CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 551

_id acadia12_199
id acadia12_199
authors Beorkrem, Chris ; Corte, Dan
year 2012
title Zero-Waste, Flat-Packed, Tri-Chord Truss: Continued Investigations of Structural Expression in Parametric Design"
doi https://doi.org/10.52842/conf.acadia.2012.199
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 199-208
summary The direct and rapid connections between scripting, modeling and prototyping allow for investigations of computation in fabrication. The manipulation of planar materials with two-dimensional CNC cuts can easily create complex and varied forms, volumes, and surfaces. However, the bulk of research on folding using CNC fabrication tools is focused upon surfaces, self-supporting walls and shell structures, which do not integrate well into more conventional building construction models. This paper attempts to explain the potential for using folding methodologies to develop structural members through a design-build process. Conventional building practice consists of the assembly of off-the-shelf parts. Many times, the plinth, skeleton, and skin are independently designed and fabricated, integrating multiple industries. Using this method of construction as an operative status quo, this investigation focused on a single structural component: the truss. Using folding methodologies and sheet steel to create a truss, this design investigation employed a recyclable and prolific building material to redefine the fabrication of a conventional structural member. The potential for using digital design and two-dimensional CNC fabrication tools in the design of a foldable truss from sheet steel is viable in the creation of a flat-packed, minimal waste structural member that can adapt to a variety of aesthetic and structural conditions. Applying new methods to a component of the conventional ‘kit of parts’ allowed for a novel investigation that recombines zero waste goals, flat-packing potential, structural expression and computational processes. This paper will expand (greatly) upon previous research into bi-chord truss designs, developing a tri-chord truss, which is parametrically linked to its structural moment diagram. The cross section of each truss is formed based on the loading condition for each beam. This truss design has been developed through a thorough series of analytical models and tests performed digitally, to scale and in full scale. The tri-chord truss is capable of resisting rotational failures well beyond the capacity of the bi-chord designs previously developed. The results are complex, and elegant expressions of structural logics embodied in a tightly constrained functional design.
keywords Parametric Design , Structural Expression , Material constraints
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia12_511
id acadia12_511
authors Borowski, Darrick ; Poulimeni, Nikoletta ; Janssen, Jeroen
year 2012
title Edible Infrastructures: Emergent Organizational Patterns for the Productive City
doi https://doi.org/10.52842/conf.acadia.2012.511
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 511-526
summary Edible Infrastructures is an investigation into a projective mode of urbanism which considers food as an integral part of a city's metabolic infrastructure. Working with algorithms as design tools, we explore the generative potential of such a system to create an urban ecology that: provides for its residents via local, multi-scalar, distributed food production, reconnects urbanites with their food sources, and de-couples food costs from fossil fuels by limiting transportation at all levels, from source to table. The research is conducted through the building up of a sequence of algorithms, beginning with the ‘Settlement Simulation’, which couples consumers to productive surface area within a cellular automata type computational model. Topological analysis informs generative operations, as each stage builds on the output of the last. In this way we explore the hierarchical components for a new Productive City, including: the structure and programming of the urban circulatory network, an emergent urban morphology based around productive urban blocks, and opportunities for new architectural typologies. The resulting prototypical Productive City questions the underlying mechanisms that shape modern urban space and demonstrates the architectural potential of mathematical modeling and simulation in addressing complex urban spatial and programmatic challenges.
keywords Urban Agriculture , Urban Ecologies and Food Systems , Productive Cities , Urban Metabolism , Computational Modeling and Simulation , Algorithmic/ Procedural Design Methodologies , Emergent Organization , Self-Organizing Systems
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2012_058
id ecaade2012_058
authors Bus, Peter
year 2012
title Emergence as a Design Strategy in Urban Development: Using Agent-Oriented Modelling in Simulation of Reconfiguration of the Urban Structure
doi https://doi.org/10.52842/conf.ecaade.2012.1.599
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 599-605
summary Agent-oriented modelling is one of the simulation methods for emergent behavior of a complex system that could be considered for application of urban city structures. Using advanced script techniques, the behavior and evolution of structures in the bottom-up strategies for the development of environment could be simulated in architecture and urbanism as well. The paper presents a research subproject in the area of verifi cation of the processes of spatial and social interaction of the agents according to the logic of defined intrinsic rules of Swarm behavior in the simulation model of the selected area. The research builds mainly upon two selected requirements of the bottom-up strategy: the approach distances to places of interest and mutual standoff distances between urban elements.
