CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 545

_id caadria2012_125
id caadria2012_125
authors Hanafin, S.; S. Datta, B. Rolfe, M. Hobbs
year 2012
title Envelope tesselation with stochastic rotation of 4-fold penttiles
doi https://doi.org/10.52842/conf.caadria.2012.253
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 253–262
summary The challenge of developing adaptive, responsive low-energy architecture requires new knowledge about the complex and dynamic interaction between envelope architecture and optimisation between competing environmental performance metrics. Advances in modelling the geometry of building envelopes and control technologies for adaptive buildings now permit the sophisticated evaluation of alternative envelope configurations for a set of performance criteria. This paper reports on a study of the parametric control of a building envelope based on moveable façade components, acting as a shading device to reduce thermal gain within the building. This is investigated using a novel pentagonal tiling strategy considering the component design, tessellation and control methods.
keywords Responsive envelopes; moveable façade components; parametric modelling; tiling geometry; stochastic rotation
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia12_97
id acadia12_97
authors Lilley, Brian ; Hudson, Roland ; Plucknett, Kevin ; Macdonald, Rory ; Cheng, Nancy Yen-Wen ; Nielsen, Stig Anton ; Nouska, Olympia ; Grinbergs, Monika ; Andematten, Stephen ; Baumgardner, Kyle ; Blackman, Clayton ; Kennedy, Matthew ; Chatinthu, Monthira ; Tianchen, Dai ; Sheng-Fu, Chen
year 2012
title Ceramic Perspiration: Multi-Scalar Development of Ceramic Material
doi https://doi.org/10.52842/conf.acadia.2012.097
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 97-108
summary Ceramic building material is a useful passive modulator of the environment. The subject area is based on traditional cultural and material knowledge of clay properties: from amphora to rammed earth building; and ranges to present uses: from desiccants and space shuttle tile patterns to bio-ceramics. The primary consideration is to control material density and porosity in a tile component, in response to specific environmental conditions. This depends on a number of key physical principles: the ability of the material to absorb thermal energy, the ability to absorb and then ‘wick’ moisture within the pore structure, and the decrement factor or ‘time lag’ of the effect. The interplay between these properties point to the importance of directionality in the porous microstructure, at the boundary layer. Material characteristics have been investigated in the laboratory at a micron scale and in the ceramics workshop at full scale, with some interplay between the two. Recent work done on monitoring has led to the development of software tools that allow feedback (approaching real time)- a visual representation of the dynamic thermal and hygrometric properties involved.
keywords Synthetic tectonics , composite materials , smart assemblies , emerging material processes , Responsive environments , sensing , real-time computation , feedback loops , Information Visualization
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id ijac201210304
id ijac201210304
authors Thün, Geoffrey; Kathy Velikov, Mary O'Malley, et al.
year 2012
title The Agency of Responsive Envelopes: Interaction, Politics and Interconnected Systems
source International Journal of Architectural Computing vol. 10 - no. 3, 377-400
summary This article positions the territory of responsive envelopes within the context of contemporary disciplinary questions surrounding the politics of the architectural envelope on one hand, and the agency of material explication of environmental, social and spatial performance on the other. Two recent prototype-based responsive envelope projects undertaken by the authors, the Stratus Project and Resonant Chamber, are described in detail relative to the reciprocity between the development of their materiality, form, production methods and their dynamic interaction with external forces, environments and inhabitants. An argument is made that responsive envelopes, in their capacity to structure continually evolving energetic, material and information exchanges between humans, buildings and the wider environment, have the potential to actively construct and enable political participation through spatial transformation, data driven processing and informatics. These envelopes are positioned as agents within wider ecologies and social systems, and as sites for the design of robotic architectures to engage such questions.
series journal
last changed 2019/05/24 09:55

