CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 543

_id sigradi2012_83
id sigradi2012_83
authors Valdes, Francisco; Sun, Yuming
year 2012
title Parametric Natural Ventilation Simulation with Real-time Geometric Feedback (Nat-Vent)
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 436-439
summary Nat-Vent is a modeling system to parametrically simulate natural ventilation of buildings in early stages of design. The Nat-Vent approach comprehends a set of architecture design tools that were connected to an equation solver through a Model Based System Engineering tool (SysML). SysML, which is a general purpose modeling language for systems engineering, is able to mathematically interoperate between architects and engineers while keeping model consistency between them. This implementation enhances the architectural side of design by offering a simple ventilation tool that can be used by architects and engineers, and also delivers geometric feedback from ventilation performance-based decisions.
keywords parametric modeling; building technology; natural ventilation simulation; interoperability in building design; Model Based System Engineering.
series SIGRADI
email
last changed 2016/03/10 10:02

_id ecaade2012_157
id ecaade2012_157
authors Kubicki, Sylvain ; Guerriero, Annie ; Leclercq, Pierre ; Nys,Koenraad ; Halin, Gilles
year 2012
title 4D modeling and simulation for the teaching of structural principles and construction techniques. Towards modeling and visualization guidelines for high-rise buildings
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 87-95
doi https://doi.org/10.52842/conf.ecaade.2012.1.087
wos WOS:000330322400008
summary 4D CAD is more and more used in construction education curricula. The main interest of this technology is its ability to simulate real sequencing of construction tasks in order to confront the student with real-life construction management issues. This article presents a course for architects and construction engineers. It describes the teaching of the structural principles of high-rise buildings, using 4D simulations as a support to the analysis of the characteristics of existing projects. The pedagogical interest of 4D CAD is described in the article through assessments of students and the teaching team. Particular feedback is given about modeling and visualization guidelines for the purpose of the pedagogical use of 4D CAD.
keywords 4D CAD; 4D modeling and visualization; High-Rise Building; Structural Principles; Pedagogy
series eCAADe
email
last changed 2022/06/07 07:52

_id ascaad2012_020
id ascaad2012_020
authors Bouchahm, Yasmina; Fatiha Bourbia and Bouketta Samira
year 2012
title Numerical Simulation of Effect of Urban Geometry Layouts on Wind and Natural Ventilation Under Mediterranean Climate
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 195-202
summary The use of the method "simulation" of the microclimate for an urban site presents much of interest; because this can serve as us observation and analysis of the consequences of various scenarios relating to the existence and the importance of the constituent elements in urban space. Wind in outdoor urban space is among the most difficult parameters to identify and control field given its instability. Currently, in the field of the ventilation, there are some outdoor spaces simulation tools, used to assess the flow of the wind at different spatial scales. The aim of this research is to demonstrate the effect of the urban geometry of the layout on the wind movement and the outdoor natural ventilation. However, this study investigated the effect on outdoor thermal comfort of a building layouts in a planned residential area situated in the city of Jijel humid Mediterranean region of Algeria. In order to improve outside comfort in this open space, a 3D numerical simulation tool ENVI-met 3.1 beta 4 was used to simulate the urban thermal climate taking into account various scenarios. Thus, simulation’s results are discussed in this paper
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_020.pdf
last changed 2012/05/15 20:46

_id ecaade2012_214
id ecaade2012_214
authors Das, Subhajit ; Dutt, Florina
year 2012
title Design optimization in a hotel and offi ce tower through intuitive design procedures and advanced computational design methodologies. Façade design optimization by computational methods
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 235-243
doi https://doi.org/10.52842/conf.ecaade.2012.1.235
wos WOS:000330322400023
summary The research topic of this paper exemplifies design optimization techniques of a hotel/office tower in Central China (Nanjing city), which faces subtropical humid climate throughout the year. The main intent of the project is to fi nd optimized design solution with the aid of parametric design tools and Visual Basic Scripting techniques (in Rhino Script & Grasshopper) combined with intuitive design process. In any urban context, we firmly believe that architectural design is a responsive phenomenon, which faces diverse interaction with the user & the local climate. The building design of the proposed tower acknowledges these responsive factors of the design with the environment along with building users or residents. Consequently, we strive to develop a sustainable design solution, which is ecologically efficient and psychologically conducive to the wellbeing of the user. We developed our intuitive design product with complex computational design toolsets to leverage design and energy efficiency. In this procedure, we draw major design concepts and geometrical typologies from natural systems in the form of bio mimicry or biologically inspired design process. Overall, this research paper outlines the significance and relevant benefi ts of the combination of intuitive design (from experience, expertise and architects skills) with parametric scripting tools.