wos WOS:000330322400062
keywords Emergence; simulation; self-organization process; agent-oriented modelling
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia12_383
id acadia12_383
authors Feringa, Jelle
year 2012
title Implicit Fabrication, Fabrication Beyond Craft: The Potential of Turing Completeness in Construction"
doi https://doi.org/10.52842/conf.acadia.2012.383
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 383-390
summary This paper addresses the limited shared vocabulary of landscape architecture and architectural design, evident in the application of terms such as “spatial design” and “spatial planning.” In their current usage, such terms emphasize the visible, terrestrial, pedestrian-perspective level, often to the absolute exclusion of a spatial, i.e., volumetric comprehension of the environment. This deficit is acutely evident in the teaching of landscape architecture and architecture and discussion of these fields’ shared ground. The dominant document type for mapping such analysis and design is the plan, or three-dimensional representations of the same, restricted to an extrusion or height map. GIS techniques in spatial design tend to be weighted toward visual, surface-based data (slope analysis, exposure, viewshed, etc.). Within this domain, our goal is to transform aspects of the intangible—the characteristics of open space itself—into a form that is legible, quantifiable, and malleable.
keywords evolutionary fabrication , computer vision , robotics , self-assembly , stigmergy
series ACADIA
type normal paper
email
last changed 2022/06/07 07:50

_id acadia20_340
id acadia20_340
authors Soana, Valentina; Stedman, Harvey; Darekar, Durgesh; M. Pawar, Vijay; Stuart-Smith, Robert
year 2020
title ELAbot
doi https://doi.org/10.52842/conf.acadia.2020.1.340
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 340-349.
summary This paper presents the design, control system, and elastic behavior of ELAbot: a robotic bending active textile hybrid (BATH) structure that can self-form and transform. In BATH structures, equilibrium emerges from interaction between tensile (form active) and elastically bent (bending active) elements (Ahlquist and Menges 2013; Lienhard et al. 2012). The integration of a BATH structure with a robotic actuation system that controls global deformations enables the structure to self-deploy and achieve multiple three-dimensional states. Continuous elastic material actuation is embedded within an adaptive cyber-physical network, creating a novel robotic architectural system capable of behaving autonomously. State-of-the-art BATH research demonstrates their structural efficiency, aesthetic qualities, and potential for use in innovative architectural structures (Suzuki and Knippers 2018). Due to the lack of appropriate motor-control strategies that exert dynamic loading deformations safely over time, research in this field has focused predominantly on static structures. Given the complexity of controlling the material behavior of nonlinear kinetic elastic systems at an architectural scale, this research focuses on the development of a cyber-physical design framework where physical elastic behavior is integrated into a computational design process, allowing the control of large deformations. This enables the system to respond to conditions that could be difficult to predict in advance and to adapt to multiple circumstances. Within this framework, control values are computed through continuous negotiation between exteroceptive and interoceptive information, and user/designer interaction.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia12_365
id acadia12_365
authors Tibbits, Skylar
year 2012
title The Self-Assembly Line
doi https://doi.org/10.52842/conf.acadia.2012.365
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 365-372
summary As disciplines converge and programmablity becomes ubiquitous from the nano-scale to the human-scale, architecture and construction will likely inherit new processes from design tools, materials, fabrication and construction. This paper outlines the key ingredients for self-assembly and computational construction through a recent project, The Self-Assembly line. This project was commissioned for the 2012 TED Conference, described as “an installation that builds installations,” and was built to show autonomous self-assembly at furniture-scales. A new intuition is proposed for the construction of large-scale structures and gives insight for potentially expanding a designer’s role in self-assembly processes outside of the discipline of architecture. Future applications are outlined for self-assembly and programmable materials at large-scale lengths.
