CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 551

_id ijac201210405
id ijac201210405
authors Braumann, Johannes; Sigrid-Brell Cokcan
year 2012
title Digital and Physical Tools for Industrial Robots in Architecture: Robotic Interaction and Interfaces
source International Journal of Architectural Computing vol. 10 - no. 4, 541-554
summary The development of digital and physical tools is highly dependent on interfaces, which define the terms of interaction both between humans and machines, as well as between machines and other machines.This research explores how new, advanced human machine interfaces, that are built upon concepts established by entertainment electronics can enhance the interaction between users and complex, kinematic machines. Similarly, physical computing greatly innovates machine-machine interaction, as it allows designers to easily customize microcontroller boards and to embed them into complex systems, where they drive actuators and interact with other machines such as industrial robots.These approaches are especially relevant in the creative industry, where customized soft- and hardware is now enabling innovative and highly effective fabrication strategies that have the potential to compete with high-tech industry applications.
series journal
last changed 2019/05/24 09:55

_id acadia12_315
id acadia12_315
authors Imbern, Matias ; Raspall, Felix ; Su, Qi
year 2012
title Tectonic Tessellations: A Digital Approach to Ceramic Structural Surfaces
doi https://doi.org/10.52842/conf.acadia.2012.315
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 315-321
summary From the beginning of digital revolution, structural surfaces drew significant attention as a realm that interweaves formal explorations, form-finding and structural optimization. However, after successful experimentation in the virtual domain, it became evident that some of the main challenges lay on how to translate these structural forms into architectural assemblies at the scale of buildings. The development of digital fabrication is crucial in this task, as means to overcome traditional constraints such as need for modular pieces, scaffolding and optimal assembly sequences.This research focuses on digital workflows that combine form finding with robotic fabrication, surface tessellation and panelization. In the past years, the use of digital tools to assemble identical modules into complex formations has achieved significant results for loadbearing walls. Expanding this line of research, the proposed fabrication system carries these experiments on additive fabrication into the production of structural surfaces. The assembly sequence involves a two-step fabrication: off-site panel manufacturing and on-site assembly. The main components of the system consist of two triangular ceramic pieces that provide structural resistance, refined surface finish, and formwork for thin reinforced-concrete layer. Panelization strategies reduce the requirements on-site work and formwork.The paper describes background research, concept, construction process, methodology, results and conclusions.
keywords Digital Fabrication , Complex Geometry , Reinforced Ceramic , Structural Surfaces , Reduced Formwork
series ACADIA
type panel paper
email
last changed 2022/06/07 07:50

_id caadria2012_110
id caadria2012_110
authors McGee, Wes; David Pigram and Maciej P. Kaczynski
year 2012
title Robotic reticulations: A method for the integration of multi-axis fabrication processes with algorithmic form-finding techniques
doi https://doi.org/10.52842/conf.caadria.2012.295
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 295–304
summary This paper addresses the design and fabrication of non-uniform structural shell systems. Structural shells, particularly gridshells, have a long history but due to their complexity and the accompanying high cost of construction, their application has been limited. The research proposes a method for integrating the design and fabrication processes such that complex double curved reticulated frames can be constructed efficiently, from prefabricated components, requiring significantly less formwork than is typical. A significant aspect of the method has been the development of software tools that allow for both algorithmic form-finding and the direct control of robotic fabrication equipment from within the same modelling package. A recent case-study is examined where the methodology has been applied to construct a reticulated shell structure in the form of a partial vault. Components were prefabricated using 6-axis robotic fabrication equipment. Individual parts are designed such that the assembly of components guides the form of the vault, requiring no centring to create the desired shape. Algorithmically generated machine instructions controlled a sequence of three tool changes for each part, using a single modular fixture, greatly increasing accuracy. The complete integration of computational design techniques and fabrication methodologies now enables the economical deployment of non-uniform structurally optimised reticulated frames.
