CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 548

_id caadria2012_132
id caadria2012_132
authors Baerlecken, Daniel and David Duncan
year 2012
title Junk: Design build studio
doi https://doi.org/10.52842/conf.caadria.2012.305
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 305–314
summary The paper presents a design build studio that investigates the role of waste as building material and develops a proposal for an installation that uses CAAD and CAM tools in combination with traditional fabrication tools to design and build an installation out of waste materials. The paper describes the concept development and the construction process through the help of computational tools. Recycling is in the process of becoming an integral part of sustainable architecture. However, there are very few digital design projects that use re-used or recycled materials in combination with their architectural and aesthetic qualities and potentials. The potential of such an investigation is explored within a design build studio. What is junk? What is a building material? What are the aesthetics of junk?
keywords Education in CAAD; digital fabrication and construction; practice-based and interdisciplinary CAAD; parametric modelling
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2012_280
id ecaade2012_280
authors Baerlecken, Daniel; Reitz, Judith; Duncan, David
year 2012
title Junk: Reuse of Waste Materials
doi https://doi.org/10.52842/conf.ecaade.2012.2.143
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 143-150
summary The paper presents a series of design build studio that investigate the role of waste as building material. The series develops proposals for constructions that use CAAD and CAM tools in combination with traditional fabrication tools to design and build an installation out of waste materials. The fi rst construction uses waste to create two installations that questions human consumption, The second project is a future project, that intends the use of waste as an actual building material. Recycling is in the process of becoming an integral part of sustainable architecture. However, there are very few digital design projects that use re-used or recycled materials in combination with their architectural and aesthetic qualities and potentials. The potential of such an investigation is explored within these design build studios. What is junk? What is a building material? What are the aesthetics of junk?
wos WOS:000330320600014
keywords Education in CAAD; digital fabrication and construction; practice-based and interdisciplinary CAAD; parametric modeling
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia12_199
id acadia12_199
authors Beorkrem, Chris ; Corte, Dan
year 2012
title Zero-Waste, Flat-Packed, Tri-Chord Truss: Continued Investigations of Structural Expression in Parametric Design"
doi https://doi.org/10.52842/conf.acadia.2012.199
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 199-208
summary The direct and rapid connections between scripting, modeling and prototyping allow for investigations of computation in fabrication. The manipulation of planar materials with two-dimensional CNC cuts can easily create complex and varied forms, volumes, and surfaces. However, the bulk of research on folding using CNC fabrication tools is focused upon surfaces, self-supporting walls and shell structures, which do not integrate well into more conventional building construction models. This paper attempts to explain the potential for using folding methodologies to develop structural members through a design-build process. Conventional building practice consists of the assembly of off-the-shelf parts. Many times, the plinth, skeleton, and skin are independently designed and fabricated, integrating multiple industries. Using this method of construction as an operative status quo, this investigation focused on a single structural component: the truss. Using folding methodologies and sheet steel to create a truss, this design investigation employed a recyclable and prolific building material to redefine the fabrication of a conventional structural member. The potential for using digital design and two-dimensional CNC fabrication tools in the design of a foldable truss from sheet steel is viable in the creation of a flat-packed, minimal waste structural member that can adapt to a variety of aesthetic and structural conditions. Applying new methods to a component of the conventional ‘kit of parts’ allowed for a novel investigation that recombines zero waste goals, flat-packing potential, structural expression and computational processes. This paper will expand (greatly) upon previous research into bi-chord truss designs, developing a tri-chord truss, which is parametrically linked to its structural moment diagram. The cross section of each truss is formed based on the loading condition for each beam. This truss design has been developed through a thorough series of analytical models and tests performed digitally, to scale and in full scale. The tri-chord truss is capable of resisting rotational failures well beyond the capacity of the bi-chord designs previously developed. The results are complex, and elegant expressions of structural logics embodied in a tightly constrained functional design.