keywords Self-Assembly , Programmable materials/matter , Computational Construction , Intelligent Building Materials
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id acadia12_169
id acadia12_169
authors Helm, Volker ; Ercan, Selen ; Gramazio, Fabio ; Kohler, Matthias
year 2012
title In-Situ Robotic Construction: Extending the Digital Fabrication Chain in Architecture
doi https://doi.org/10.52842/conf.acadia.2012.169
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 169-176
summary In this paper, viable applications of mobile robotic units on construction sites are explored. While expanding on potential objectives for in-situ fabrication in the construction sector, the intention is also to build upon innovative man-machine interaction paradigms to deal with the imprecision and tolerances often faced on construction sites. By combining the precision of the machine with the cognitive environmental human skills, a simple but effective mobile fabrication system is experimented for the building of algorithmically designed additive assemblies that would not be possible through conventional manual methods if the large amount of individual building blocks and the size of the structure to be built are taken into account. It is believed that this new approach to man-machine collaboration, aimed at a deeper integration of human ability with the strengths of digitally controlled machines, will result in advances in the construction sector, thus opening up new design and application fields for architects and planners.
keywords in-situ robotic fabrication , mobile robotics , 1:1 scale fabrication , additive assembly , algorithmically designed structures , man-machine interaction , cognitive , object recognition , construction site
series ACADIA
type normal paper
email
last changed 2022/06/07 07:49

_id acadia12_315
id acadia12_315
authors Imbern, Matias ; Raspall, Felix ; Su, Qi
year 2012
title Tectonic Tessellations: A Digital Approach to Ceramic Structural Surfaces
doi https://doi.org/10.52842/conf.acadia.2012.315
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 315-321
summary From the beginning of digital revolution, structural surfaces drew significant attention as a realm that interweaves formal explorations, form-finding and structural optimization. However, after successful experimentation in the virtual domain, it became evident that some of the main challenges lay on how to translate these structural forms into architectural assemblies at the scale of buildings. The development of digital fabrication is crucial in this task, as means to overcome traditional constraints such as need for modular pieces, scaffolding and optimal assembly sequences.This research focuses on digital workflows that combine form finding with robotic fabrication, surface tessellation and panelization. In the past years, the use of digital tools to assemble identical modules into complex formations has achieved significant results for loadbearing walls. Expanding this line of research, the proposed fabrication system carries these experiments on additive fabrication into the production of structural surfaces. The assembly sequence involves a two-step fabrication: off-site panel manufacturing and on-site assembly. The main components of the system consist of two triangular ceramic pieces that provide structural resistance, refined surface finish, and formwork for thin reinforced-concrete layer. Panelization strategies reduce the requirements on-site work and formwork.The paper describes background research, concept, construction process, methodology, results and conclusions.
keywords Digital Fabrication , Complex Geometry , Reinforced Ceramic , Structural Surfaces , Reduced Formwork
series ACADIA
type panel paper
email
last changed 2022/06/07 07:50

_id ecaade2012_316
id ecaade2012_316
authors Pena de Leon, Alexander
year 2012
title Two Case-Studies of Freeform-Facade Rationalization
doi https://doi.org/10.52842/conf.ecaade.2012.2.501
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 501-509
summary This paper will demonstrate two effective facade rationalisation patterns developed at Gehry Technologies for mitigating the tradeoffs between project constructability constraints vs. project aesthetic constraints. The two Case-Studies will present, fi rstly a method for dealing with large amounts of component instantiations and second with the economical delivery of complex project geometry through panelling. Both projects use design technology as a strategy for the integration of specialized knowledge and trades, through an effective use of information technology. The Case Studies will present the development of the Gridshell Digital Mock-Up of the Yas Island Marina Hotel in Abu Dhabi designed by Asymptote Architects and secondly the Museo Soumaya facade system in Mexico City designed by Fernando Romero LAR. This document will report the development process for obtaining relevant construction information, essential for the assembly of the facade systems by a third-party sub-contractor in support of the facade system coordination. The report concludes on the implementations of bespoke tools in support of the coordination and geometry description tasks. The tailored tool making process extends the parametric modelling system Digital Project™ in the design support role of obtaining aesthetically pleasing decompositions of the buildings Master Design Surface MDS into feasible constructible components.