keywords Sustainable Building Façade; Parametric Architecture; Intelligent building skin; Solar Architecture
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2012_130
id sigradi2012_130
authors Dutt, Florina; Das, Subhajit
year 2012
title Designing Eco Adaptable Residence in a Hot & Humid Climate, in Kolkata, India
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 509-512
summary The research paper outlines the novel design methodology undertaken to redesign an existing apartment building in Kolkata India. The aim of the research is to significantly improve the design of the individual apartments as well as their spatial arrangement to enhance the indoor comfort level experienced by the inhabitants. The initial in-depth study of the existing design of the apartment building encompasses a short survey of the comfort level experienced by its inhabitants in terms of day lighting, natural ventilation and thermal comfort. The survey revealed the way in which these issues affected the behavioral pattern of the inhabitants in rearranging their spatial needs for the given design conditions. Consequently, the endeavor proposed promised to significantly improve the aforesaid areas of problem & discomfort for the building occupants. At the same time, exploiting contemporary computational simulation tools and digital three-dimensional modeling techniques the project leverages the same to prove the improvements proposed by research data in the form of scientific & mathematical tables and values.
keywords Sustainable Design; Solar Architecture; Wind Tunnel Test; Eco Adaptable Housing
series SIGRADI
email
last changed 2016/03/10 09:50

_id acadia12_87
id acadia12_87
authors Menicovich, David ; Gallardo, Daniele ; Bevilaqua, Riccardo ; Vollen, Jason
year 2012
title Generation and Integration of an Aerodynamic Performance Data Base Within the Concept Design Phase of Tall Buildings
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 87-96
doi https://doi.org/10.52842/conf.acadia.2012.087
summary Despite the fact that tall buildings are the most wind affected architectural typology, testing for aerodynamic performance is conducted during the later design phases well after the overall geometry has been developed. In this context, aerodynamic performance studies are limited to evaluating an existing design rather than a systematic performance study of design options driving form generation. Beyond constrains of time and cost of wind tunnel testing, which is still more reliable than Computational Fluid Dynamics (CFD) simulations for wind conditions around buildings, aerodynamic performance criteria lack an immediate interface with parametric design tools. This study details a framework for empirical data collection through wind tunnel testing of building mechatronic models and the expansion of the collected dataset by determining a mathematical interpolating model using an Artificial Neural Network (ANN) algorithm developing an Aerodynamic Performance Data Base (APDB). Frederick Keisler called the interacting of forces CO-REALITY, which he defined as The Science of Relationships. In the same article Keisler proclaims that the Form Follows Function is an outmoded understanding that design must demonstrate continuous variability in response to interactions of competing forces. This topographic space is both constant and fleeting where form is developed through the broadcasting of conflict and divergence as a system seeks balance and where one state of matter is passing by another; a decidedly fluid system. However, in spite of the fact that most of our environment consists of fluids or fluid reactions, instantaneous and geologic, natural and engineered, we have restricted ourselves to approaching the design of buildings and their interactions with the environment through solids, their properties and geometry; flow is considered well after the concept design stage and as validation of form. The research described herein explores alternative relations between the object and the flows around it as an iterative process, moving away from the traditional approach of Form Follows Function to Form Follows Flow.