keywords Parametric Design , Structural Expression , Material constraints
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2012_65
id ecaade2012_65
authors Kontovourkis, Odysseas
year 2012
title Virtual Forces in Design and Fabrication Process: Assembly and Construction of Physical Prototypes
doi https://doi.org/10.52842/conf.ecaade.2012.2.133
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 133-141
summary This paper demonstrates a preliminary research and teaching investigation that attempts to use virtual forces in order to achieve interaction behavior between individual components as mechanism for the development of physical prototypes in various scales. Through case studies, the current research examines possibilities for the design of global systems, structural components and joints aiming to construct prototypes that can be characterized by continuity in their forms, structures and materials. In parallel, a number of questions are raised. Is the process from design to fabrication linear? What can be the relation between digital and physical processes? In which level this integration can be achieved? This work attempts to investigate the application of such methodology, both in design and fabrication, and to examine its contribution in the design and construction process.
wos WOS:000330320600013
keywords Virtual forces; assembly; construction; physical prototypes
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2012_310
id ecaade2012_310
authors Kotsopoulos, Sotirios D; Casalegno, Federico; Hsiung, Bob; Graybill, Wesley
year 2012
title A Prototype Hut for the Post-Digital Age
doi https://doi.org/10.52842/conf.ecaade.2012.2.317
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 317-326
summary The paper presents how the latest advances in autonomous building management and electrically activated materials affect the design, production, and operation of residential buildings. The innovative features of an elementary prototype house, which is at the fi nal stage of construction in Trento, N. Italy, are discussed with a view to expose the opportunities and the problems that these new technological developments pose to design research.
wos WOS:000330320600032
keywords Electrically activated materials; model-based control; design; implementation; operation
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2012_008
id caadria2012_008
authors Schimek, Heimo; Emmanuel Ruffo Calderon Dominguez, Albert Wiltsche and Markus Manahl
year 2012
title Sewing timber panels: An innovative digitally supported joint system for self-supported timber plate structures
doi https://doi.org/10.52842/conf.caadria.2012.213
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 213–222
summary This paper focuses on the joint system of flat panels as parts of a freeform building. This topic is a key area of the ongoing founded research project, in which we investigate nonstandard shapes, realized with standard building materials, namely cross-laminated timber (CLT). We use different discretization algorithms to overlay arbitrary freeform surfaces with ornaments consisting of polygonal flat panels. We investigate a series of ornaments and their discretization results on different surfaces. In this paper, we will present and discuss a new timber-to-timber joint system that we developed exclusively for this project. We discuss the results of the load tests that we performed recently and we take a look at the construction dependent requirements of the joint system concerning the tolerances and the geometry and also, how these constraints inform the digital process. As we will discuss throughout the paper, in earlier publications we described the form finding process and the geometrical guidelines for the discretization of a desired freeform building using ornamental flat patterns. This paper moves one step further as the digital becomes physical and it is closely related to building construction and the computational design outset.
keywords Digital fabrication technology; computational algorithmic design; building construction; freeform optimisation; CLT joint system
series CAADRIA
email
last changed 2022/06/07 07:57