keywords Reticulated frame; robotic fabrication; dynamic relaxation; form-finding; computational design
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2012_151
id ecaade2012_151
authors Stavric, Milena; Stokic, Dragana; Ilic, Maja
year 2012
title Architectural Scale Model in Digital Age – Design Process, Representation and Manufacturing
doi https://doi.org/10.52842/conf.ecaade.2012.2.033
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 33-42
summary The topic of this paper is the concept and outcomes of the new syllabus of the course Visualization and Modeling. The aim of the course is to introduce students to digital and analog methods of design, visualization and fabrication. In order for students to acquire such complex matter more effi ciently, the classes are held in the form of a five-day workshop. Topics to be covered in the workshop are selected based on their character, which is meant to bear a resemblance to that of architectural design, scaled down to match the scope and goals of the workshop.
wos WOS:000330320600002
keywords Architectural education; analog-digital tools; design process; digital fabrication; modeling
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2012_152
id ecaade2012_152
authors Krieg, Oliver David; Mihaylov, Boyan; Schwinn, Tobias; Reichert, Steffen; Menges, Achim
year 2012
title Computational Design of Robotically Manufactured Plate Structures Based on Biomimetic Design Principles Derived from Clypeasteroida
doi https://doi.org/10.52842/conf.ecaade.2012.2.531
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 531-540
summary The paper presents the current development of an ongoing research project about the integration of robotic fabrication strategies in computational design through morphological and functional principles derived from natural systems. Initially, a developed plate structure material system based on robotically fabricated fi nger joints is being informed by biomimetic principles from the sea urchin Clypeasteroida in order to be able to adapt effi ciently to its building environment. Consequently, the paper’s main focus lies on translating the biomimetic design principles into a computational design tool, also integrating fabrication parameters as well as structural and architectural demands. The design tool’s capability to integrate these parameters is shown by the design, development and realization of a full-scale research pavilion. The paper concludes with discussing the performative capacity of the developed material system and the introduced methodology.
wos WOS:000330320600056
keywords Biomimetics; Digital Simulation; Parametric Design; Robotic Manufacturing
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia12_287
id acadia12_287
authors McGee, Wes ; Newell, Catie ; Willette, Aaron
year 2012
title Glass Cast: A Reconfigurable Tooling System for Free-Form Glass Manufacturing
doi https://doi.org/10.52842/conf.acadia.2012.287
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 287-294
summary Despite glass’s ubiquity in the modern built environment it is rarely applied in applications requiring complex curvature. The high temperatures and complexity of techniques utilized in forming curved glass panels are typically very expensive to employ, requiring dedicated hard-tooling which ultimately limits the formal variation that can be achieved. This combination of economic and manufacturing barriers limits both the formal possibilities and potentially the overall envelope-performance characteristics of the glazing system. This research investigates a methodology for utilizing reconfigurable tooling to form glass into doubly curved geometries, offering the potential for improved structural and environmental performance in a material that has remained largely unchanged since the advent of its industrial manufacturing. A custom built forming kiln has been developed and tested, integrated through a parametric modeling workflow to provide manufacturing constraint feedback directly into the design process. The research also investigates the post-form trimming of glass utilizing robotic abrasive waterjet cutting, allowing for the output of machine control data directly from the digital model. The potentials of the methodologies developed in this process are shown through the fabrication of a full-scale installation. By integrating material, fabrication, and design constraints into a streamlined computational methodology, the process also serves as a model for a more intuitive production workflow, expanding the understanding of glass as a material with wide-ranging possibilities for a more performative architecture.