wos WOS:000330320600053
keywords Facade Rationalization; Integration; Parametric Design; K-means Clustering
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia12_139
id acadia12_139
authors Erioli, Alessio ; Zomparelli, Alessandro
year 2012
title Emergent Reefs
doi https://doi.org/10.52842/conf.acadia.2012.139
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 139-148
summary The Emergent Reefs project thrives on the potential that emerge from a coherent utilization of the environment’s inherent ecological structure for its own transformation and evolution, using an approach based on digitally simulated ecosystems and sparkled by the possibilities and potential of large-scale 3D printing technology. Considering tourism as an inevitable vector of environmental change, the project aims to direct its potential and economic resources towards a positive transformation, providing a material substrate for the human-marine ecosystem integration with the realization of spaces for an underwater sculpture exhibition. Such structures will also provide a pattern of cavities which, expanding the gradient of microenvironmental conditions, break the existing homogeneity in favor of systemic heterogeneity, providing the spatial and material preconditions for the repopulation of marine biodiversity. Starting from a digital simulation of a synthetic local ecosystem, a generative technique based on multi-agent systems and continuous cellular automata (put into practice from the theoretical premises in Alan Turing’s paper “The Chemical basis of Morphogenesis” through reaction-diffusion simulation) is implemented in a voxel field at several scales giving the project a twofold quality: the implementation of reaction diffusion generative strategy within a non-isotropic 3-dimensional field and integration with the large-scale 3D printing fabrication system patented by D-Shape®. Out of these assumptions and in the intent of exploiting the expressive and tectonic potential of such technology, the project has been tackled exploring voxel-based generative strategies. Working with a discrete lattice eases the simulation of complex systems and processes across multiple scales (including non-linear simulations such as Computational Fluid-Dynamics) starting from local interactions using, for instance, algorithms based on cellular automata, which then can be translated directly to the physical production system. The purpose of Emergent-Reefs is to establish, through strategies based on computational design tools and machine-based fabrication, seamless relationships between three different aspects of the architectural process: generation, simulation and construction, which in the case of the used technology can be specified as guided growth.
keywords emergence , reef , underwater , 3D printing , ecology , ecosystem , CFD , agency , architecture , tourism , culture , Open Source
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadia12_209
id acadia12_209
authors Larsen, Niels Martin ; Pedersen, Ole Egholm ; Pigram, Dave
year 2012
title A Method for the Realization of Complex Concrete Gridshell Structures in Pre-Cast Concrete
doi https://doi.org/10.52842/conf.acadia.2012.209
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 209-216
summary This paper describes a method for the design and fabrication of complex funicular structures fromdiscrete precast concrete elements. The research proposes that through the integration of digitalform-finding techniques, computational file-to-fabrication workflows, and innovative sustainableconcrete casting techniques, complex funicular structures can be constructed using prefabricatedelements in a practical, affordable, and materially efficient manner.A recent case study is examined, in which the methodology has been used to construct a pavilion.Custom-written dynamic relaxation software was used to define the overall form and successivealgorithms; it then defined each component’s unique geometry, unrolled into flat shapes, andnested all parts into cut-files. PETG plastic sheets were two-dimensionally laser cut and folded toproduce the unique casting molds. The case study was carried out in collaboration between theAarhus School of Architecture and the University of Technology, Sydney (UTS). Basic research incasting techniques defined the framework for the design process, and a custom-written dynamicrelaxation software application became the primary form-generating tool in the design process ofa constructed pavilion. Fabrication and construction constraints were embedded within the designof both the overall structure and its components. Finite element analysis [FEA] was completed inorder to verify the form-finding results, to ensure structural stability, and to direct adjustments ofthe structure during the design process.The constructed pavilion case study, constructed in a very short time, for low cost and with relativelyunskilled labor, demonstrates that the integration of algorithmic form-finding techniques, CNCfabrication workflows, and the use of innovative PETG folded-mold techniques enables thepractical realization of freeform funicular structures in precast concrete.
