CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 551

_id caadria2015_185
id caadria2015_185
authors De Oliveira, Maria João and Vasco Moreira Rato
year 2015
title From Morphogenetic Data to Performative Behaviour
doi https://doi.org/10.52842/conf.caadria.2015.765
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 765-774
summary This paper presents part of CORK’EWS, a research work developed within the framework of the Digital Architecture Advanced Program 2012/13 at ISCTE-IUL. The main goal of this investigation was to develop a parametric, customizable and adaptive wall system designed for environmental performance. Moreover, the system is based on standard industrial products: expanded cork blocks produced by Amorim Insulation industries. CAD/CAM resources were the essential tools of the research process, where fundamental and practical knowledge is integrated to understand the microstructure morphological properties of the raw material – cork – and its derivate – natural expanded cork. These properties were upscale and adapted to create a wall with an optimized solar control environmental performance. The result is a digitally fabricated prototype of a new customizable industrial product, adaptable to specific environmental conditions and installation setups being therefore easily commercialized. From microstructural morphology to macroscale construction, the research explores new application possibilities through morphogenesis and opens new possible markets for these customizable products.
keywords Morphogenesis; performance; shading systems; cork.
series CAADRIA
email
last changed 2022/06/07 07:55

_id acadia12_97
id acadia12_97
authors Lilley, Brian ; Hudson, Roland ; Plucknett, Kevin ; Macdonald, Rory ; Cheng, Nancy Yen-Wen ; Nielsen, Stig Anton ; Nouska, Olympia ; Grinbergs, Monika ; Andematten, Stephen ; Baumgardner, Kyle ; Blackman, Clayton ; Kennedy, Matthew ; Chatinthu, Monthira ; Tianchen, Dai ; Sheng-Fu, Chen
year 2012
title Ceramic Perspiration: Multi-Scalar Development of Ceramic Material
doi https://doi.org/10.52842/conf.acadia.2012.097
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 97-108
summary Ceramic building material is a useful passive modulator of the environment. The subject area is based on traditional cultural and material knowledge of clay properties: from amphora to rammed earth building; and ranges to present uses: from desiccants and space shuttle tile patterns to bio-ceramics. The primary consideration is to control material density and porosity in a tile component, in response to specific environmental conditions. This depends on a number of key physical principles: the ability of the material to absorb thermal energy, the ability to absorb and then ‘wick’ moisture within the pore structure, and the decrement factor or ‘time lag’ of the effect. The interplay between these properties point to the importance of directionality in the porous microstructure, at the boundary layer. Material characteristics have been investigated in the laboratory at a micron scale and in the ceramics workshop at full scale, with some interplay between the two. Recent work done on monitoring has led to the development of software tools that allow feedback (approaching real time)- a visual representation of the dynamic thermal and hygrometric properties involved.
keywords Synthetic tectonics , composite materials , smart assemblies , emerging material processes , Responsive environments , sensing , real-time computation , feedback loops , Information Visualization
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id ecaade2012_250
id ecaade2012_250
authors Baerlecken, Daniel ; Swarts, Matthew ; Gentry, Russell ; Wonoto, Nixon
year 2012
title Bio-Origami: Form Finding and Evaluation of Origami Structures
doi https://doi.org/10.52842/conf.ecaade.2012.1.497
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 497-504
summary This paper presents a concept of origami as a form-generator for a structural system that allows deployability for structures with large spans. The presented approach studies the embedded kinetic possibilities of folded structures and focuses on a parametric modelling process that allows evaluating the structural performance of different types of the same origami family in order to optimize the geometry for a given scenario. The workfl ow between scripting based form generation – within Rhinoceros and Excel – and LS-DYNA is presented in detail. In addition to that the question of scalability from a thin microstructure to a thickened roof structure is discussed in the context of an architectural project.