keywords Tall Buildings , Mechatronics , Artificial Neural Network , Aerodynamic Performance Data Base
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id acadia12_457
id acadia12_457
authors Shook, David ; Sarkisian, Mark
year 2012
title Weighted Metrics: Synthesizing Elements for Tall Building Design
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 457-466
doi https://doi.org/10.52842/conf.acadia.2012.457
summary Salient attributes of previously designed projects can be examined to understand how key parameters could inform current design practices. These parameters include gross floor area, number of stories, occupancy, material type, geographic location, seismicity, climatic influences, etc. Two informative analysis tools for intelligent design have been developed which can be used from preliminary planning stages to the final design of individual structures to district-wide developments. These tools can evaluate concurrent influences of these parameters on the built environment. The first is the Environmental Analysis Tool™ (EA Tool). The EA Tool quantifies the estimated equivalent carbon dioxide emissions of structural components. The second analysis tool is Parametric City Modeling (PCM). PCM estimates the usable area of a tower by estimating net floor area. These tools can also be applied to multiple buildings at a district scale to facilitate a new level of design in urban planning efforts. Design information embodied in the physical built environment finds new purpose in the informative prediction of performance at the on-set of digital design. Harvesting and mining data as a natural resource brings new potential to informed design. These concepts and subsequent tools are vital to building sustainable and efficient cities of the future.
keywords Data Harvesting , Sustainability , Building Efficiency , Urban Planning , Parametric Design , Optimization
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ecaade2012_247
id ecaade2012_247
authors Balaban, Özgün; Kilimci, Elif Sezen Yagmur; Cagdas, Gülen
year 2012
title Automated Code Compliance Checking Model for Fire Egress Codes
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 117-125
doi https://doi.org/10.52842/conf.ecaade.2012.2.117
wos WOS:000330320600011
summary Architecture today has come to its most complex form. There are lots of criteria such as fi re safety, structure, sustainability etc… which must be controlled by the designers. To improve the performance and accessibility of buildings, governing bodies publish different codes for each of the different criteria. Buildings must comply with these codes to get a permit for construction. The checking of the buildings according the codes is done manually by code offi cials. This process is time consuming, high in cost and prone to errors. To remedy this problem by using the tools like BIM and AI, systems that can automatically check the code compliance of projects are being developed. In this paper we provide an overview of the structures and capabilities of these systems and present the automated code compliance checking system that we develop for checking building models against some parts of the Turkish Fire Codes.
keywords Automated Code Compliance Checking; Fire Codes; BIM
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2012_013
id ecaade2012_013
authors Salim, Flora ; Moya, Rafael
year 2012
title Parallel Analysis of Urban Aerodynamic Phenomena Using High and Low-Tech Tools
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 621-629.
doi https://doi.org/10.52842/conf.ecaade.2012.1.621
wos WOS:000330322400065
summary The study of wind conditions in cities is a significant factor in urban design in order to deal with issues related with pollution, wind pressures on buildings, and comfort on public spaces. This paper presents some results of a four-day workshop where some of the different techniques for simulating and visualising aerodynamic phenomena were explored. These technologies, classified as high-tech and low-tech tools, were used to investigate urban aerodynamic phenomena through parallel experiments, analysis, and eye observations. The experiments demonstrated that getting live feedbacks while interacting with the simulated aerodynamic phenomena is essential to improve the observers’ general comprehension of the phenomena. Our proposed method for studying aerodynamic phenomena, which integrates both low-tech and high-tech tools, facilitates designers to explore multiple options and configurations in the early stage of a design process.
keywords Urban aerodynamic; wind tunnel; Computational Fluid Dynamics (CFD); wind simulation; urban design
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2023_259
id ecaade2023_259
authors Sonne-Frederiksen, Povl Filip, Larsen, Niels Martin and Buthke, Jan
year 2023
title Point Cloud Segmentation for Building Reuse - Construction of digital twins in early phase building reuse projects
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 327–336
doi https://doi.org/10.52842/conf.ecaade.2023.2.327
summary Point cloud processing has come a long way in the past years. Advances in computer vision (CV) and machine learning (ML) have enabled its automated recognition and processing. However, few of those developments have made it through to the Architecture, Engineering and Construction (AEC) industry. Here, optimizing those workflows can reduce time spent on early-phase projects, which otherwise could be spent on developing innovative design solutions. Simplifying the processing of building point cloud scans makes it more accessible and therefore, usable for design, planning and decision-making. Furthermore, automated processing can also ensure that point clouds are processed consistently and accurately, reducing the potential for human error. This work is part of a larger effort to optimize early-phase design processes to promote the reuse of vacant buildings. It focuses on technical solutions to automate the reconstruction of point clouds into a digital twin as a simplified solid 3D element model. In this paper, various ML approaches, among others KPConv Thomas et al. (2019), ShapeConv Cao et al. (2021) and Mask-RCNN He et al. (2017), are compared in their ability to apply semantic as well as instance segmentation to point clouds. Further it relies on the S3DIS Armeni et al. (2017), NYU v2 Silberman et al. (2012) and Matterport Ramakrishnan et al. (2021) data sets for training. Here, the authors aim to establish a workflow that reduces the effort for users to process their point clouds and obtain object-based models. The findings of this research show that although pure point cloud-based ML models enable a greater degree of flexibility, they incur a high computational cost. We found, that using RGB-D images for classifications and segmentation simplifies the complexity of the ML model but leads to additional requirements for the data set. These can be mitigated in the initial process of capturing the building or by extracting the depth data from the point cloud.