_id sigradi2012_257
id sigradi2012_257
authors Sousa, José Pedro; Duarte, José Pinto
year 2012
title Repensando a Cortiça em Arquitetura através do uso de Tecnologias CAD/CAM [Rethinking Cork in Architecture through the use of CAD/CAM Technologies]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 673-676
summary In contemporary architecture there is a growing interest in exploring unique forms and constructive solutions, which could hardly be conceived and materialized until recently. Operating in this context, the construction industry has tried to innovate by inventing new materials aside with rethinking existent ones. In this second scenario, given that the use of CAD/CAM technologies have opened new possibilities for traditional materials, it becomes important to ask if cork could face similar innovative opportunities. The present paper synthesizes some of the main arguments, experiments and results obtained in a PhD thesis about that question.
keywords Cortiça; CAD/CAM; Fabrico Digital; Personalização em série; Geometria
series SIGRADI
email
last changed 2016/03/10 10:00

_id acadia12_365
id acadia12_365
authors Tibbits, Skylar
year 2012
title The Self-Assembly Line
doi https://doi.org/10.52842/conf.acadia.2012.365
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 365-372
summary As disciplines converge and programmablity becomes ubiquitous from the nano-scale to the human-scale, architecture and construction will likely inherit new processes from design tools, materials, fabrication and construction. This paper outlines the key ingredients for self-assembly and computational construction through a recent project, The Self-Assembly line. This project was commissioned for the 2012 TED Conference, described as “an installation that builds installations,” and was built to show autonomous self-assembly at furniture-scales. A new intuition is proposed for the construction of large-scale structures and gives insight for potentially expanding a designer’s role in self-assembly processes outside of the discipline of architecture. Future applications are outlined for self-assembly and programmable materials at large-scale lengths.
keywords Self-Assembly , Programmable materials/matter , Computational Construction , Intelligent Building Materials
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ecaade2012_237
id ecaade2012_237
authors Zarzycki, Andrzej
year 2012
title Component-based Design Approach Using BIM
doi https://doi.org/10.52842/conf.ecaade.2012.1.067
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 67-76
summary The promising directions in current design practice and teaching relate to creativity with digital tools in the context of building information modelling (BIM), performance analysis, and simulations as well as digital materiality (computational simulations of materials) and dynamics-based behaviour. This line of research combines spatial design with building and material technology in search of effective and effi cient architecture. It reconstitutes questions of what to design by interrelating them with questions of how and why to design. This paper focuses on the appropriation of BIM tools for architectural curriculum teaching, from the design studio to building technology courses. It specifically focuses on BIM-based parametric modeling in discussing construction details, assemblies, and design explorations in the design studio context.
wos WOS:000330322400006
keywords BIM; building information modeling; parametric construction details; construction assemblies
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia12_491
id acadia12_491
authors Feringa, Jelle ; Søndergaard, Asbjørn
year 2012
title An Integral Approach to Structural Optimization and Fabrication
doi https://doi.org/10.52842/conf.acadia.2012.491
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 491-497
summary Abstract Integral structural optimization and fabrication seeks the synthesis of two original approaches; that of topological optimization (TO) and robotic hotwire cutting (HWC). TO allows for the reduction of up to 70% of the volume of concrete to support a given structure. A strength of the method is that it allows to come up with structural designs that lie beyond the grasp of traditional means of design. A design space is a discretized volume, delimiting where the optimization will take place. The number of cells used to discretize the design space thus sets the resolution of the TO. While the approach of the application of TO as a constitutive design tool centers on structural aspects in the design phase, the outcome of this process are structures that cannot be realized within a conventional budget. As such the ensuing design is optimal in a narrow sense; whilst optimal structurally though, construction can be prove to be prohibitively expensive. This paper reports ongoing research efforts on the development of a cost effective methodology for the realization of TO concrete structures using HWC.
keywords Topology optimization , robotics , hotwire cutting , ruled surfaces , advanced concrete structures , formwork , EPS
series ACADIA
type panel paper
email
last changed 2022/06/07 07:50

_id ecaade2012_261
id ecaade2012_261
authors Feringa, Jelle; Sondergaard, Asbjorn
year 2012
title Design and Fabrication of Topologically Optimized Structures; An Integral Approach - A Close Coupling Form Generation and Fabrication
doi https://doi.org/10.52842/conf.ecaade.2012.2.495
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 495-500
summary Integral structural optimization and fabrication seeks the synthesis of two original approaches; that of topological optimization (TO) and robotic hotwire cutting (HWC) (Mcgee 2011). TO allows for the reduction of up to 70% of the volume of concrete to support a given structure (Sondergaard & Dombernowsky 2011). A strength of the method is that it allows to come up with structural designs that lie beyond the grasp of traditional means of design. A design space is a discretized volume, delimiting where the optimization will take place. The number of cells used to discretize the design space thus sets the resolution of the TO. While the approach of the application of TO as a constitutive design tool centers on structural aspects in the design phase (Xie 2010), the outcome of this process are structures that cannot be realized within a conventional budget. As such the ensuing design is optimal in a narrow sense; whilst optimal structurally though, construction can be prove to be prohibitively expensive.
wos WOS:000330320600052
keywords Topology optimization; robotics; hotwire cutting; EPS formwork; concrete structures
series eCAADe
email
last changed 2022/06/07 07:50