_id ecaade2012_214
id ecaade2012_214
authors Das, Subhajit ; Dutt, Florina
year 2012
title Design optimization in a hotel and offi ce tower through intuitive design procedures and advanced computational design methodologies. Façade design optimization by computational methods
doi https://doi.org/10.52842/conf.ecaade.2012.1.235
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 235-243
wos WOS:000330322400023
summary The research topic of this paper exemplifies design optimization techniques of a hotel/office tower in Central China (Nanjing city), which faces subtropical humid climate throughout the year. The main intent of the project is to fi nd optimized design solution with the aid of parametric design tools and Visual Basic Scripting techniques (in Rhino Script & Grasshopper) combined with intuitive design process. In any urban context, we firmly believe that architectural design is a responsive phenomenon, which faces diverse interaction with the user & the local climate. The building design of the proposed tower acknowledges these responsive factors of the design with the environment along with building users or residents. Consequently, we strive to develop a sustainable design solution, which is ecologically efficient and psychologically conducive to the wellbeing of the user. We developed our intuitive design product with complex computational design toolsets to leverage design and energy efficiency. In this procedure, we draw major design concepts and geometrical typologies from natural systems in the form of bio mimicry or biologically inspired design process. Overall, this research paper outlines the significance and relevant benefi ts of the combination of intuitive design (from experience, expertise and architects skills) with parametric scripting tools.
keywords Sustainable Building Façade; Parametric Architecture; Intelligent building skin; Solar Architecture
series eCAADe
email
last changed 2022/06/07 07:55

_id ijac201210106
id ijac201210106
authors Henriques, Goncalo Castro
year 2012
title TetraScript: A Responsive Pavilion, From Generative Design to Automation
source International Journal of Architectural Computing vol. 10 - no. 1, 87-104
summary This research is part of a broader investigation into the use of digital technologies in the Architecture, Engineering and Construction (AEC) sector. The intention is to improve the ability of buildings to respond to context by proposing a skylight system that can adjust to external environmental conditions and internal functional demands. We call this responsive ability customisation. The proposed skylight system can adapt to different geometries, uses, locations, times of day and other contextual conditions. Customisation can be achieved by static and dynamic processes. Static customisation is achieved during the design process by selecting the form and size of the building, as well as the number, arrangement and size of the skylights, among other features. Dynamic customisation is accomplished after construction by changing the skylight aperture in real-time to control interior conditions. This paper focuses on the static process to find an adequate skylight configuration for a case-study pavilion.
series journal
last changed 2019/07/30 10:55

_id ecaade2012_91
id ecaade2012_91
authors Khoo, Chin Koi
year 2012
title Sensory Morphing Skins
doi https://doi.org/10.52842/conf.ecaade.2012.2.221
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 221-229
wos WOS:000330320600022
summary Contemporary responsive architecture often tries to achieve optimised building performance in response to changing environmental conditions. In the precedents a key area of responsiveness is in the building façades or skins. Often however, the skin is made from discrete components and separated equipment. T his research explores the potential for designing responsive architectural morphing skins with kinetic materials that have integrated sensing and luminous abilities. Instead of embedded individual discrete components, this approach intends to integrate the sensing devices and building skins as one ‘single’ entity. This investigation is conducted by project. The project is Blanket, which aims to provide an alternative approach for a lightweight, fl exible and economical sensory architectural skin that respond to proximity and lighting stimuli.
keywords Sensing; responsive; morphing skin; kinetic and phosphorescence materials
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia13_137
id acadia13_137
authors Kretzer, Manuel; In, Jessica; Letkemann, Joel; Jaskiewicz, Tomasz
year 2013
title Resinance: A (Smart) Material Ecology
doi https://doi.org/10.52842/conf.acadia.2013.137
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 137-146
summary What if we had materials that weren’t solid and static like traditional building materials are? What if these materials could dynamically change and adapt to varying environmental situations and stimulations and evolve and learn over time? What if they were autonomous, self-sufficient and independent but could communicate with each other and exchange information? What would this “living matter” mean for architecture and the way we perceive the built environment? This paper looks briefly at current concepts and investigations in regards to programmable matter that occupy various areas of architectural research. It then goes into detail in describing the most recent smart material installation “Resinance” that was supervised by Manuel Kretzer and Benjamin Dillenburger and realized by the 2012/13 Master of Advanced Studies class as part of the materiability research at the Chair for CAAD, ETH Zürich in March 2013. The highly speculative sculpture links approaches in generative design, digital fabrication, physical/ubiquitous computing, distributed networks, swarm behavior and agent-based communication with bioinspiration and organic simulation in a responsive entity that reacts to user input and adapts its behavior over time.
keywords Smart Materials; Distributed Networks; Digital Fabrication; Physical Computing; Responsive Environment
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:51