keywords Digital Fabrication , Robotic Fabrication , Computational Design , Material Computation
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ecaade2012_319
id ecaade2012_319
authors Stavric, Milena; Kaftan, Martin
year 2012
title Robotic Fabrication of Modular Formwork for Non-Standard Concrete Structures
doi https://doi.org/10.52842/conf.ecaade.2012.2.431
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 431-437
summary In this work we address the fast and economical realization of complex formwork for concrete with the advantage of industrial robot arm. Under economical realization we mean reduction of production time and material effi ciency. The complex form of individual formwork parts can be in our case double curved surface of complex mesh geometry. We propose the fabrication of the formwork by straight or shaped hot wire. We illustrate on several projects different approaches to mould production, where the proposed process demonstrates itself effective. In our approach we deal with the special kinds of modularity and specific symmetry of the formwork.
wos WOS:000330320600045
keywords Robotic fabrication; formwork; non-standard structures
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2013_128
id ecaade2013_128
authors Symeonidou, Ioanna; Hirschberg, Urs and Kaftan, Martin
year 2013
title Designing the Negative
doi https://doi.org/10.52842/conf.ecaade.2013.1.683
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 683-691
summary Designing the Negative was the title of a Master Studio that took place at the Institute of Architecture and Media of Graz University of Technology during the summer semester of 2012. Students designed and fabricated prototypes of customized concrete formwork as part of their studio assignment. The studio theme forced students to think about digital fabrication with parametric tools in a hands-on fashion. Using robotic technology and hot-wire cutting, students worked with the robot’s constraints (size of the robot’s arm, robot’s axis and tool’s restrictions) to design complex curved elements that could serve as formwork (the negative) for cast concrete elements (the positive). The students were asked to design a production strategy for their cast concrete elements as well as the application of said elements in an architectural scheme. The student projects confirmed the value of a pedagogy that takes on research-relevant questions in an interdisciplinary studio setting and engages students in a process that is best described as digital crafting: it simultaneously addressed the conceptual and technical as well as the material and tactile aspects of digital fabrication and design.
wos WOS:000340635300071
keywords Digital fabrication; customization; concrete; hot-wire cutting; parametric design.
series eCAADe
email
last changed 2022/06/07 07:56

_id sigradi2012_144
id sigradi2012_144
authors Vergara, Mauricio Loyola; Keagy, Jeremy
year 2012
title Uso de sistemas robóticos en la producción de componentes constructivos con complejidad geométrica [Use of robotic systems in the production of geometrically complex building components.]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 681-683
summary This study examines the role and potential of robotic and automated systems in the production of geometrically complex building components. The article discusses the development of a design experiment considering the intensive use of advanced techniques of parametric design and automated manufacturing."p
keywords CAD/CAM; Robótica; Automatización
series SIGRADI
email
last changed 2016/03/10 10:02

_id acadia12_139
id acadia12_139
authors Erioli, Alessio ; Zomparelli, Alessandro
year 2012
title Emergent Reefs
doi https://doi.org/10.52842/conf.acadia.2012.139
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 139-148
summary The Emergent Reefs project thrives on the potential that emerge from a coherent utilization of the environment’s inherent ecological structure for its own transformation and evolution, using an approach based on digitally simulated ecosystems and sparkled by the possibilities and potential of large-scale 3D printing technology. Considering tourism as an inevitable vector of environmental change, the project aims to direct its potential and economic resources towards a positive transformation, providing a material substrate for the human-marine ecosystem integration with the realization of spaces for an underwater sculpture exhibition. Such structures will also provide a pattern of cavities which, expanding the gradient of microenvironmental conditions, break the existing homogeneity in favor of systemic heterogeneity, providing the spatial and material preconditions for the repopulation of marine biodiversity. Starting from a digital simulation of a synthetic local ecosystem, a generative technique based on multi-agent systems and continuous cellular automata (put into practice from the theoretical premises in Alan Turing’s paper “The Chemical basis of Morphogenesis” through reaction-diffusion simulation) is implemented in a voxel field at several scales giving the project a twofold quality: the implementation of reaction diffusion generative strategy within a non-isotropic 3-dimensional field and integration with the large-scale 3D printing fabrication system patented by D-Shape®. Out of these assumptions and in the intent of exploiting the expressive and tectonic potential of such technology, the project has been tackled exploring voxel-based generative strategies. Working with a discrete lattice eases the simulation of complex systems and processes across multiple scales (including non-linear simulations such as Computational Fluid-Dynamics) starting from local interactions using, for instance, algorithms based on cellular automata, which then can be translated directly to the physical production system. The purpose of Emergent-Reefs is to establish, through strategies based on computational design tools and machine-based fabrication, seamless relationships between three different aspects of the architectural process: generation, simulation and construction, which in the case of the used technology can be specified as guided growth.