keywords Gridshells , pre-cast concrete , folded moulds , dynamic relaxation , file-to-factory , form-finding , parametric modeling , computational design , zero-waste production
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id ascaad2012_022
id ascaad2012_022
authors Borham, Ahmad; Lobna Sherif and Osama Tolba
year 2012
title Resilient Rules - Culture and Computation in Traditional Built Environments
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 211-221
summary This study explores the influence of the socio-cultural rules, based upon Islamic jurisprudence (fiqh), on the complexity of the traditional built environment. This system of rules organized the societal activities, including decisions and activities related to design and construction in the Arab-Islamic city. Considering the city as a complex system, the study will try to show how this rules system made the Arab-Islamic city resilient and adaptive. Complex Adaptive Systems (CAS) are non-linear, self-organizing systems that have the ability to adapt to changing conditions through changing the rules that organize the random autonomous interactions between agents in the environment. This adaptation takes place through gradual gained experience that is reflected in the behavior of agents. This study attempts to interrelate different bodies of literature (Complexity/Chaos theory and built environment studies) in a single framework that aims to show that the socio-cultural rules system based on fiqh was a major factor in the resilience of the traditional built environment. These interrelations are illustrated using a graph called Computational Rules Graph (CRG). The CRG relates the traditional rules system to attributes of complex systems in a graph that can be modeled computationally. Traditional rules (codes of conduct) are proscriptive (non-deterministic), defining what is prohibited, thereby producing autonomous environments where agents had control over their immediate environment. In comparison, contemporary rules of the built environment (building codes) are prescriptive (deterministic), subscribing definite actions that need to take place by the stake-holder (agent) neglecting user needs and preferences. The application of these traditional rules system increased the agent’s autonomy and freedom of action. It also helped establish stronger social networks among agents, which resulted in a resilient environment.
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_022.pdf
last changed 2012/05/15 20:46

_id ecaade2012_60
id ecaade2012_60
authors Dierichs, Karola; Menges Achim
year 2012
title Material and Machine Computation of Designed Granular Matter: Rigid-Body Dynamics Simulations as a Design Tool for Robotically-Poured Aggregate Structures Consisting of Polygonal Concave Particles
doi https://doi.org/10.52842/conf.ecaade.2012.2.711
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 711-719
summary Loose granulates are a relevant yet rarely deployed architectural material system. Their significance lies in their capacity to combine fluid-like amorphousness with solid-like rigidity, resulting in potential architectural structures capable of continuous reconfi guration. In addition aggregates allow for functional grading. Especially if custom designed concave particles are used, full-scale architectural structures can be poured using a six-axis industrial robot, combining the precise travel of the emitter-head with the self-organizational capacity of granular substances. In this context, the paper proposes Rigid-Body Dynamics (RBD) simulations as a design-tool for the robotic pouring of loose granular structures. The notions of material and machine computation are introduced and RBD is explained in greater detail. A set of small tests is conducted to investigate the advantages and disadvantages of a specifi c RBD software. Conclusively, further areas of research are outlined.