wos WOS:000330322400051
keywords Parametric modelling; form fi nding; origami; LS-DYNA; scripting
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2012_024
id ascaad2012_024
authors Abeer, Samy Yousef Mohamed
year 2012
title Sustainable Design and Construction: New Approaches Towards Sustainable Manufacturing
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 241-251
summary Ecological and environmental issues are playing an important and larger role in corporate and manufacturing strategies. For complete creative design process, buildings require both for construction and manufacturing, due to their comparatively long life cycle for maintenance, significant raw material and energy resources. Thinking in terms of product life cycles is one of the challenges facing manufacturers today. “Life Cycle Management” (LCM) considers the product life cycle as a whole and optimizes the interaction of product design, construction, manufacturing and life cycle activities. The goal of this approach is to protect resources and maximize the effectiveness during usage by means of Life Cycle Assessment, Product Data Management, Technical Support and last but not least by Life Cycle Costing. In this paper the environmental consciousness issues pertaining to design, construction, manufacturing and operations management are presented through computer intelligent technologies of this 21century. So, this paper shows the existing approaches of LCM and discusses their visions and further development.
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_024.pdf
last changed 2012/05/15 20:46

_id ecaade2012_002
id ecaade2012_002
authors Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejdan, Dana (eds.)
year 2012
title Physical Digitality
doi https://doi.org/10.52842/conf.ecaade.2012.2
source Proceedings of the 30th International Conference on Education and research in Computer Aided Architectural Design in Europe - Volume 2 [ISBN 978-9-4912070-3-7], Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, 714 p.
summary Physical Digitality is the second volume of the conference proceedings of the 30th eCAADe conference, held from 12-14 september 2012 in Prague at the Faculty of Architecture of Czech Technical University in Prague. The companion volume is called Digital Physicality. Together, both volumes contain 154 papers that were submitted to this conference. Digitality is the condition of living in a world where ubiquitous information and communication technology is embedded in the physical world. Although it is possible to point out what is “digital” and what is “real,” the distinction has become pointless, and it has no more explanatory power for our environment, buildings, and behaviour. Material objects are invested with communication possibilities, teams are communicating even when not together, and buildings can sense and respond to the environment, each other, and to inhabitants. Digital is no longer an add-on, extra, or separate software. Reality is partly digital and partly physical. The implication of this condition is not clear however, and it is necessary to investigate its potential. New strategies are necessary that acknowledge the synergetic qualities of the physical and the digital. This is not limited to our designs but it also infl uences the process, methods, and what or how we teach. The subdivision of papers in these volumes follow the distinction made in the conference theme. The papers in Physical Digitality have their orientation mainly in the physical realm, and reach towards the digital part. It has to be granted that this distinction is rather crude, because working from two extremes (digital versus physical) tends to ignore the arguably most interesting middle ground.
keywords Digital physicality; physical digitality
series eCAADe
email
last changed 2022/06/07 07:49

_id ecaade2012_000
id ecaade2012_000
authors Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejdan, Dana (eds.)
year 2012
title Digital Physicality
doi https://doi.org/10.52842/conf.ecaade.2012.1
source Proceedings of the 30th International Conference on Education and research in Computer Aided Architectural Design in Europe - Volume 1 [ISBN 978-9-4912070-2-0], Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, 762 p.
summary Digital Physicality is the first volume of the conference proceedings of the 30th eCAADe conference, held from 12-14 september 2012 in Prague at the Faculty of Architecture of Czech Technical University in Prague. The companion volume is called Physical Digitality. Together, both volumes contain 154 papers that were submitted to this conference.Physicality means that digital models increasingly incorporate information and knowledge of the world. This extends beyond material and component databases of building materials, but involves time, construction knowledge, material properties, space logic, people behaviour, and so on. Digital models therefore, are as much about our understanding of the world as they are about design support. Physical is no longer the opposite part of digital models. Models and reality are partly digital and partly physical. The implication of this condition is not clear however, and it is necessary to investigate its potential. New strategies are necessary that acknowledge the synergetic qualities of the physical and the digital. This is not limited to our designs but it also influences the process, methods, and what or how we teach.The subdivision of papers in these volumes follow the distinction made in the conference theme. The papers in Digital Physicality have their orientation mainly in the digital realm, and reach towards the physical part. It has to be granted that this distinction is rather crude, because working from two extremes (digital versus physical) tends to ignore the arguably most interesting middle ground.