keywords emergence , reef , underwater , 3D printing , ecology , ecosystem , CFD , agency , architecture , tourism , culture , Open Source
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ecaade2012_14
id ecaade2012_14
authors Ron, Ruth
year 2012
title Exploration of Eco-Kinetic Systems in Architecture: Development of Dynamic Interactive Building Elements
doi https://doi.org/10.52842/conf.ecaade.2012.2.391
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 391-399
summary This paper explores the potential of smart, moveable building components to achieve customized shading, variable privacy properties, and introduce complex visual qualities. The research combines performative design strategies and sustainable design principles, with parametric modelling and digital fabrication, within the contemporary theoretical and cultural context. The focus of this research is on architecture where physical movement is an integral part of the primary functional and formal nature of the building component. With embedded computing using input and output devices, the systems are no longer static but dynamically move and respond. The paper presents several case studies of working prototypes.
wos WOS:000330320600041
keywords Kinetic architecture; dynamic architecture; interactive architecture
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2012_184
id ecaade2012_184
authors Zomparelli, Alessandro ; Erioli, Alessio
year 2012
title Emergent Reefs
doi https://doi.org/10.52842/conf.ecaade.2012.1.329
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 329-337
summary The purpose of Emergent-Reefs is to establish, through computational design strategies and machine-based fabrication, seamless relationships between three different aspects of the architectural process: generation, simulation and construction, with the intent of exploiting the expressive and tectonic potential of D-Shape technology for underwater reef formations as a design response to coastal erosion. Starting from a digital simulation of a synthetic local ecosystem, a generative technique based on multi-agent systems and reaction-diffusion (through continuous cellular automata - CCA) is implemented in a voxel fi eld at several scales. Discrete voxel space eases the simulation of complex systems and processes (including CFD simulations) via CCA algorithms, which then can be translated directly to the physical production system, which in case of addtive technology can be specifi ed as guided growth.
wos WOS:000330322400033
keywords Reaction-diffusion; Reefs; Multi-agent Systems; Open Source; D-Shape
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2012_60
id ecaade2012_60
authors Dierichs, Karola; Menges Achim
year 2012
title Material and Machine Computation of Designed Granular Matter: Rigid-Body Dynamics Simulations as a Design Tool for Robotically-Poured Aggregate Structures Consisting of Polygonal Concave Particles
doi https://doi.org/10.52842/conf.ecaade.2012.2.711
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 711-719
summary Loose granulates are a relevant yet rarely deployed architectural material system. Their significance lies in their capacity to combine fluid-like amorphousness with solid-like rigidity, resulting in potential architectural structures capable of continuous reconfi guration. In addition aggregates allow for functional grading. Especially if custom designed concave particles are used, full-scale architectural structures can be poured using a six-axis industrial robot, combining the precise travel of the emitter-head with the self-organizational capacity of granular substances. In this context, the paper proposes Rigid-Body Dynamics (RBD) simulations as a design-tool for the robotic pouring of loose granular structures. The notions of material and machine computation are introduced and RBD is explained in greater detail. A set of small tests is conducted to investigate the advantages and disadvantages of a specifi c RBD software. Conclusively, further areas of research are outlined.