_id acadia12_187
id acadia12_187
authors Mei-Ling, Lin ; Han, Ling ; Kothapuram, Shankara ; Jiawei, Song
year 2012
title Digital Vernacular
doi https://doi.org/10.52842/conf.acadia.2012.187
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 187-195
summary Digital Vernacular investigates the potential of the process of depositing a paste like material with precision using a CNC device which has produced an innovative system for design and fabrication of environmentally responsive housing. Architectural practice has been greatly impacted by technical innovations in the past, usually new building types emerge as part of new ideologies. Yet the current revolution in computer-aided design and fabrication has architecture focusing on form – without questioning what these new processes can bring for the masses. The research project 'Digital Vernacular' has investigated the potential of using CNC technology for the production of housing. It has focused on the design of the machinic devices as well as computational design tools, and revolves around the concept of fabrication on site. Using an additive and layered manufacturing process and locally available material, the project proposes a revolutionary new digital design and fabrication system that is based on one of the oldest and most sustainable construction methods in the world. The main potentials of this method are not to create complex forms for the sake of design, but to use parametric control to adapt each design to the specificities of its site. Using geometrical rules found during many research experiments with real material behaviour, a new architectural language is created that merges several environmental functionalities into a single integrated design.
keywords Digital , Vernacular , CNC , CAM , Housing , fabrication , environmental
series ACADIA
type panel paper
email
last changed 2022/06/07 07:58

_id caadria2012_003
id caadria2012_003
authors Dritsas, Stylianos
year 2012
title Rationalisation of complex building envelopes
doi https://doi.org/10.52842/conf.caadria.2012.007
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 7–16
summary Rationalization of architectural geometry is paramount to a design’s manufacturing and construction. This paper presents a methodology of pre/post rationalization of building envelope geometry using statistical computation.
keywords Rationalisation; optimisation; geometry; computation
series CAADRIA
email
last changed 2022/06/07 07:55

_id ijac201210407
id ijac201210407
authors Dritsas, Stylianos
year 2012
title Design-Built Rationalization Strategies and Applications
source International Journal of Architectural Computing vol. 10 - no. 4, 575-594
summary Rationalisation of architectural design is paramount to manufacturing and its construction. This paper presents a methodology of rationalisation of building envelope geometry. We discuss methods for understanding and addressing design complexity; review two theoretical models of rationalisation: the pre-rational and post-rational design principles; illustrate their benefits and limitations and demonstrate their meeting point proposing an integrated performance-oriented model for analysis and design of building envelopes, using digital design techniques.
series journal
last changed 2019/05/24 09:55

_id ascaad2012_003
id ascaad2012_003
authors Elseragy, Ahmed
year 2012
title Creative Design Between Representation and Simulation
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 11-12
summary Milestone figures of architecture all have their different views on what comes first, form or function. They also vary in their definitions of creativity. Apparently, creativity is very strongly related to ideas and how they can be generated. It is also correlated with the process of thinking and developing. Creative products, whether architectural or otherwise, and whether tangible or intangible, are originated from ‘good ideas’ (Elnokaly, Elseragy and Alsaadani, 2008). On one hand, not any idea, or any good idea, can be considered creative but, on the other hand, any creative result can be traced back to a good idea that initiated it in the beginning (Goldschmit and Tatsa, 2005). Creativity in literature, music and other forms of art is immeasurable and unbounded by constraints of physical reality. Musicians, painters and sculptors do not create within tight restrictions. They create what becomes their own mind’s intellectual property, and viewers or listeners are free to interpret these creations from whichever angle they choose. However, this is not the case with architects, whose creations and creative products are always bound with different physical constraints that may be related to the building location, social and cultural values related to the context, environmental performance and energy efficiency, and many more (Elnokaly, Elseragy and Alsaadani, 2008). Remarkably, over the last three decades computers have dominated in almost all areas of design, taking over the burden of repetitive tasks so that the designers and students can focus on the act of creation. Computer aided design has been used for a long time as a tool of drafting, however in this last decade this tool of representation is being replaced by simulation in different areas such as simulation of form, function and environment. Thus, the crafting of objects is moving towards the generation of forms and integrated systems through designer-authored computational processes. The emergence and adoption of computational technologies has significantly changed design and design education beyond the replacement of drawing boards with computers or pens and paper with computer-aided design (CAD) computer-aided engineering (CAE) applications. This paper highlights the influence of the evolving transformation from Computer Aided Design (CAD) to Computational Design (CD) and how this presents a profound shift in creative design thinking and education. Computational-based design and simulation represent new tools that encourage designers and artists to continue progression of novel modes of design thinking and creativity for the 21st century designers. Today computational design calls for new ideas that will transcend conventional boundaries and support creative insights through design and into design. However, it is still believed that in architecture education one should not replace the design process and creative thinking at early stages by software tools that shape both process and final product which may become a limitation for creative designs to adapt to the decisions and metaphors chosen by the simulation tool. This paper explores the development of Computer Aided Design (CAD) to Computational Design (CD) Tools and their impact on contemporary design education and creative design.
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_003.pdf
last changed 2012/05/15 20:46

