CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 545

_id ecaade2008_190
id ecaade2008_190
authors Russell, Peter; Elger, Dietrich
year 2008
title The Meaning of BIM
doi https://doi.org/10.52842/conf.ecaade.2008.531
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 531-536
summary The paper is a position paper, not a report about a research project. It concerns the paradigm-shift that is taking place in the CAAD software and its implications for the business of architecture and more importantly, for the education of future members of the profession. Twenty years ago the use of CAAD software as a replacement for hand drafting was starting. Since then the transformation is complete: hardly a final project in the universities is drawn by hand. Currently, we are witnessing a second paradigm shift and its name is BIM. The meaning of BIM is rooted in two significant differences to current CAAD software and this will have implications for teaching and practicing architecture. The first difference is the way the software structures information in the CAAD file. The standard way to save CAAD information was to organise simple geometric objects according to membership in groups and to sort them according to a layer-metaphor, which primarily controlled the visibility of the geometric elements. Three-dimensional modelling is/was nothing more than the same structure with a more complex geometry. BIM software changes this structure by storing classes of geometries and then to store the specific values of individual geometries according to factors that can be determined by external or internal logical factors. The implication for architects is that we have the chance to be the people in control of the building information model, so long as we invest the time and energy to fully understand what is happening to the building information during the planning process. If we ignore this, the real danger exists that the last control of the building’s final configuration will be usurped. As educators we are currently teaching students that will be leaving the schools in 2012 and beyond. By then, the paradigm-shift will be in full motion and so it behoves us to consider which skill sets we want the next generation of architects to possess. This means not just teaching students about how to use particular BIM software or how to program a certain parametric/genetic algorithm in a form-finding process. We need to teach our students to take the leadership in building information management and that means understanding and controlling how the building information flows, how the methodologies that are used by the consulting engineers affect our building models, and knowing what kind of logical inconsistencies (internal or external) can threaten the design intention.
keywords Building Information Modelling, Digital Curriculum, Architectural Pedagogy
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2012_000
id ecaade2012_000
authors Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejdan, Dana (eds.)
year 2012
title Digital Physicality
doi https://doi.org/10.52842/conf.ecaade.2012.1
source Proceedings of the 30th International Conference on Education and research in Computer Aided Architectural Design in Europe - Volume 1 [ISBN 978-9-4912070-2-0], Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, 762 p.
summary Digital Physicality is the first volume of the conference proceedings of the 30th eCAADe conference, held from 12-14 september 2012 in Prague at the Faculty of Architecture of Czech Technical University in Prague. The companion volume is called Physical Digitality. Together, both volumes contain 154 papers that were submitted to this conference.Physicality means that digital models increasingly incorporate information and knowledge of the world. This extends beyond material and component databases of building materials, but involves time, construction knowledge, material properties, space logic, people behaviour, and so on. Digital models therefore, are as much about our understanding of the world as they are about design support. Physical is no longer the opposite part of digital models. Models and reality are partly digital and partly physical. The implication of this condition is not clear however, and it is necessary to investigate its potential. New strategies are necessary that acknowledge the synergetic qualities of the physical and the digital. This is not limited to our designs but it also influences the process, methods, and what or how we teach.The subdivision of papers in these volumes follow the distinction made in the conference theme. The papers in Digital Physicality have their orientation mainly in the digital realm, and reach towards the physical part. It has to be granted that this distinction is rather crude, because working from two extremes (digital versus physical) tends to ignore the arguably most interesting middle ground.
keywords Digital physicality; physical digitality
series eCAADe
email
last changed 2022/06/07 07:49

_id caadria2012_021
id caadria2012_021
authors Al-Saati, Maha Zeini; David Botta and Robert Woodbury
year 2012
title Architects on architectural film and animation
doi https://doi.org/10.52842/conf.caadria.2012.637
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 637–646
summary As part of our inquiry about the practice of architectural film and animation and where it might go, this paper presents the results of interviews with architects on space, and on animation. We present their rich sense of space, and explain how they structure architectural film and animation. We found that architects wish to convey the subjective impact of design, but don’t know how to connect film editing techniques to architectural ends. Computational design could fill this gap with, for example, drag-and-drop editing patterns.