wos WOS:000330320600076
keywords Material and machine computation; aggregate architectures; designed granulates; robotic pouring; Rigid-Body Dynamics
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia13_137
id acadia13_137
authors Kretzer, Manuel; In, Jessica; Letkemann, Joel; Jaskiewicz, Tomasz
year 2013
title Resinance: A (Smart) Material Ecology
doi https://doi.org/10.52842/conf.acadia.2013.137
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 137-146
summary What if we had materials that weren’t solid and static like traditional building materials are? What if these materials could dynamically change and adapt to varying environmental situations and stimulations and evolve and learn over time? What if they were autonomous, self-sufficient and independent but could communicate with each other and exchange information? What would this “living matter” mean for architecture and the way we perceive the built environment? This paper looks briefly at current concepts and investigations in regards to programmable matter that occupy various areas of architectural research. It then goes into detail in describing the most recent smart material installation “Resinance” that was supervised by Manuel Kretzer and Benjamin Dillenburger and realized by the 2012/13 Master of Advanced Studies class as part of the materiability research at the Chair for CAAD, ETH Zürich in March 2013. The highly speculative sculpture links approaches in generative design, digital fabrication, physical/ubiquitous computing, distributed networks, swarm behavior and agent-based communication with bioinspiration and organic simulation in a responsive entity that reacts to user input and adapts its behavior over time.
keywords Smart Materials; Distributed Networks; Digital Fabrication; Physical Computing; Responsive Environment
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:51

_id sigradi2012_244
id sigradi2012_244
authors Nome, Carlos Alejandro; de Farias, Hélio Takashi Maciel
year 2012
title M+P: Integração de Modelagem e Prototipagem no Ensino de Arquitetura [M+P: Modeling and Prototyping Integration to Architectural Education]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 272-276
summary This paper discusses the insertion of parametric modeling and prototyping concepts and hands on exercises on the matter in graduate and undergraduate architectural courses. At the undergraduate level the course focuses on architectural detailing and its graphic representation. At the graduate level the course focuses on the role of parametric modeling of parts, components and assemblies in the design of complex object. The objective is to explore how different conceptual depth levels of the subject can be inserted in academic exercises, as well as the understanding of its repercussions in architectural education and practice.
keywords ensino de arquitetura; modelagem paramétrica; detalhamento; prototipagem; CNC
series SIGRADI
email
last changed 2016/03/10 09:56

_id ecaade2012_171
id ecaade2012_171
authors Tang, Wen Yen; Tang, Sheng Kai; Lee, Yuzn Zone
year 2012
title Tangible Pixels: Interactive Architectural Modules for Discovering Adaptive Human Swarm Interaction
doi https://doi.org/10.52842/conf.ecaade.2012.2.301
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 301-307
summary In this paper, we design and implement 40 identical modular architectural blocks, named Tangible Pixels, with swarm computing mechanism embedded. Each unit of tangible pixels is a customized, which has three functions_sensing, communication/computing, and actuating abilities to collective reactions to its surroundings. We further arrange this set of tangible swarm into a public interactive installation to explore the potential research and design territories of human swarm interaction and adaptive artifact. Via a preliminary onsite observation, we prove that this adaptive interaction model did overturn the conventional space design and usage as well as user mental model.
wos WOS:000330320600030
keywords Tangible; adaptive artifact; human swarm interaction; modular robotic; programmable matter
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia12_365
id acadia12_365
authors Tibbits, Skylar
year 2012
title The Self-Assembly Line
doi https://doi.org/10.52842/conf.acadia.2012.365
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 365-372
summary As disciplines converge and programmablity becomes ubiquitous from the nano-scale to the human-scale, architecture and construction will likely inherit new processes from design tools, materials, fabrication and construction. This paper outlines the key ingredients for self-assembly and computational construction through a recent project, The Self-Assembly line. This project was commissioned for the 2012 TED Conference, described as “an installation that builds installations,” and was built to show autonomous self-assembly at furniture-scales. A new intuition is proposed for the construction of large-scale structures and gives insight for potentially expanding a designer’s role in self-assembly processes outside of the discipline of architecture. Future applications are outlined for self-assembly and programmable materials at large-scale lengths.