keywords Digital physicality; physical digitality
series eCAADe
email
last changed 2022/06/07 07:49

_id sigradi2012_186
id sigradi2012_186
authors Aghaei Meibodi, Mania; Aghaiemeybodi, Hamia
year 2012
title Symbiosis of Structural & Non-Structural properties in Building
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 602-606
summary This paper highlights the different interplays between structural and non-structural parts in building artifact as the result of modes of building processes and massing. The massing is understood as processes of assembling material into a body through which we identify with the building physically. In the last decade architecture discipline as the result of technological inventions has faced shifts in the design processes, massing processes and topology of the artefact. In which we witness integral coexistence between the structural and non-structural elements of building. In this paper the seeds of this integral interplay is scrutinised through the study of design and massing processes of a multi-functional pavilion prototype as a case study.
keywords digital surface; prototype; design processes; structural; formation
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia12_391
id acadia12_391
authors Ajlouni, Rima
year 2012
title The Forbidden Symmetries
doi https://doi.org/10.52842/conf.acadia.2012.391
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 391-400
summary The emergence of quasi-periodic tiling theories in mathematics and material science is revealing a new class of symmetry, which had never been accessible before. Because of their astounding visual and structural properties, quasi-periodic symmetries can be ideally suited for many applications in art and architecture; providing a rich source of ideas for articulating form, pattern, surface and structure. However, since their discovery, the unique long-range order of quasi-periodic symmetries, is still posing a perplexing puzzle. As rule-based systems, the ability to algorithmically generate these complicated symmetries can be instrumental in understanding and manipulating their geometry. Recently, the discovery of quasi-periodic patterns in ancient Islamic architecture is providing a unique example of how ancient mathematics can inform our understanding of some basic theories in modern science. The recent investigation into these complex and chaotic formations is providing evidence to show that ancient designers, by using the most primitive tools (a compass and a straightedge) were able to resolve the complicated long-range principles of ten-fold quasi-periodic formations. Derived from these ancient principles, this paper presents a computational model for describing the long-range order of octagon-based quasi-periodic formations. The objective of the study is to design an algorithm for constructing large patches of octagon-based quasi-crystalline formations. The proposed algorithm is proven to be successful in producing an infinite and defect-free covering of the two-dimensional plane.
keywords computational model , quasi-crystalline , symmetries , algorithms , complex geometry
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2012_243
id ecaade2012_243
authors Araya, Sergio; Zolotovsky, Ekaterina; Gidekel, Manuel
year 2012
title Living Architecture: Micro Performances of Bio Fabrication
doi https://doi.org/10.52842/conf.ecaade.2012.2.447
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 447-457
summary This ongoing research study explores novel modes of design and fabrication by combining digital tools and technologies with living biological systems within controlled environments in order to induce specifi c biological functions and material production processes. The main objective is to design and implement a biological fabrication technique, using bacteria, to produce physical components for architecture and product design.
wos WOS:000330320600047
keywords Synthetic Biology; Architecture; Design; Biofabrication; Biomaterial
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2012_132
id caadria2012_132
authors Baerlecken, Daniel and David Duncan
year 2012
title Junk: Design build studio
doi https://doi.org/10.52842/conf.caadria.2012.305
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 305–314
summary The paper presents a design build studio that investigates the role of waste as building material and develops a proposal for an installation that uses CAAD and CAM tools in combination with traditional fabrication tools to design and build an installation out of waste materials. The paper describes the concept development and the construction process through the help of computational tools. Recycling is in the process of becoming an integral part of sustainable architecture. However, there are very few digital design projects that use re-used or recycled materials in combination with their architectural and aesthetic qualities and potentials. The potential of such an investigation is explored within a design build studio. What is junk? What is a building material? What are the aesthetics of junk?