keywords Architectural film and animation; concepts of architectural space
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2012_193
id ecaade2012_193
authors Barczik, Günter
year 2012
title Leaving Flatland behind: Algebraic surfaces and the chimaera of pure horizontality in Architecture
doi https://doi.org/10.52842/conf.ecaade.2012.1.433
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 433-441
summary We argue that the prevalence of continuous flat floor surfaces in architecture is comprehensible but fallacious, and that this chimaera can be overcome through studying and employing the sculptural potential of algebraic surfaces which suggest spatial possibilities that enrich designers’ vocabulary enormously. We continue, deepen and extend research the basics and early results of which were presented at the last two eCAADe conferences in Istanbul and Zürich. We present and discuss a university-based experimental design and research project that demonstrates how Algebraic Surfaces can drastically amplify the so far only tentative exploration of the possibilities of non-fl at fl oor surfaces in Architecture.
wos WOS:000330322400044
keywords Algebraic Geometry; Shape; Sculpture; Design; Tool; Experiment; Methodology; Software
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2012_121
id caadria2012_121
authors Chang, Teng-Wen; Heng Jiang, Sheng-Han Chen and Sambit Datta
year 2012
title Dynamic skin: Interacting with space: An inter-media interface between people and space
doi https://doi.org/10.52842/conf.caadria.2012.089
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 89–98
summary Space in its physical form provides the major architectural experience for the people inside the space. How people interact with their surrounding space dynamically is a noteworthy research topic. Architectural skin (or “skin” in this project) is the physical interface between people and their surroundings. The skin in this sense represents an inter-media that receive/sense the interactive behaviours of people and react back into space. Further, the skin needs to be mediated and reacted dynamically according to the interaction behaviours. With the case studies, the knowledge of skin design has achieved and then applied to develop three prototypes. In order to achieve the feasibility of skin design for dynamic skins, the multiple channels of input sensors are desired. Thus, a system called dynamic skin is proposed and details of process are evaluated. In order to incorporate the diverse scenario appeared in the cases and prototypes, a distributed system approach such as multi-agent system design is appealing to us. We propose a distributed dynamic skin platform that cannot only provide sufficient interaction between people and space, but also extending such space to the cloud and network.
keywords Dynamic skin; multi-agent; distributed; cloud
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia12_325
id acadia12_325
authors Chronis, Angelos ; Tsigkari, Martha ; Davis, Adam ; Aish, Francis
year 2012
title Design Systems, Ecology, and Time Angelos Chronis, Martha Tsigkari, Adam Davis, Francis Aish"
doi https://doi.org/10.52842/conf.acadia.2012.325
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 325-332
summary Discussion of architecture in ecological terms usually focuses on the spatial and material dimensions of design practice. Yet there is an equally critical temporal dimension in ecology that is just as relevant to design. At the micro scale is the question of 'real time' feedback from our design systems. At the macro scale is the issue of sustainability, in other words long term -- and potentially disastrous -- feedback from terrestrial ecosystems. In between are numerous different units for quantizing time in design and computation. In this paper, we examine some of these units -- 'real time', 'design time', 'development time' -- to suggest how they interact with the ecology of design technology and practice. We contextualize this discussion by reference to relevant literature from the field of ecology and to our work applying custom design and analysis tools on architectural projects within a large interdisciplinary design practice.
keywords real time feedback , performance driven design , integration
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2012_067
id caadria2012_067
authors Delfosse, Vincent; John Schrayen, Roland Juchmes and Pierre Leclercq
year 2012
title Some advice for migrating to IFC
doi https://doi.org/10.52842/conf.caadria.2012.265
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 265–274
summary Nowadays, the BIM (Building Information Modelling) paradigm is a central topic in the CAAD community. Next to the commercial solutions, the IFC (Industry Foundation Classes) have emerged as the best open standard candidate for BIM interoperability. Despite the efforts of the community for promoting IFC over the last 15 years, it seems that its practical adoption in real-life projects has been very limited. The goal of this article is to explore how useful IFC can be today and to provide the reader with some advice for an effective adoption of IFC. Over the last year, we have conducted a project aiming at acquiring a sound understanding of IFC. It was made of two complementary investigations. On one hand, we have focused on the commercial modelling tools and the IFC support they were offering. On the other hand, we have focused on the IFC-based software developments. We have developed a tool converting IFC files into a dedicated thermal assessment based model. We will summarise the experience we have acquired in this project into some advice for users migrating to IFC. Our goal is to confront the practical aspects of the IFC developments, with both the theoretical ambitions and the commercial support currently available.