keywords Self-Assembly , Programmable materials/matter , Computational Construction , Intelligent Building Materials
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id acadia12_149
id acadia12_149
authors Besler, Erin
year 2012
title Low Fidelity
doi https://doi.org/10.52842/conf.acadia.2012.149
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 149-153
summary Low Fidelity engages in the translational discrepancies that occur through mediums of architectural representation, not as instances of dilemma but as opportunities to subdue tautology and augment the seductive latency of representation(1). Where some might contend the discrepant as unlawful, the methodology that this thesis argues for engages the digital and machinic, and explores the translational discrepancies that challenge and interrupt our interface with matters of materialization and excite material propensities. The discrepant becomes a dynamic catalyst through the engagement of tools and techniques that subvert the homogeneity of digital design. Low Fidelity engages the sphere of translation by reevaluating the role of architectural representation as generator and generated its originations and its limitations. In an attempt to negotiate the digital and physical, this thesis situates itself within the feedback loop between the mediums of translation through ideas their formal logics, material propensities and back again.
keywords Robotic Fabrication , Digital Machinic , Material Propensity , Technological Fidelity , Generative Representation , Translation through Mediums
series ACADIA
type panel paper
email
last changed 2022/06/07 07:52

_id acadia12_491
id acadia12_491
authors Feringa, Jelle ; Søndergaard, Asbjørn
year 2012
title An Integral Approach to Structural Optimization and Fabrication
doi https://doi.org/10.52842/conf.acadia.2012.491
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 491-497
summary Abstract Integral structural optimization and fabrication seeks the synthesis of two original approaches; that of topological optimization (TO) and robotic hotwire cutting (HWC). TO allows for the reduction of up to 70% of the volume of concrete to support a given structure. A strength of the method is that it allows to come up with structural designs that lie beyond the grasp of traditional means of design. A design space is a discretized volume, delimiting where the optimization will take place. The number of cells used to discretize the design space thus sets the resolution of the TO. While the approach of the application of TO as a constitutive design tool centers on structural aspects in the design phase, the outcome of this process are structures that cannot be realized within a conventional budget. As such the ensuing design is optimal in a narrow sense; whilst optimal structurally though, construction can be prove to be prohibitively expensive. This paper reports ongoing research efforts on the development of a cost effective methodology for the realization of TO concrete structures using HWC.
keywords Topology optimization , robotics , hotwire cutting , ruled surfaces , advanced concrete structures , formwork , EPS
series ACADIA
type panel paper
email
last changed 2022/06/07 07:50

_id ecaade2012_261
id ecaade2012_261
authors Feringa, Jelle; Sondergaard, Asbjorn
year 2012
title Design and Fabrication of Topologically Optimized Structures; An Integral Approach - A Close Coupling Form Generation and Fabrication
doi https://doi.org/10.52842/conf.ecaade.2012.2.495
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 495-500
summary Integral structural optimization and fabrication seeks the synthesis of two original approaches; that of topological optimization (TO) and robotic hotwire cutting (HWC) (Mcgee 2011). TO allows for the reduction of up to 70% of the volume of concrete to support a given structure (Sondergaard & Dombernowsky 2011). A strength of the method is that it allows to come up with structural designs that lie beyond the grasp of traditional means of design. A design space is a discretized volume, delimiting where the optimization will take place. The number of cells used to discretize the design space thus sets the resolution of the TO. While the approach of the application of TO as a constitutive design tool centers on structural aspects in the design phase (Xie 2010), the outcome of this process are structures that cannot be realized within a conventional budget. As such the ensuing design is optimal in a narrow sense; whilst optimal structurally though, construction can be prove to be prohibitively expensive.
wos WOS:000330320600052
keywords Topology optimization; robotics; hotwire cutting; EPS formwork; concrete structures
series eCAADe
email
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_573724 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002