_id acadia12_169
id acadia12_169
authors Helm, Volker ; Ercan, Selen ; Gramazio, Fabio ; Kohler, Matthias
year 2012
title In-Situ Robotic Construction: Extending the Digital Fabrication Chain in Architecture
doi https://doi.org/10.52842/conf.acadia.2012.169
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 169-176
summary In this paper, viable applications of mobile robotic units on construction sites are explored. While expanding on potential objectives for in-situ fabrication in the construction sector, the intention is also to build upon innovative man-machine interaction paradigms to deal with the imprecision and tolerances often faced on construction sites. By combining the precision of the machine with the cognitive environmental human skills, a simple but effective mobile fabrication system is experimented for the building of algorithmically designed additive assemblies that would not be possible through conventional manual methods if the large amount of individual building blocks and the size of the structure to be built are taken into account. It is believed that this new approach to man-machine collaboration, aimed at a deeper integration of human ability with the strengths of digitally controlled machines, will result in advances in the construction sector, thus opening up new design and application fields for architects and planners.
keywords in-situ robotic fabrication , mobile robotics , 1:1 scale fabrication , additive assembly , algorithmically designed structures , man-machine interaction , cognitive , object recognition , construction site
series ACADIA
type normal paper
email
last changed 2022/06/07 07:49

_id ecaade2023_318
id ecaade2023_318
authors Imam, Chowdhury Ali, Othman, Hanin Abdel Salam and Çapunaman, Özgüç Bertug
year 2023
title Robotic Plaster Carving: Formalizing subtractive detailing of plaster surfaces for construction and crafts
doi https://doi.org/10.52842/conf.ecaade.2023.1.397
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 397–406
summary Plaster has been a fundamental material in numerous interior and exterior applications in architectural construction due to its fire-resistant properties and capabilities for intricate detailing. Moreover, prior to the widespread adoption of computer-aided design tools, plaster played a crucial role in historic preservation and architectural education (Mankouche & Schulte, 2012). While the use of decorative plaster elements in architectural construction has waned in popularity, the renewed interest in plaster within the context of advanced robotic fabrication offers a compelling basis for research. This paper presents an investigation into robotic plaster carving for adding detail and texture to plaster surfaces. Within the scope of this study, we identify and systematically examine various fabrication and material parameters for emergent geometries and fabrication defects, subsequently formalizing this robotic workflow for diverse applications in construction and crafts. Among these parameters, we primarily concentrate on toolpath geometry, tool orientation, carving speed, carving profile, and aggregation of carving strokes. Through this bottom-up approach, our objective is to enhance the understanding of tool-material interaction during the fabrication process and achieve improved control over the resulting artifact. Building on these insights, we demonstrate how the proposed robotic plaster carving workflow can be employed for subtractive surface detailing in architectural construction and digital crafts.
keywords Robotic Fabrication, Plaster Carving, Surface Detailing, Digital Craft
series eCAADe
email
last changed 2023/12/10 10:49