keywords Building information modelling; industry foundation classes; interoperability
series CAADRIA
email
last changed 2022/06/07 07:55

_id ascaad2012_003
id ascaad2012_003
authors Elseragy, Ahmed
year 2012
title Creative Design Between Representation and Simulation
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 11-12
summary Milestone figures of architecture all have their different views on what comes first, form or function. They also vary in their definitions of creativity. Apparently, creativity is very strongly related to ideas and how they can be generated. It is also correlated with the process of thinking and developing. Creative products, whether architectural or otherwise, and whether tangible or intangible, are originated from ‘good ideas’ (Elnokaly, Elseragy and Alsaadani, 2008). On one hand, not any idea, or any good idea, can be considered creative but, on the other hand, any creative result can be traced back to a good idea that initiated it in the beginning (Goldschmit and Tatsa, 2005). Creativity in literature, music and other forms of art is immeasurable and unbounded by constraints of physical reality. Musicians, painters and sculptors do not create within tight restrictions. They create what becomes their own mind’s intellectual property, and viewers or listeners are free to interpret these creations from whichever angle they choose. However, this is not the case with architects, whose creations and creative products are always bound with different physical constraints that may be related to the building location, social and cultural values related to the context, environmental performance and energy efficiency, and many more (Elnokaly, Elseragy and Alsaadani, 2008). Remarkably, over the last three decades computers have dominated in almost all areas of design, taking over the burden of repetitive tasks so that the designers and students can focus on the act of creation. Computer aided design has been used for a long time as a tool of drafting, however in this last decade this tool of representation is being replaced by simulation in different areas such as simulation of form, function and environment. Thus, the crafting of objects is moving towards the generation of forms and integrated systems through designer-authored computational processes. The emergence and adoption of computational technologies has significantly changed design and design education beyond the replacement of drawing boards with computers or pens and paper with computer-aided design (CAD) computer-aided engineering (CAE) applications. This paper highlights the influence of the evolving transformation from Computer Aided Design (CAD) to Computational Design (CD) and how this presents a profound shift in creative design thinking and education. Computational-based design and simulation represent new tools that encourage designers and artists to continue progression of novel modes of design thinking and creativity for the 21st century designers. Today computational design calls for new ideas that will transcend conventional boundaries and support creative insights through design and into design. However, it is still believed that in architecture education one should not replace the design process and creative thinking at early stages by software tools that shape both process and final product which may become a limitation for creative designs to adapt to the decisions and metaphors chosen by the simulation tool. This paper explores the development of Computer Aided Design (CAD) to Computational Design (CD) Tools and their impact on contemporary design education and creative design.
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_003.pdf
last changed 2012/05/15 20:46

_id acadia12_67
id acadia12_67
authors Gerber, Dr. David Jason ; Lin, Shih-Hsin
year 2012
title Synthesizing Design Performance: An Evolutionary Approach to Multidisciplinary Design Search
doi https://doi.org/10.52842/conf.acadia.2012.067
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 67-75
summary Design is a goal oriented decision-making activity. Design is ill defined and requiring of synthetic approaches to weighing and understanding tradeoffs amongst soft and hard objectives, and the imprecise and or computationally explicit criteria and goals. In this regard designers in contemporary practice face a crisis of sorts. How do we achieve performance under large degrees of uncertainty and limited design cycle time? How do we better design for integrating performance? Fundamentally design teams, are not typically given enough time nor the best tools to design explore, to generate design alternatives, and then evolve solution quality to search for best fit through expansive design solution spaces. Given the complex criteria for defining performance in architecture our research approach experiments upon an evolutionary and integrative computational strategy to expand the solution space of a design problem as well as pre-sort and qualify candidate designs. We present technology and methodology that supports rapid development of design problem solution spaces in which three design domains objectives have multi-directional impact on each other. The research describes the use of an evolutionary approach in which a genetic algorithm is used as a means to automate the design alternative population as well as to facilitate multidisciplinary design domain optimization. The paper provides a technical description of the prototype design, one that integrates associative parametric modeling with an energy use intensity evaluation and with a financial pro forma. The initial results of the research are presented and analyzed including impacts on design process; the impacts on design uncertainty and design cycle latency; and the affordances for ‘designing-in’ performance and managing project complexity. A summary discussion is developed which describes a future cloud implementation and the future extensions into other domains, scales, tectonic and system detail.