_id acadia12_169
id acadia12_169
authors Helm, Volker ; Ercan, Selen ; Gramazio, Fabio ; Kohler, Matthias
year 2012
title In-Situ Robotic Construction: Extending the Digital Fabrication Chain in Architecture
doi https://doi.org/10.52842/conf.acadia.2012.169
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 169-176
summary In this paper, viable applications of mobile robotic units on construction sites are explored. While expanding on potential objectives for in-situ fabrication in the construction sector, the intention is also to build upon innovative man-machine interaction paradigms to deal with the imprecision and tolerances often faced on construction sites. By combining the precision of the machine with the cognitive environmental human skills, a simple but effective mobile fabrication system is experimented for the building of algorithmically designed additive assemblies that would not be possible through conventional manual methods if the large amount of individual building blocks and the size of the structure to be built are taken into account. It is believed that this new approach to man-machine collaboration, aimed at a deeper integration of human ability with the strengths of digitally controlled machines, will result in advances in the construction sector, thus opening up new design and application fields for architects and planners.
keywords in-situ robotic fabrication , mobile robotics , 1:1 scale fabrication , additive assembly , algorithmically designed structures , man-machine interaction , cognitive , object recognition , construction site
series ACADIA
type normal paper
email
last changed 2022/06/07 07:49

_id acadia12_15
id acadia12_15
authors Johnson, Jason Kelly; Cabrinha, Mark; Steinfeld, Kyle
year 2012
title Synthetic Digital Ecologies
doi https://doi.org/10.52842/conf.acadia.2012.015
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 15-17
summary Why use the terms synthetic and ecology in the context of a conference dedicated to the field of digital architecture, computation and fabrication? How do we begin to unpack the synthetic union of diverse elements, processes, collaborators, and code underlying any single contemporary design or research project? What could our field gain by interrogating these diverse ecologies? What are the relationships and interactions between our design processes, including our various tools and techniques, and the multiple environments with which we routinely work, collaborate and make? It is these questions and more that we hope to address at this year’s “Synthetic Digital Ecologies” conference. A quick scan of the papers and projects that will be presented at ACADIA reveals an extraordinary ecology of experimental research that emerged by working between messy labs, studios, workshops, hacker spaces and the like. In many ways today’s so-called “digital architects” do not feel compelled to distinguish between what is digitally designed and what is not. They are leading the way through a promiscuous and synthetic mixing of skill sets, of pens and paper, hardware and software, electronics and g-code. In a single research project these designers might collaborate with a computer scientist, a robotics expert and a glass blower, and in many cases they might even attempt to do all of these things themselves. It was with this in mind that we put forth an international call inviting, “… architects, fabricators, engineers, media artists, technologists, software developers, hackers and others in related fields of inquiry …” to submit papers and projects for this year’s conference. This year the proceedings have been organized into twelve synthetic categories based around the potential for diverse research topics to inform new and unexpected conversations. Instead of organizing peer-reviewed papers and projects through their formal characteristics, we were interested in forming new synthetic categories by curating unexpected juxtapositions. This ecology of ideas and research was meant to provoke and inspire new ways of thinking, making, building and collaborating.
series ACADIA
type introduction
email
last changed 2022/06/07 07:52