keywords Point Clouds, Machine Learning, Segmentation, Reuse, Digital Twins
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2012_256
id ecaade2012_256
authors Steinfeld, Kyle ; Schiavon, Stefano ; Moon, Dustin
year 2012
title Open Graphic Evaluative Frameworks: A climate analysis tool based on an open web-based weather data visualization platform
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 675-682.
doi https://doi.org/10.52842/conf.ecaade.2012.1.675
wos WOS:000330322400071
summary Buildings are the world’s largest consumer of energy, accounting for 34% of total use. In the United States residential and commercial buildings are responsible for 72% of electricity use and 40% of CO2 emissions. In order to reduce the impact of buildings on the environment and to utilize freely available environmental resources, building design must be based on site climate conditions, e.g. solar radiation and air temperature. This paper presents a web-based framework that enables the production of user-generated visualizations of weather data. The Open Graphic Evaluative Framework (Open GEF) was developed using the Graphic Evaluative Frameworks (GEF) approach to authoring design-assistant software, which is more appropriate than the now dominant ‘generalized design tool’ approach when supporting design processes that require a high level of calibration to the cyclic and acyclic shifting of environmental resources. Building on previous work that outlined the theoretical underpinnings and basic methodology of the GEF approach, technical specifi cations are presented here for the implementation of a Java driven web-based visualization platform. By enabling more nuanced and customizable views of weather data, the software offers designers an exploratory framework rather than a highly directed tool. Open GEF facilitates design processes more highly calibrated to climatic fl ows that could reduce the overall impact of buildings in the environment.
keywords Visualization; Sustainable architectural design; Climate analysis; Weather data
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2012_290
id ecaade2012_290
authors Barakat, Merate
year 2012
title Urban Acoustic Simulation: Analysis of Urban Public Spaces through Auditory senses
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 587-592
doi https://doi.org/10.52842/conf.ecaade.2012.1.587
wos WOS:000330322400060
summary This paper explores the sonic characteristics of urban spaces, with the application of apprehending acoustic space and form theory. The theory defines auditory spaces as acoustical arenas, which are spaces defi ned and delineated by sonic events. Historically, cities were built around a soundmark, for example, the resonance of a church bell or propagation of a calling for prayer, or a factory horn. Anyone living beyond the horizon of this soundmark was not considered citizens of that town. Furthermore, the volume of urban sonic arenas depends on natural. Digital simulation is necessary to visualize the ephemeral and temporal nature of sound, within a dynamic immersive environment like urban spaces. This paper digitally analyses the different morphologies of old cities and forms of growth in relation to the sound propagation and ecological effects. An experiment is conducted with the aid of an ancient North-African city model, exposed to a point cloud agent system. By analysing how the sound propagates from the known soundmark through the urban fabric, with the wind pressure interference; the paper compares the theoretical concept of soundmarks and the known perimeter of the ancient city
keywords Urban Public Spaces; Aural Design; Auditory Arena Simulation; Soundmark
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2012_5
id ecaade2012_5
authors Biloria, Nimish; Chang, Jia-Rey
year 2012
title HyperCell: A Bio-Inspired Information Design Framework for Real-Time Adaptive Spatial Components
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 573-581
doi https://doi.org/10.52842/conf.ecaade.2012.2.573
wos WOS:000330320600061
summary Contemporary explorations within the evolutionary computational domain have been heavily instrumental in exploring biological processes of adaptation, growth and mutation. On the other hand a plethora of designers owing to the increasing sophistication in computer aided design software are equally enthused by the formal aspects of biological organisms and are thus meticulously involved in form driven design developments. This focus on top-down appearance and surface condition based design development under the banner of organic architecture in essence contributes to the growing misuse of bio-inspired design and the inherent meaning associated with the terminology. HyperCell, a bio-inspired information design framework for real-time adaptive spatial components, is an ongoing research, at Hyperbody, TU Delft, which focuses on extrapolating bottom-up generative design and real-time interaction based adaptive spatial re-use logics by understanding processes of adaptation, multi-performance and self sustenance in natural systems. Evolutionary developmental biology is considered as a theoretical basis for this research.