keywords Parametric Design , Domain Integration , Design Methods , Multidisciplinary Design Optimization (MDO) , Evolutionary Algorithms , Design Decision Support , Generative Design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id ecaade2012_240
id ecaade2012_240
authors Hradecny, Martin; Kolár, Zdenek
year 2012
title Design Process in the Stage of Changes: Architects Learning New Role
doi https://doi.org/10.52842/conf.ecaade.2012.2.201
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 201-209
summary Many researchers spent time analyzing design process, some of them were focused even on architectural design. Many of them presented possible views how to understand (architectural) design. They try to fi nd universal description of what design might be and how and what principles it uses. Concern in their approach is given on „conceptual“ stage of the design process, or simply all design process is referred as conceptual, with some features of „product“ design. That is an aspect, which we, as practitioners, see from a slightly different point of view. It relates to what we consider to be architecture. In our point of view architecture is completed building.
wos WOS:000330320600020
keywords Design process; design phases; project team
series eCAADe
email
last changed 2022/06/07 07:50

_id acadia12_419
id acadia12_419
authors Hsiao, Chih-Pin ; Davis, Nicholas M. ; Do, Ellen Yi-Luen
year 2012
title Dancing on the Desktop
doi https://doi.org/10.52842/conf.acadia.2012.419
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 419-428
summary Dancing on the Desktop is a gesture-based modeling system. In this prototype, two interactive display screens are projected on the top of a desk and the wall behind it to show the plan and perspective views of an architectural model, respectively. A depth camera detects gestural interactions between these two displays to create an immersive gestural interaction space to manipulate the model. Additionally, visual images and text are projected on the user’s hands to provide different types of feedback about gestural interactions. We argue that Dancing on the Desktop helps users develop an embodied understanding of the spatial and volumetric properties of virtual objects. In this paper, we will review related gestural prototypes and examine their shortcomings. Then, we will introduce distributed cognition and describe how it helped our system address the shortcomings of typical gestural prototypes. Next, we will describe the implementation details and explain each type of gestural interaction in detail. Finally, we will discuss our preliminary tests and conclusions.
keywords Design Cognition , Architectural Modeling , Gestural Inputs , Immersive Environment , Augmented Reality
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id acadia12_15
id acadia12_15
authors Johnson, Jason Kelly; Cabrinha, Mark; Steinfeld, Kyle
year 2012
title Synthetic Digital Ecologies
doi https://doi.org/10.52842/conf.acadia.2012.015
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 15-17
summary Why use the terms synthetic and ecology in the context of a conference dedicated to the field of digital architecture, computation and fabrication? How do we begin to unpack the synthetic union of diverse elements, processes, collaborators, and code underlying any single contemporary design or research project? What could our field gain by interrogating these diverse ecologies? What are the relationships and interactions between our design processes, including our various tools and techniques, and the multiple environments with which we routinely work, collaborate and make? It is these questions and more that we hope to address at this year’s “Synthetic Digital Ecologies” conference. A quick scan of the papers and projects that will be presented at ACADIA reveals an extraordinary ecology of experimental research that emerged by working between messy labs, studios, workshops, hacker spaces and the like. In many ways today’s so-called “digital architects” do not feel compelled to distinguish between what is digitally designed and what is not. They are leading the way through a promiscuous and synthetic mixing of skill sets, of pens and paper, hardware and software, electronics and g-code. In a single research project these designers might collaborate with a computer scientist, a robotics expert and a glass blower, and in many cases they might even attempt to do all of these things themselves. It was with this in mind that we put forth an international call inviting, “… architects, fabricators, engineers, media artists, technologists, software developers, hackers and others in related fields of inquiry …” to submit papers and projects for this year’s conference. This year the proceedings have been organized into twelve synthetic categories based around the potential for diverse research topics to inform new and unexpected conversations. Instead of organizing peer-reviewed papers and projects through their formal characteristics, we were interested in forming new synthetic categories by curating unexpected juxtapositions. This ecology of ideas and research was meant to provoke and inspire new ways of thinking, making, building and collaborating.