keywords Education in CAAD; digital fabrication and construction; practice-based and interdisciplinary CAAD; parametric modelling
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2012_280
id ecaade2012_280
authors Baerlecken, Daniel; Reitz, Judith; Duncan, David
year 2012
title Junk: Reuse of Waste Materials
doi https://doi.org/10.52842/conf.ecaade.2012.2.143
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 143-150
summary The paper presents a series of design build studio that investigate the role of waste as building material. The series develops proposals for constructions that use CAAD and CAM tools in combination with traditional fabrication tools to design and build an installation out of waste materials. The fi rst construction uses waste to create two installations that questions human consumption, The second project is a future project, that intends the use of waste as an actual building material. Recycling is in the process of becoming an integral part of sustainable architecture. However, there are very few digital design projects that use re-used or recycled materials in combination with their architectural and aesthetic qualities and potentials. The potential of such an investigation is explored within these design build studios. What is junk? What is a building material? What are the aesthetics of junk?
wos WOS:000330320600014
keywords Education in CAAD; digital fabrication and construction; practice-based and interdisciplinary CAAD; parametric modeling
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia12_199
id acadia12_199
authors Beorkrem, Chris ; Corte, Dan
year 2012
title Zero-Waste, Flat-Packed, Tri-Chord Truss: Continued Investigations of Structural Expression in Parametric Design"
doi https://doi.org/10.52842/conf.acadia.2012.199
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 199-208
summary The direct and rapid connections between scripting, modeling and prototyping allow for investigations of computation in fabrication. The manipulation of planar materials with two-dimensional CNC cuts can easily create complex and varied forms, volumes, and surfaces. However, the bulk of research on folding using CNC fabrication tools is focused upon surfaces, self-supporting walls and shell structures, which do not integrate well into more conventional building construction models. This paper attempts to explain the potential for using folding methodologies to develop structural members through a design-build process. Conventional building practice consists of the assembly of off-the-shelf parts. Many times, the plinth, skeleton, and skin are independently designed and fabricated, integrating multiple industries. Using this method of construction as an operative status quo, this investigation focused on a single structural component: the truss. Using folding methodologies and sheet steel to create a truss, this design investigation employed a recyclable and prolific building material to redefine the fabrication of a conventional structural member. The potential for using digital design and two-dimensional CNC fabrication tools in the design of a foldable truss from sheet steel is viable in the creation of a flat-packed, minimal waste structural member that can adapt to a variety of aesthetic and structural conditions. Applying new methods to a component of the conventional ‘kit of parts’ allowed for a novel investigation that recombines zero waste goals, flat-packing potential, structural expression and computational processes. This paper will expand (greatly) upon previous research into bi-chord truss designs, developing a tri-chord truss, which is parametrically linked to its structural moment diagram. The cross section of each truss is formed based on the loading condition for each beam. This truss design has been developed through a thorough series of analytical models and tests performed digitally, to scale and in full scale. The tri-chord truss is capable of resisting rotational failures well beyond the capacity of the bi-chord designs previously developed. The results are complex, and elegant expressions of structural logics embodied in a tightly constrained functional design.
keywords Parametric Design , Structural Expression , Material constraints
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2012_078
id caadria2012_078
authors Beorkrem, Christopher
year 2012
title Running Interference: Complex Systems Intervention as Design Process
doi https://doi.org/10.52842/conf.caadria.2012.183
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 183–192
summary This paper presents a case study problem statement tested in the design studio with the intent of teaching methods for engaging systematic thinking as a process for deriving solutions to parametric design problems. The intent is to address the simulation environment developed through complex systems and interject a curve ball, or unexpected constraint delimiting the solution as part of the design process. This method was tested through the submittal of the projects to international design competitions. The students were asked to manipulate the competition criteria by appealing not only to the design criteria but also to the juries desire (whether conscious or unconscious) for novel sustainable processes of material usage and program. This material ecology is developed as a method for linking parametric modelling, not as a process for the application of a construction technique, but as a way to pre-rationalise material constraints and discover how program and form can operate within those constraints. In the first year of the studio two of six teams were selected as finalists and in the second year of the studio five of seven of the teams were selected as finalists.