keywords Adaptation; Swarms; Evo-Devo; Simulation: Cellular component
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2015_185
id caadria2015_185
authors De Oliveira, Maria João and Vasco Moreira Rato
year 2015
title From Morphogenetic Data to Performative Behaviour
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 765-774
doi https://doi.org/10.52842/conf.caadria.2015.765
summary This paper presents part of CORK’EWS, a research work developed within the framework of the Digital Architecture Advanced Program 2012/13 at ISCTE-IUL. The main goal of this investigation was to develop a parametric, customizable and adaptive wall system designed for environmental performance. Moreover, the system is based on standard industrial products: expanded cork blocks produced by Amorim Insulation industries. CAD/CAM resources were the essential tools of the research process, where fundamental and practical knowledge is integrated to understand the microstructure morphological properties of the raw material – cork – and its derivate – natural expanded cork. These properties were upscale and adapted to create a wall with an optimized solar control environmental performance. The result is a digitally fabricated prototype of a new customizable industrial product, adaptable to specific environmental conditions and installation setups being therefore easily commercialized. From microstructural morphology to macroscale construction, the research explores new application possibilities through morphogenesis and opens new possible markets for these customizable products.
keywords Morphogenesis; performance; shading systems; cork.
series CAADRIA
email
last changed 2022/06/07 07:55

_id b92c
id b92c
authors Derix, Christian
year 2012
title Digital Masterplanning: Computing Urban Design
source In Urban Design and Planning: Institution of Civil Engineers, Thomas Telford Publishers, ahead-of-print
summary The digital revolution has finally reached urban design as one of the last design communities not very familiar with computing. This is despite the city and geography being the natural fields for systems analogy and digital models of mathematical and statistical simulation were developed in the 60s and 70s for urban planning, much before industrial or architectural design. The recent arrival of urban design simulations is however not as innovative and radical as their 50 year old counterparts since they use computing solely for policy visualization, quantity evaluation or pattern generation. The Computational Design and Research Group [CDR] at Aedas|R&D started in 2007 to develop an open platform of lightweight applications – Digital Masterplanning – in collaboration with partners from academia and industry to provide methods for urban design, based on computational methods called meta-heuristic algorithms. An attempt to encode empirical knowledge and design assumptions into simulations is described where designers can assemble the resulting applications according to scales and brief into custom workflows.
keywords Spatial Planning, Urban Design, Meta-Heuristic Algorithms, Computational Design
series journal paper
type normal paper
email
more http://www.icevirtuallibrary.com/content/article/10.1680/udap.9.00041
last changed 2012/09/20 17:41

_id ecaade2012_218
id ecaade2012_218
authors Gürer, Ethem ; Alacam, Sema ; Cagdas, Gülen
year 2012
title How to Deal with Novel Theories in Architectural Education A Framework for Introducing Evolutionary Computation to Students
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 107-114
doi https://doi.org/10.52842/conf.ecaade.2012.1.107
wos WOS:000330322400010
summary Evolution of/in artificial systems has been discussed in many fields such as computer science, architecture, natural and social sciences over the last fifty years. Evolutionary computation which takes its roots in computation and biology has a potential to enrich ways of thinking in architecture. This paper focuses mainly on the methodology of how evolutionary computation theories might be embedded in architectural education within the theoretical course in graduate level.