series ACADIA
type introduction
email
last changed 2022/06/07 07:52

_id acadia12_000
id acadia12_000
authors Johnson, Jason; Cabrina, Mark and Steinfeld, Kyle (eds.)
year 2012
title ACADIA 12: Synthetic Digital Ecologies
doi https://doi.org/10.52842/conf.acadia.2012
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), 588p.
summary Why use the terms synthetic and ecology in the context of a conference dedicated to the field of digital architecture, computation and fabrication? How do we begin to unpack the synthetic union of diverse elements, processes, collaborators, and code underlying any single contemporary design or research project? What could our field gain by interrogating these diverse ecologies? What are the relationships and interactions between our design processes, including our various tools and techniques, and the multiple environments with which we routinely work, collaborate and make? It is these questions and more that we hope to address at this year’s “Synthetic Digital Ecologies” conference. A quick scan of the papers and projects that will be presented at ACADIA reveals an extraordinary ecology of experimental research that emerged by working between messy labs, studios, workshops, hacker spaces and the like. In many ways today’s so-called “digital architects” do not feel compelled to distinguish between what is digitally designed and what is not. They are leading the way through a promiscuous and synthetic mixing of skill sets, of pens and paper, hardware and software, electronics and g-code. In a single research project these designers might collaborate with a computer scientist, a robotics expert and a glass blower, and in many cases they might even attempt to do all of these things themselves. It was with this in mind that we put forth an international call inviting, “... architects, fabricators, engineers, media artists, technologists, software developers, hackers and others in related fields of inquiry ...” to submit papers and projects for this year’s conference. This year the proceedings have been organized into twelve synthetic categories based around the potential for diverse research topics to inform new and unexpected conversations. Instead of organizing peer-reviewed papers and projects through their formal characteristics, we were interested in forming new synthetic categories by curating unexpected juxtapositions. This ecology of ideas and research was meant to provoke and inspire new ways of thinking, making, building and collaborating.
series ACADIA
email
last changed 2022/06/07 07:49

_id caadria2012_117
id caadria2012_117
authors Karakiewicz, Justyna and Thomas Kvan
year 2012
title Diagramming in a digital environment
doi https://doi.org/10.52842/conf.caadria.2012.151
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 151–160
summary Research into digital design environments has explored modelling, generating and testing design propositions. When considering the broader design literature, however, we notice that a significant contribution to design is absent, that of diagramming. In the realm of architectural theory discourse in the past few years, diagramming has been much discussed with many interpretations of the activity. This paper will demonstrate that the development of digital techniques can change dramatically our ability to conceptualise and produce generative diagrams as previously not possible. The paper will follow the work done at the in the Melbourne School of Design. We will demonstrate how students are introduced to diagramming techniques and shown how to formulate a concept, then a program generator and to test a final proposal. The paper will also demonstrate how digital techniques can dramatically change the way we conceptualise and approach design problems. In this repeated teaching technique, we illustrate how digital systems contribute to conceptual diagrams and this contributes to the larger theoretical debate on diagramming techniques by introducing digital perspectives. The paper will therefore contribute to discussion on the ways in which digital systems can be engaged in substantive architectural teaching beyond the rote application of proprietary software and representative approaches.
keywords Diagramming; parametric; design; urbanism; abstraction
series CAADRIA
email
last changed 2022/06/07 07:52

_id ijac201210103
id ijac201210103
authors Rashid, Mahbub
year 2012
title Shape-Sensitive Configurational Descriptions of Building Plans
source International Journal of Architectural Computing vol. 10 - no. 1, 33-52
summary While the traditional graph-theoretic techniques of space syntax are able to provide a rich description of the spatial configuration of buildings, they are not sufficiently shape sensitive. Therefore, techniques are proposed to describe building plans as configurations of spaces taking into consideration the elements of shape explicitly. First, the traditional space syntax techniques are applied to a more shape-sensitive partition of a plan in order to find out if these techniques would reveal any interesting shape property of the plan. Following this, a technique to characterize the spatial units of a plan is suggested taking into consideration how surfaces become visible from these units. Finally, a plan is described as the configuration of triangles defined by the vertices of the shape of the plan, and triangulation is used as a technique for a shape-sensitive description of spatial configuration.