_id acadia12_000
id acadia12_000
authors Johnson, Jason; Cabrina, Mark and Steinfeld, Kyle (eds.)
year 2012
title ACADIA 12: Synthetic Digital Ecologies
doi https://doi.org/10.52842/conf.acadia.2012
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), 588p.
summary Why use the terms synthetic and ecology in the context of a conference dedicated to the field of digital architecture, computation and fabrication? How do we begin to unpack the synthetic union of diverse elements, processes, collaborators, and code underlying any single contemporary design or research project? What could our field gain by interrogating these diverse ecologies? What are the relationships and interactions between our design processes, including our various tools and techniques, and the multiple environments with which we routinely work, collaborate and make? It is these questions and more that we hope to address at this year’s “Synthetic Digital Ecologies” conference. A quick scan of the papers and projects that will be presented at ACADIA reveals an extraordinary ecology of experimental research that emerged by working between messy labs, studios, workshops, hacker spaces and the like. In many ways today’s so-called “digital architects” do not feel compelled to distinguish between what is digitally designed and what is not. They are leading the way through a promiscuous and synthetic mixing of skill sets, of pens and paper, hardware and software, electronics and g-code. In a single research project these designers might collaborate with a computer scientist, a robotics expert and a glass blower, and in many cases they might even attempt to do all of these things themselves. It was with this in mind that we put forth an international call inviting, “... architects, fabricators, engineers, media artists, technologists, software developers, hackers and others in related fields of inquiry ...” to submit papers and projects for this year’s conference. This year the proceedings have been organized into twelve synthetic categories based around the potential for diverse research topics to inform new and unexpected conversations. Instead of organizing peer-reviewed papers and projects through their formal characteristics, we were interested in forming new synthetic categories by curating unexpected juxtapositions. This ecology of ideas and research was meant to provoke and inspire new ways of thinking, making, building and collaborating.
series ACADIA
email
last changed 2022/06/07 07:49

_id caadria2012_036
id caadria2012_036
authors Kaushik, Vignesh Srinivas and Patrick Janssen
year 2012
title Multi-criteria evolutionary optimisation of building enveloped during conceptual stages of design
doi https://doi.org/10.52842/conf.caadria.2012.497
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 497–506
summary This paper focuses on using evolutionary algorithms during conceptual stages of design process for multi-criteria optimisation of building envelopes. An experiment is carried out in optimising a panelled building envelope. The design scenario for the experiment is based on the scenario described in Shea et al. (2006) for the building envelope of the Media Centre Building in Paris. However, in their research, the optimisation process only allowed panel configuration to be optimised. In this paper, the task is to approach the optimisation of the envelope of the same building, assuming it to be in the early phases of the design process. The space of possible solutions is therefore assumed to be much wider, and as a result both external building form and internal layout of functional activities are allowed to vary. The performance intent of the experiment remains the same as that of Shea et al. (2006), which was to maximise daylight and minimise afternoon direct sun hours in the building at certain specific locations.
keywords Multi-criteria optimisation; building envelopes; conceptual stages of design evolutionary algorithms; parametric design
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2012_157
id ecaade2012_157
authors Kubicki, Sylvain ; Guerriero, Annie ; Leclercq, Pierre ; Nys,Koenraad ; Halin, Gilles
year 2012
title 4D modeling and simulation for the teaching of structural principles and construction techniques. Towards modeling and visualization guidelines for high-rise buildings
doi https://doi.org/10.52842/conf.ecaade.2012.1.087
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 87-95
wos WOS:000330322400008
summary 4D CAD is more and more used in construction education curricula. The main interest of this technology is its ability to simulate real sequencing of construction tasks in order to confront the student with real-life construction management issues. This article presents a course for architects and construction engineers. It describes the teaching of the structural principles of high-rise buildings, using 4D simulations as a support to the analysis of the characteristics of existing projects. The pedagogical interest of 4D CAD is described in the article through assessments of students and the teaching team. Particular feedback is given about modeling and visualization guidelines for the purpose of the pedagogical use of 4D CAD.
keywords 4D CAD; 4D modeling and visualization; High-Rise Building; Structural Principles; Pedagogy
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia12_343
id acadia12_343
authors Leidi, Michele ; Schlüter, Arno
year 2012
title Formal and Functional Implications of Dynamics-Related Solar Design Schemes
doi https://doi.org/10.52842/conf.acadia.2012.343
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 343-354
summary In recent years several solar radiation simulation tools have been developed to assist architects in analyzing the performance of existing building designs. However it is often unclear how the results of these analyses can help to generate new solutions and thus be truly beneficial for innovation in sustainable architectural design. Recent developments in open source applications that allow links between energy simulation engines and 3D modeling environments open a new layer of understanding. The possibility to better understand the dynamic interaction between incident solar radiation and building envelopes allows the synthesis of new architectural design-schemes. This paper presents the results of a series of experiments based on the case-study of a mid-latitude single-family house in Taiki-Cho, Japan. The first experiment describes how the incident solar energy interacts with the exposed components of the envelope. The second experiment describes how the energy demand of the building can be partially reduced through the design of passive interventions that are based on the dynamics of the demand. Finally, the third experiment exemplifies how, based on the knowledge extracted from the first two experiments, it is possible to synthesize new dynamics-related solar design-schemes that join passive techniques, active technologies, and formal aspects.
keywords Form , Function , Dynamics , Solar , Design-Scheme , Mid-latitude
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id sigradi2020_174
id sigradi2020_174
authors Marques, Aline Calazans; Felicio, José Augusto Recker
year 2020
title Dialogue between Building Shape and Thermal Performance
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 174-179
summary This paper deals with the research of the building shape in a constant and dialectical relationship with thermal performance. The purpose of this research is to understand and explore the dialogue between shape and performance with generative strategies. The method was based on the works by Oxman (2010), Olgyay (2015), and Di Mari & Yoo (2012), by means that relate the form to performance issues. The thermal performance data found to result from the relationship between thermal conditions, the shape of the envelope, and the characteristics of the eight Brazilian bioclimatic zones.
keywords Building shape, Thermal performance, Generative system, Teaching observation
series SIGraDi
email
last changed 2021/07/16 11:48

