD is explained in greater detail. A set of small tests is conducted to investigate the advantages and disadvantages of a specifi c RBD software. Conclusively, further areas of research are outlined.
keywords Material and machine computation; aggregate architectures; designed granulates; robotic pouring; Rigid-Body Dynamics
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia12_491
id acadia12_491
authors Feringa, Jelle ; Søndergaard, Asbjørn
year 2012
title An Integral Approach to Structural Optimization and Fabrication
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 491-497
doi https://doi.org/10.52842/conf.acadia.2012.491
summary Abstract Integral structural optimization and fabrication seeks the synthesis of two original approaches; that of topological optimization (TO) and robotic hotwire cutting (HWC). TO allows for the reduction of up to 70% of the volume of concrete to support a given structure. A strength of the method is that it allows to come up with structural designs that lie beyond the grasp of traditional means of design. A design space is a discretized volume, delimiting where the optimization will take place. The number of cells used to discretize the design space thus sets the resolution of the TO. While the approach of the application of TO as a constitutive design tool centers on structural aspects in the design phase, the outcome of this process are structures that cannot be realized within a conventional budget. As such the ensuing design is optimal in a narrow sense; whilst optimal structurally though, construction can be prove to be prohibitively expensive. This paper reports ongoing research efforts on the development of a cost effective methodology for the realization of TO concrete structures using HWC.
keywords Topology optimization , robotics , hotwire cutting , ruled surfaces , advanced concrete structures , formwork , EPS
series ACADIA
type panel paper
email
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 7HOMELOGIN (you are user _anon_135471 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002