series journal
last changed 2019/07/30 10:55

_id ecaade2012_103
id ecaade2012_103
authors Thompson, Emine Mine
year 2012
title Cities and Landscapes. How do they merge in visualisation: An Overview
doi https://doi.org/10.52842/conf.ecaade.2012.1.145
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp.145-155
summary Tools and technologies are developing to help us to simulate the cities and landscapes for visualization, analytical and information modeling purposes. This paper, as well as offering an overview of the issues with regards to merging virtual city and landscape models in order to visualize the urban environment as a whole, is investigating various stakeholder requirements in relation to the Virtual NewcastleGateshead (VNG) project.
wos WOS:000330322400014
keywords 3D City Models; 3D Landscape Models; Virtual NewcastleGateshead; level of detail
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia12_511
id acadia12_511
authors Borowski, Darrick ; Poulimeni, Nikoletta ; Janssen, Jeroen
year 2012
title Edible Infrastructures: Emergent Organizational Patterns for the Productive City
doi https://doi.org/10.52842/conf.acadia.2012.511
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 511-526
summary Edible Infrastructures is an investigation into a projective mode of urbanism which considers food as an integral part of a city's metabolic infrastructure. Working with algorithms as design tools, we explore the generative potential of such a system to create an urban ecology that: provides for its residents via local, multi-scalar, distributed food production, reconnects urbanites with their food sources, and de-couples food costs from fossil fuels by limiting transportation at all levels, from source to table. The research is conducted through the building up of a sequence of algorithms, beginning with the ‘Settlement Simulation’, which couples consumers to productive surface area within a cellular automata type computational model. Topological analysis informs generative operations, as each stage builds on the output of the last. In this way we explore the hierarchical components for a new Productive City, including: the structure and programming of the urban circulatory network, an emergent urban morphology based around productive urban blocks, and opportunities for new architectural typologies. The resulting prototypical Productive City questions the underlying mechanisms that shape modern urban space and demonstrates the architectural potential of mathematical modeling and simulation in addressing complex urban spatial and programmatic challenges.
keywords Urban Agriculture , Urban Ecologies and Food Systems , Productive Cities , Urban Metabolism , Computational Modeling and Simulation , Algorithmic/ Procedural Design Methodologies , Emergent Organization , Self-Organizing Systems
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia12_269
id acadia12_269
authors Lally, Sean
year 2012
title Architecture of an Active Context
doi https://doi.org/10.52842/conf.acadia.2012.269
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 269-276
summary As we stand with our feet on earth’s outermost surface we build an architecture today that is much like it was several thousand years earlier, in an attempt to extend that outer shell with one of our own making. Artificial masses are built from a refinement of this existing geologic layer into materials of stone, steel, concrete, and glass that assemble to produce new pockets of space through the buildings they create. However, the sixth century BC writer Thales of Miletus put a different perspective on this: he insisted that we live, in reality, not on the summit of a solid earth but at the bottom of an ocean of air (Holmyard 1931). And so, as architecture continues to build up the outermost layer of earth’s surface through a mimicking, embellishing, and enhancing of the materials which it comes from, it raises the question of why we have not brought a similar relationship to the materialities at the bottom of this “ocean” of air to create the spaces we call architecture. If you were looking to level a complaint with the architectural profession, stating that it has not been ambitious enough in scope would not be one. Architects have never shied away from the opportunity to design everything from the building’s shell to the teaspoon used to stir your sugar in its matching cup. But it would seem that the profession has developed a rather large blind spot in terms of what it sees as a malleable material with which to engage. Architects have made assumptions as to what is beyond our scope of action, refraining from engaging a range of material variables due to a belief that the task would be too great or simply beyond our physical control. So even though we are enveloped by them continuously, both on the exterior as well as the interior of our buildings, it must be assumed that the particles, waves, and frequencies of energy that move around us are thought by architects to be too faint and shaky to unload upon them any heavy obligations, that they are too unwieldy for us to control to create the physical boundaries of separation, security, and movement required of architecture. This has resulted in a cultivated set of blinders that essentially defines architecture as a set of mediation devices (surfaces, walls, and inert masses) for tempering the environmental context it is situated in from the individuals and activities within. The spaces