keywords Evolutionary design; evolutionary algorithms; computational theory; architectural design curriculum
series eCAADe
email
last changed 2022/06/07 07:49

_id caadria2012_095
id caadria2012_095
authors Johansson, Mikael and Mattias Roupé
year 2012
title Real-time rendering of large building information models: Current state vs. state-of-the-art
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 647–656
doi https://doi.org/10.52842/conf.caadria.2012.647
summary With the use of Building Information Models (BIM), real-time 3D visualisations have become a natural tool in order to communicate ideas and share information between all involved parties in a project. Currently, several different BIM viewers are available for the purpose of interactive presentations and design reviews. However, as BIMs become larger and more detailed, it provides a challenge for available software solutions to manage them interactively. In this paper we present our findings from analysing three commonly used BIM viewers - Tekla BIMSight, Autodesk Navisworks and Solibri Model Viewer - in terms of real-time rendering performance. In addition we have developed a prototype BIM viewer to test modern approaches for efficient real-time rendering. Specifically, we have implemented the latest version of the Coherent Hierarchical Culling algorithm. Our results show that existing BIM viewers all share limitations in their ability to handle large and complex BIMs interactively. However, for the same test models, our prototype BIM viewer enables smooth real-time performance with no visual artefacts. The results from our tests thus shows that the technology to enable correct real-time rendering of large and complex BIMs is already accessible, but are currently not utilised by any of the tested BIM viewers.
keywords 3D graphics; BIM; real-time rendering
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2012_038
id caadria2012_038
authors Kato, Kody and Hyoung-June Park
year 2012
title Toward a performance-oriented architecture: An integrated design approach to a real time responsive structure
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 59–68
doi https://doi.org/10.52842/conf.caadria.2012.059
summary This paper started from the study of “performance-oriented architecture” for the purpose of developing a real time responsive prototype that can enclose large expansive interior space. Questions regarding the relationship between the structural arrangement of systems and the natural environment initiated an investigation in Phyllotaxis. It has been found in plant systems for the optimisation of photosynthesis with harvesting maximum amounts of solar energy. In the design of a real time responsive prototype, an algorithmic approach is introduced with the mathematical interpretation of Phyllotaxis and its translation into the global geometry of the prototype. Also, the usage of a Voronoi diagram is parametrically configured to form the local geometry of the prototype. The interactive mechanism of the prototype was achieved with an assorted computational application. Furthermore, with the demonstration of the aforementioned prototype in both digital and physical environments, its implementation process is explained.
keywords Performance-oriented architecture; phyllotaxis; Voronoi diagram; real-time-responsive structure
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2012_152
id ecaade2012_152
authors Krieg, Oliver David; Mihaylov, Boyan; Schwinn, Tobias; Reichert, Steffen; Menges, Achim
year 2012
title Computational Design of Robotically Manufactured Plate Structures Based on Biomimetic Design Principles Derived from Clypeasteroida
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 531-540
doi https://doi.org/10.52842/conf.ecaade.2012.2.531
wos WOS:000330320600056
summary The paper presents the current development of an ongoing research project about the integration of robotic fabrication strategies in computational design through morphological and functional principles derived from natural systems. Initially, a developed plate structure material system based on robotically fabricated fi nger joints is being informed by biomimetic principles from the sea urchin Clypeasteroida in order to be able to adapt effi ciently to its building environment. Consequently, the paper’s main focus lies on translating the biomimetic design principles into a computational design tool, also integrating fabrication parameters as well as structural and architectural demands. The design tool’s capability to integrate these parameters is shown by the design, development and realization of a full-scale research pavilion. The paper concludes with discussing the performative capacity of the developed material system and the introduced methodology.
keywords Biomimetics; Digital Simulation; Parametric Design; Robotic Manufacturing
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2012_104
id caadria2012_104
authors Lu, Kai-Tzu; Hsin-Hou Lin, Ting-Han Chen and Chi-Fa Fan
year 2012
title Finding the vital houses information using immersive multi-touch interface
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 379–386
doi https://doi.org/10.52842/conf.caadria.2012.379
summary This paper discusses the creation of natural behaviours for multi-touch house information (MTHI) system using Frustrated Total Internal Reflection (FTIR) technology. After analysing how APPLE and Microsoft defined their touch behaviours we discovered that not enough were responding of commercial application. Therefore using basic touching functions as reference we developed some new gestures and GUI for the real estate market. This system was launched to assist real estate salesmen in Taiwan.
keywords House information; navigation; multi-touch; user interface
series CAADRIA
email
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_783683 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002