keywords Studio pedagogy; computational instruction; parametrics; material constraints
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2012_081
id caadria2012_081
authors Beorkrem, Christopher; Niki DesImini, Mitch McGregor and Igor Polakov
year 2012
title Sphere mapping: A method for a responsive surface design
doi https://doi.org/10.52842/conf.caadria.2012.527
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 527–536
summary The method proposed in this project addresses the parametric manipulation of a given pattern to respond directly to a pre-defined surface. Continuing the research of Kevin Rotheroe, Yale University and founder of FreeForm Design. Rotheroe has developed a series of studies in material and surface properties. By utilising a proven pattern, the proposed method sets parameters derived from the formal properties of the original pattern and produces a new pattern that is responsive to the curvature of a complex surface. The workflow developed in this research consists of a complex blending of tools in Grasshopper and Gehry Technologies Digital Project. The intent is to achieve the aesthetics and structure offered by Rotheroe’s original research and to add a responsive precision that provides an accurate adaptation of the pattern based on curvature of a specific computationally defined surface.
keywords Geometric systems; parametrics; material constraints
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia12_149
id acadia12_149
authors Besler, Erin
year 2012
title Low Fidelity
doi https://doi.org/10.52842/conf.acadia.2012.149
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 149-153
summary Low Fidelity engages in the translational discrepancies that occur through mediums of architectural representation, not as instances of dilemma but as opportunities to subdue tautology and augment the seductive latency of representation(1). Where some might contend the discrepant as unlawful, the methodology that this thesis argues for engages the digital and machinic, and explores the translational discrepancies that challenge and interrupt our interface with matters of materialization and excite material propensities. The discrepant becomes a dynamic catalyst through the engagement of tools and techniques that subvert the homogeneity of digital design. Low Fidelity engages the sphere of translation by reevaluating the role of architectural representation as generator and generated its originations and its limitations. In an attempt to negotiate the digital and physical, this thesis situates itself within the feedback loop between the mediums of translation through ideas their formal logics, material propensities and back again.
keywords Robotic Fabrication , Digital Machinic , Material Propensity , Technological Fidelity , Generative Representation , Translation through Mediums
series ACADIA
type panel paper
email
last changed 2022/06/07 07:52

_id ijac201210303
id ijac201210303
authors Bohnenberger, Sascha; Chin Koi Khoo, Daniel Davis, et al.
year 2012
title Sensing Material Systems - Novel Design Strategies
source International Journal of Architectural Computing vol. 10 - no. 3, 361-375
summary The development of new building materials has decisively influenced the progression of architecture through the link between built form and available material systems. The new generation of engineered materials are no exception. However, to fully utilise these materials in the design process, there is a need for designers to understand how these new materials perform. In this paper we propose a method for sensing and representing the response of materials to external stimuli, at the early design stage, to help the designer establish a material awareness. We present a novel approach for embedding capacitive sensors into material models in order to improve material performance of designs. The method was applied and tested during two workshops, both discussed in this paper. The outcome is a method for anticipating engineered material behaviour.
series journal
last changed 2019/05/24 09:55

_id ascaad2012_016
id ascaad2012_016
authors Bourbia, Fatiha ; Yasmina Bouchahm and Ouarda Mansouri
year 2012
title The Influence of Albedo on the Urban Microclimatic Street Canyon
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 159-169
summary In city, when temperatures run higher than those in suburban and rural areas, this generate a phenomenon called Urban Heat Island (UHI), this effect occurs, primarily because growing numbers of buildings have supplanted vegetation and trees. The main causes of the different microclimatic conditions in cities are linked among other parameters to urban geometry which influences incoming and outgoing radiations as well as surface material properties, such as color and texture. In hot climates the elevated surface temperatures of materials directly affect, not only the urban microclimate, but also thermal comfort conditions in urban open spaces. In order to evaluate the microclimate variation of urban street canyon compared to the variation of walls and ground surfaces materials, series of field simulation are used by software tool , Envi-met v3.0, in down town of Constantine, Algeria.