we inhabit are defined by their ability to decide what gets in and what stays out (sunlight, precipitation, winds). We place our organizational demands and aesthetic opinions on the surfaces that mediate these variables rather than seeing them as available for manipulation as a building material on their own. The intention here is to recalibrate the materialities that make up that environmental context to build architecture. The starting point is a rather naive question: can we design the energy systems that course in and around us daily as an architectural material so as to take on the needs of activities, securities, and lifestyles associated with architecture? Can the variables that we would normally mediate against instead be heightened and amplified so as to become the architecture itself? That which many would incorrectly dismiss as simply “air” today—thought to be homogeneous, scale-less, and vacant due in part to the limits of our human sensory system to perceive more fully otherwise—might tomorrow be further articulated, populated, and layered so as to become a materiality that will build spatial boundaries, define activities of individuals and movement, and act as architectural space. Our environmental context consists of a diverse range of materials (particles and waves of energy, spectrum of light, sound waves, and chemical particles) that can be manipulated and formed to meet our needs. The opportunity before us today is to embrace the needs of organizational structures and aesthetics by designing the active context that surrounds us through the material energies that define it.
keywords Material energies
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id caadria2012_043
id caadria2012_043
authors Lan, Wei-Hsien and Teng-Wen Chang
year 2012
title Visualising the design process with dynamic graph
doi https://doi.org/10.52842/conf.caadria.2012.111
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 111–120
summary Design Process is a continuous decision-making movement. Yet, the designer usually executes the process in a jumping way, from state to the other. Nevertheless, this kind of jumping process would cause loss of some essential information, such as a glance of design, or certain process of shape evolvement which designers want to know. Those unrecorded and therefore missing statistics information are very important to the research of design thinking and process. This study employs an animation and comic as research objects. In addition to utilising the methods of thinking aloud and protocol analysis, as well as recording the progress of this experiment, the information is digitalised. By using computer to develop a webpage-interface visualisation cloud system, called Dynamic Graph System which records and collects the evolving data generated from the space design process and stores this information into the cloud database. The system, then, uses the State space as a base, and utilises the derivative Dynamic Graph of spatial style which is evolved from the collected data of the Design Process. By studying and analysing the dynamic graphs, to investigate whether we can acquire more information of design process by using information visualisation approach to record of the evolution of the design process and helped the designers or not. This study intends to explore whether Dynamic Graph System helps and assists the designer to be more efficient in completing his/her work from the interaction between Dynamic Graph System and the designer.
keywords Design process; information visualisation; state space search; dynamic graph
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2012_049
id caadria2012_049
authors Rajasekaran, Balaji; T. Brahmani and C. Reshma
year 2012
title Spatial personality for human space interaction: Space for change
doi https://doi.org/10.52842/conf.caadria.2012.069
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 69–78
summary Exploring the duality of pervasive computing and architecture in order to propose new models of interaction between people and their built environment. One of the unique "affordances" of digital media is interactivity. This word has come to stand for all manners of engagements between people and things but as McCollough (2004) reminds us the word implies deliberation over the exchange of messages. "Objects" or architecture would be exempt from this mode of communication since, in a likewise manner, we don't interact with a door, we simply open it. However, computing provides a reflexive twist for it is not only the means through which we indirectly communicate with others but also a subject with which we can directly interact. They solicit information and based on the deliberation we ask them for return responses. This quality of computing, especially as it becomes pervasive, has profound implications for architecture and urbanism. When computation becomes embedded into the very materials we build, they along with their nature as inanimate objects become questionable. Our environment itself becomes the interactive subject through which we can inquire about our condition, perform diagnostic tasks or most significantly converse to discover more about our surrounding and ourselves.
keywords Interaction; communication; responsive; environment; performative
series CAADRIA
email
last changed 2022/06/07 08:00

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_611366 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002