_id acadia12_447
id acadia12_447
authors Rossi, Dino ; Nagy, Zoltan ; Schlueter, Arno
year 2012
title Adaptive Distributed Architectural Systems
doi https://doi.org/10.52842/conf.acadia.2012.447
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 447-456
summary Artificial Intelligence has a long and rich history in the field of architecture. Building upon this history, we clarify the term “adaptive” and its use within the field. This allows us to explore the application of adaptive systems to architectural design through the prototyping of an adaptive solar envelope (ASE). The building envelope was chosen because it is a common place to address issues of energy performance and occupant comfort and thereby offers an ideal scenario in which to explore the negotiative potential of adaptive systems in architecture. The ASE prototype addresses issues of distributed shading, solar power generation through integrated thin film photovoltaics, and daylight distribution. In addition, building envelopes, being the most publically visible part of a building, play an important role in the aesthetic result of a design. Therefore, conceiving buildings as dynamic systems with the ability to adapt to the fluctuating environments in which they exist opens new aesthetic possibilities for designers. Additionally we present examples of student work created during workshops based on the theme of integrating adaptive distributed systems into architectural design. We argue that with presently available technology, and an increased exposure of architecture students and practitioners to adaptive design techniques, adaptive architectures will soon become a regular element of the built environment.
keywords adaptive , distributed , systems , reinforcement , learning , architecture , design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id acadia12_467
id acadia12_467
authors Vermisso, Emmanouil
year 2012
title Conditioning Elegance: A Design Experiment on Intuition and Analysis
doi https://doi.org/10.52842/conf.acadia.2012.467
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 467-478
summary This paper offers an assessment of two methods for design, one based on intuitive design skills, the other on design decision based on feedback from analysis. The author is interested in the students’ perception of the process requirements within two different rule-based systems. The project, given within a class on biologically inspired design, demands a design solution that operates on two layers: the first being “function” the second “aesthetics”: students were asked to resolve a column, while designing for “Elegance”. Their work focused on an elegant building component without compromising structural efficiency. The results are discussed as indicators of possibly integrating analysis tools in creative processes and also understanding different learning paradigms for students.
keywords Intuition , Feedback , Analysis , Simulation , Elegance
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_925218 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002