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_016.pdf
last changed 2012/05/15 20:46

_id acadia12_127
id acadia12_127
authors Burry, Jane ; Burry, Mark ; Tamke, Martin ; Thomsen, Mette Ramsgard ; Ayres, Phil ; Leon, Alex Pena de ; Davis, Daniel ; Deleuran, Abders ; Nielson, Stig ; Riiber, Jacob
year 2012
title Process Through Practice: Synthesizing a Novel Design and Production Ecology
doi https://doi.org/10.52842/conf.acadia.2012.127
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 127-138
summary This paper describes the development of a design and prototype production system for novel structural use of networked small components of wood deploying elastic and plastic bending. The design process engaged with a significant number of different overlapping and interrelated design criteria and parameters, a high level of complexity, custom component geometry and the development of digital tools and procedures for real time feedback and productivity. The aims were to maximize learning in the second order cybernetic sense through empirical experience from analogue modeling, measurement and digital visual feedback and to capture new knowledge specifically regarding intrinsic material behavior applied and tested in a heterogeneous networked context. The outcome was a prototype system of design ideation, conceptualization, development and production that integrated real time material performance simulation and feedback. The outcome was amplified through carrying out the research over a series of workshops with distinct foci and participation. Two full scale demonstrators have so far been constructed and exhibited as outputs of the process.
keywords Material behavior , Complex modeling feedback , progressive synthetic learning
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2012_266
id ecaade2012_266
authors Casucci, Tommaso ; Erioli, Alessio
year 2012
title Behavioural Surfaces: Project for the Architecture Faculty library in Florence
doi https://doi.org/10.52842/conf.ecaade.2012.1.339
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 339-345
summary Behavioural Surfaces is a thesis project in Architecture discussed on December 2010 at the University of Florence. The project explores the surfacespace relationship in which a surface condition, generated from intensive datascapes derived from environmental data, is able to produce spatial differentiation and modulate structural and environmental preformance. Exploiting material self-organization in sea sponges as surfaces that deploy function and performance through curvature modulation and space defi nition, two different surface definition processes were explored to organize the system hierarchy and its performances at two different scales. At the macroscale, the global shape of the building is shaped on the base of isopotential surfaces while at a more detailed level the multi-performance skin system is defi ned upon the triply periodic minimal surfaces (TPMS).
wos WOS:000330322400034
keywords Digital datascape; Isosurfaces; Material intelligence; Minimal sufaces
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2012_303
id ecaade2012_303
authors Cheng, Nancy Yen-wen
year 2012
title Shading With Folded Surfaces: Designing With Material, Visual and Digital Considerations
doi https://doi.org/10.52842/conf.ecaade.2012.2.613
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 613-620
summary This paper analyses a hybrid design approach; how physical and digital processes can inform each other in a multivalent design cycle. It describes the design of origami-inspired window shades, part of the Shaping Light project that explores how adjustable surface structures can modulate light levels and heat gain in response to the changing seasons. The screen uses sloped surfaces to diffuse light and create apertures that close when the screen is stretched and open when the screen is folded. The project complements digital methods for pattern proportioning and kinetic simulation with manual manipulation to generate 3D folding motifs and refi ne assemblies. Physical prototypes can shape digital refi nement by revealing visual and structural characteristics of materials, along with joint and production considerations. Physical models for simulating sunny and cloudy daylighting conditions provide a direct connection between spatial confi guration and visual effects. The paper concludes with guidelines for material-based digital-analog creation.
wos WOS:000330320600066
keywords Architectural design process; digital fabrication; shading devices; origami
series eCAADe
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_417432 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002