wos WOS:000330320600076
keywords Material and machine computation; aggregate architectures; designed granulates; robotic pouring; Rigid-Body Dynamics
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia13_137
id acadia13_137
authors Kretzer, Manuel; In, Jessica; Letkemann, Joel; Jaskiewicz, Tomasz
year 2013
title Resinance: A (Smart) Material Ecology
doi https://doi.org/10.52842/conf.acadia.2013.137
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 137-146
summary What if we had materials that weren’t solid and static like traditional building materials are? What if these materials could dynamically change and adapt to varying environmental situations and stimulations and evolve and learn over time? What if they were autonomous, self-sufficient and independent but could communicate with each other and exchange information? What would this “living matter” mean for architecture and the way we perceive the built environment? This paper looks briefly at current concepts and investigations in regards to programmable matter that occupy various areas of architectural research. It then goes into detail in describing the most recent smart material installation “Resinance” that was supervised by Manuel Kretzer and Benjamin Dillenburger and realized by the 2012/13 Master of Advanced Studies class as part of the materiability research at the Chair for CAAD, ETH Zürich in March 2013. The highly speculative sculpture links approaches in generative design, digital fabrication, physical/ubiquitous computing, distributed networks, swarm behavior and agent-based communication with bioinspiration and organic simulation in a responsive entity that reacts to user input and adapts its behavior over time.
keywords Smart Materials; Distributed Networks; Digital Fabrication; Physical Computing; Responsive Environment
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:51

_id ecaade2012_95
id ecaade2012_95
authors Ladurner, Georg; Gabler, Markus; Menges, Achim; Knippers, Jan
year 2012
title Interactive Form-Finding for Biomimetic Fibre Structures: Development of a Computational Design Tool and Physical Fabrication Technique Based on the Biological Structure of the Lichen
doi https://doi.org/10.52842/conf.ecaade.2012.2.519
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 519-529
summary This contribution shows a biomimetic approach to design and produce fibrous structural elements derived from the morphology of the biologic archetype ‘the lichen’. The physical form fi nding strategy allows for a novel self-organised reinforcement for fibrous composite systems. A computational design tool has been developed, based on the fi ndings of various physical models. The digital device allows for shape control and therefore an interaction to and manipulation of the fabrication process. Since the form fi nding algorithms of the tool are based on physical experiments,every geometry is derived through the program and has its counterpart in production. For example: the fibre density in the model can be adjusted which leads to different geometries. In production the chosen denseness is utilised, thus, the production yields automatically to the desired load-optimized geometry found in the form-finding tool.
wos WOS:000330320600055
keywords Biomimetics; Form-finding; Self-organization; Emergence; Fibre structures
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2012_008
id caadria2012_008
authors Schimek, Heimo; Emmanuel Ruffo Calderon Dominguez, Albert Wiltsche and Markus Manahl
year 2012
title Sewing timber panels: An innovative digitally supported joint system for self-supported timber plate structures
doi https://doi.org/10.52842/conf.caadria.2012.213
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 213–222
summary This paper focuses on the joint system of flat panels as parts of a freeform building. This topic is a key area of the ongoing founded research project, in which we investigate nonstandard shapes, realized with standard building materials, namely cross-laminated timber (CLT). We use different discretization algorithms to overlay arbitrary freeform surfaces with ornaments consisting of polygonal flat panels. We investigate a series of ornaments and their discretization results on different surfaces. In this paper, we will present and discuss a new timber-to-timber joint system that we developed exclusively for this project. We discuss the results of the load tests that we performed recently and we take a look at the construction dependent requirements of the joint system concerning the tolerances and the geometry and also, how these constraints inform the digital process. As we will discuss throughout the paper, in earlier publications we described the form finding process and the geometrical guidelines for the discretization of a desired freeform building using ornamental flat patterns. This paper moves one step further as the digital becomes physical and it is closely related to building construction and the computational design outset.