_id acadia12_315
id acadia12_315
authors Imbern, Matias ; Raspall, Felix ; Su, Qi
year 2012
title Tectonic Tessellations: A Digital Approach to Ceramic Structural Surfaces
doi https://doi.org/10.52842/conf.acadia.2012.315
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 315-321
summary From the beginning of digital revolution, structural surfaces drew significant attention as a realm that interweaves formal explorations, form-finding and structural optimization. However, after successful experimentation in the virtual domain, it became evident that some of the main challenges lay on how to translate these structural forms into architectural assemblies at the scale of buildings. The development of digital fabrication is crucial in this task, as means to overcome traditional constraints such as need for modular pieces, scaffolding and optimal assembly sequences.This research focuses on digital workflows that combine form finding with robotic fabrication, surface tessellation and panelization. In the past years, the use of digital tools to assemble identical modules into complex formations has achieved significant results for loadbearing walls. Expanding this line of research, the proposed fabrication system carries these experiments on additive fabrication into the production of structural surfaces. The assembly sequence involves a two-step fabrication: off-site panel manufacturing and on-site assembly. The main components of the system consist of two triangular ceramic pieces that provide structural resistance, refined surface finish, and formwork for thin reinforced-concrete layer. Panelization strategies reduce the requirements on-site work and formwork.The paper describes background research, concept, construction process, methodology, results and conclusions.
keywords Digital Fabrication , Complex Geometry , Reinforced Ceramic , Structural Surfaces , Reduced Formwork
series ACADIA
type panel paper
email
last changed 2022/06/07 07:50

_id ijac201210306
id ijac201210306
authors Leach, Neil; Anders Carlson, Behrokh Khoshnevis, et al.
year 2012
title Robotic Construction by Contour Crafting: The Case of Lunar Construction
source International Journal of Architectural Computing vol. 10 - no. 3, 423-438
summary Contour Crafting is a digitally controlled construction process invented by Professor Behrokh Khoshnevis that fabricates components directly from computer models, using layered fabrication technology. By obviating the need for formwork used in traditional concrete construction, CC can reduce costs and construction times significantly. The technique has great potential as a robotic form of construction reliant on relatively minimal human labor as a form of construction in relatively hazardous environments, such as the Moon with its radiation levels that can prove highly damaging. Current research funded by NASA has been exploring the potential for using CC on the Moon to build structures making use of readily available regolith that is found in great abundance on the surface of the Moon. This article offers an overview of this research and evaluates the merits of using CC on the Moon.
series journal
last changed 2019/05/24 09:55

_id acadia12_177
id acadia12_177
authors Mankouche, Steven ; Bard, Joshua ; Schulte, Matthew
year 2012
title Morphfaux: Probing the Proto-Synthetic Nature of Plaster Through Robotic Tooling
doi https://doi.org/10.52842/conf.acadia.2012.177
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 177-186
summary Morphfaux is an applied research project that revisits the virtually lost craft of plaster to explore its potential for producing thickened architectural environments through the use of contemporary digital technology. The research challenges the flatness of modern, standardized dry wall construction and explores plaster’s malleability as a material that can be applied thick and thin, finished to appear smooth or textured, and tooled while liquid or cured. If the invention of industrialized modern building products such as drywall led to the demise of the plasterer as a tradesperson, our research seeks alliances between the abilities of the human hand and those of automation. By transforming historic methods using new robotic tools, Morphfaux has broadened the possibilities of architectural plaster. While our research has produced forms not possible by human skill alone, it also clearly illustrates a symbiotic relationship between the human body and robotic machines where human dexterity and robotic precision are choreographed in the production of innovative plastering techniques.
keywords Digital Practice , Robotic Fabrication , Digital Craft , Tacit Knowledge , Material Resistance , Synthetic Material , Plaster , Variable Tools
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id caadria2012_110
id caadria2012_110
authors McGee, Wes; David Pigram and Maciej P. Kaczynski
year 2012
title Robotic reticulations: A method for the integration of multi-axis fabrication processes with algorithmic form-finding techniques
doi https://doi.org/10.52842/conf.caadria.2012.295
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 295–304
summary This paper addresses the design and fabrication of non-uniform structural shell systems. Structural shells, particularly gridshells, have a long history but due to their complexity and the accompanying high cost of construction, their application has been limited. The research proposes a method for integrating the design and fabrication processes such that complex double curved reticulated frames can be constructed efficiently, from prefabricated components, requiring significantly less formwork than is typical. A significant aspect of the method has been the development of software tools that allow for both algorithmic form-finding and the direct control of robotic fabrication equipment from within the same modelling package. A recent case-study is examined where the methodology has been applied to construct a reticulated shell structure in the form of a partial vault. Components were prefabricated using 6-axis robotic fabrication equipment. Individual parts are designed such that the assembly of components guides the form of the vault, requiring no centring to create the desired shape. Algorithmically generated machine instructions controlled a sequence of three tool changes for each part, using a single modular fixture, greatly increasing accuracy. The complete integration of computational design techniques and fabrication methodologies now enables the economical deployment of non-uniform structurally optimised reticulated frames.
keywords Reticulated frame; robotic fabrication; dynamic relaxation; form-finding; computational design
series CAADRIA
email
last changed 2022/06/07 07:58