keywords Digital fabrication technology; computational algorithmic design; building construction; freeform optimisation; CLT joint system
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2012_230
id ecaade2012_230
authors Tsiliakos, Marios
year 2012
title Swarm Materiality: A multi-agent approach to stress driven material organization
doi https://doi.org/10.52842/conf.ecaade.2012.1.301
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 301-309
summary This paper sets out to introduce and explore a computational tool, thus a methodological framework, for simulating stress driven material growth and organization by employing a multi-agent system based in swarm intelligence algorithms. It consists of an ongoing investigation that underlies the intention for the material system to be perceived as design itself. The algorithm, developed in the programming language Processing, is operating in a bottom-up manner where components and data fl ows are self-organized into design outputs. An evaluation process, via testing on different design cases, is providing a coherent understanding on the system’s capacity to address an acceptable, within the “state-of-the-art” context, solution to material optimization and innovative form-finding. The analysis of the exported data is followed by a possible reconfi guration of the algorithm’s structure and further development by introducing new elements.
wos WOS:000330322400030
keywords Swarm-intelligence; stress; material-organization; biomimetics; processing
series eCAADe
email
last changed 2022/06/07 07:57

_id sigradi2012_84
id sigradi2012_84
authors Feijoó, Edmundo Daniel Quezada; Valdivieso, Xavier Eduardo Burneo
year 2012
title Arquitectura modular basada en la Teoría de los Policubos [Modular architecture based on the Theory of Polycubes]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 477-481
summary This paper analyzes the theory of polycubes from the basic unit the cube, until the formation of more complex shapes, understanding the assembly and operation of polycube parts, is part of the use of theory in architectural projects, determining the cubic module (dimensions) and its combination aspect. Relates modulation with numerical series for the distribution and creation of environments. In the end establishes two design methodologies based on the theory, that it will work in a ludic way and culminate in housing prototypes.
keywords Policubos; metodologías de diseño; leguaje espacial; gramática de las formas
series SIGRADI
email
last changed 2016/03/10 09:51

_id acadia12_277
id acadia12_277
authors Kelley, Thomas ; Blankenbaker, Sarah
year 2012
title Smart Disassembly: Or, How I Learned to Take Things Apart"
doi https://doi.org/10.52842/conf.acadia.2012.277
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 277-283
summary Taking things apart is easy. How something works, or even what it is, is irrelevant to its dismantling. If assembly can be perceived as a rational act, then disassembly is certainly its counterpart: an intuitive, foolproof, and mindless errand of the seemingly curious subject. It is in this unflattering description, however, that disassembly warrants an analysis of its smart potential Smart Disassemblies locates the exploded view drawing, a representation that conveys the instructions for assembly, within its architectural legacy, from its origins in the Renaissance to its more contemporary appropriation by Thom Mayne and Daniel Libeskind. The categorical rules, and the part-to-whole relationships they imply, gleaned from these precedents are then subverted toward the end of disassembling an object. The proposed rule sets (Point of Explosion, Point of View, and Explosion Sequence) and their variants are tested through their application to a complex assembly of objects, a jazz quintet.
keywords part-to-whole , smart assembly , synthetic tectonics
series ACADIA
type panel paper
email
last changed 2022/06/07 07:52

_id ecaade2012_65
id ecaade2012_65
authors Kontovourkis, Odysseas
year 2012
title Virtual Forces in Design and Fabrication Process: Assembly and Construction of Physical Prototypes
doi https://doi.org/10.52842/conf.ecaade.2012.2.133
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 133-141
summary This paper demonstrates a preliminary research and teaching investigation that attempts to use virtual forces in order to achieve interaction behavior between individual components as mechanism for the development of physical prototypes in various scales. Through case studies, the current research examines possibilities for the design of global systems, structural components and joints aiming to construct prototypes that can be characterized by continuity in their forms, structures and materials. In parallel, a number of questions are raised. Is the process from design to fabrication linear? What can be the relation between digital and physical processes? In which level this integration can be achieved? This work attempts to investigate the application of such methodology, both in design and fabrication, and to examine its contribution in the design and construction process.
wos WOS:000330320600013
keywords Virtual forces; assembly; construction; physical prototypes
series eCAADe
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_562854 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002