_id ijac201210301
id ijac201210301
authors Pan, Cheng-An; Taysheng Jeng
year 2012
title Cellular Robotic Architecture
source International Journal of Architectural Computing vol. 10 - no. 3, 319-339
summary An emerging need for interactive architecture is currently making buildings mutable, flexible in use, and adaptable to changes in climate by introducing robotic systems. However, the feasibility of the seamless integration of building construction details and kinetic robotics has become a critical issue for developing robotic architecture. The objective of this work is to develop a robotic architecture with an emphasis on the integration of cellular robotics with a distributed kinetic building surface. The kinetic building surface integrates an actuating system, a localization and remote control system, which become part of the kinetic building system. This paper presents a systematic framework by reviewing theories and related work of robotic architecture and automated control. An architectural design scheme is proposed to simulate a scenario of application in a physical space. The functionality of the electrical and control system and the integration of the effects of actual construction were examined by a prototype of a kinetic surface. Our prototype presents a feasible construction method, and a prominent energy-saving effect. The potential strength and restrictions of the cellular robotic approach to architectural applications are discussed. The applicability of the prototype system and issues about controlling the behavior of spatial robots are demonstrated in this paper.
series journal
last changed 2019/05/24 09:55

_id ecaade2012_262
id ecaade2012_262
authors Pasternak, Agata
year 2012
title Robotic Prototypes Optimization: Incorporation of Optimization Procedures in the Design Process
doi https://doi.org/10.52842/conf.ecaade.2012.2.265
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 265-272
summary The use of computer-aided design combined with robotics and evolutionary principles of optimization, during the architectural design process, is discussed in this paper. The research is based on the examples of four case studies out of six projects designed during the Experimental Design Studio: ROBO Studio and a parallel seminar on optimization techniques on Architecture for Society of Knowledge Master course at Warsaw University of Technology, Faculty of Architecture. The project’s main goal was to combine robotic prototypes construction with an optimization process executed in parallel within one design procedure. The results of the course and the discussion about the impact of both factors on the architectural design process are presented in this paper.
wos WOS:000330320600026
keywords Genetic algorithm; optimization; robotics; Galapagos, Firefly, digital fabrication, design integration, kinetic structures
series eCAADe
type normal paper
email
last changed 2022/06/07 07:59

_id acadia12_157
id acadia12_157
authors Schwinn, Tobias ; Krieg, Oliver David ; Menges, Achim ; Mihaylov, Boyan ; Reichert, Steffen
year 2012
title Machinic Morphospaces: Biomimetic Design Strategies for the Computational Exploration of Robot Constraint Spaces for Wood Fabrication
doi https://doi.org/10.52842/conf.acadia.2012.157
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 157-168
summary The paper presents research into computational design processes that integrate not only criteria of physical producibility but also characteristics of design intelligence and performance. In the first part, the use of an industrial robot’s design space for developing differentiated finger joint connections for planar sheets of plywood is being introduced. Subsequently, biomimetics is proposed as a filter for the possible geometric differentiations with respect performative capacities. The second part focuses on the integration of fabricational and biomimetic principles with structural and architectural demands, as well as by the development of a custom digital data structure for the fabrication of finger joint plate structures resulting in the construction of a full scale prototype. The paper concludes with evaluating the tolerances inherent in construction through 3D laser scan validation of the physical model.
keywords Computational Design , Robotic Manufacturing , Digital Fabrication , Biomimetics , 3D Scanning
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_589071 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002