CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 544

_id acadia12_491
id acadia12_491
authors Feringa, Jelle ; Søndergaard, Asbjørn
year 2012
title An Integral Approach to Structural Optimization and Fabrication
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 491-497
doi https://doi.org/10.52842/conf.acadia.2012.491
summary Abstract Integral structural optimization and fabrication seeks the synthesis of two original approaches; that of topological optimization (TO) and robotic hotwire cutting (HWC). TO allows for the reduction of up to 70% of the volume of concrete to support a given structure. A strength of the method is that it allows to come up with structural designs that lie beyond the grasp of traditional means of design. A design space is a discretized volume, delimiting where the optimization will take place. The number of cells used to discretize the design space thus sets the resolution of the TO. While the approach of the application of TO as a constitutive design tool centers on structural aspects in the design phase, the outcome of this process are structures that cannot be realized within a conventional budget. As such the ensuing design is optimal in a narrow sense; whilst optimal structurally though, construction can be prove to be prohibitively expensive. This paper reports ongoing research efforts on the development of a cost effective methodology for the realization of TO concrete structures using HWC.
keywords Topology optimization , robotics , hotwire cutting , ruled surfaces , advanced concrete structures , formwork , EPS
series ACADIA
type panel paper
email
last changed 2022/06/07 07:50

_id ecaade2012_174
id ecaade2012_174
authors Sdegno, Alberto
year 2012
title Physical and Digital Models for Electronic Spaces: The 3D virtual re-building of the Philips Pavilion by Le Corbusier
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 747-754.
doi https://doi.org/10.52842/conf.ecaade.2012.1.747
wos WOS:000330322400079
summary The aim of this academic research was to analyze one of the fi rst architectures designed and built with the fi nality to present electronic potentialities to people. The design was developed by Le Corbusier and his studio for the International Expo held in Brussels in 1958, for the Philips fi rm, and it was destroyed some months later, after the event. The research investigated the complex geometry of the structure in order to understand the strict relation between the physical perception of the space and the electronic aspects of them, using advanced technology, but, above all, if it is true that the best way to understand the physicality of a destroyed architecture could be a virtual visit using electronic devices and digital procedures.
keywords Architecture; digital reconstruction; virtual space; geometry; representation
series eCAADe
email
last changed 2022/06/07 07:59

_id sigradi2012_72
id sigradi2012_72
authors Cote, Eduardo; Pinzón, Andrés Augusto
year 2012
title Reverberación sonora: parámetros en modelación digital y física [Sound Reverberation: Parameters in Digital and Physical Modeling]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 444-448
summary This is a study of the reverberation phenomena into a space. Digital and physical methods are employed as a way to understand the parameters that determine the reverberation time in an indoor space. The comparison of the results between digital and physical modeling permit to establish actions of acoustic control. The surfaces of the space are modified using sounds diffusers.
keywords Tiempo de reverberación (RT60), Parámetros sonoros, Ecotect, Prototipado rápido.
series SIGRADI
email
last changed 2016/03/10 09:49

_id acadia12_269
id acadia12_269
authors Lally, Sean
year 2012
title Architecture of an Active Context
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 269-276
doi https://doi.org/10.52842/conf.acadia.2012.269
summary As we stand with our feet on earth’s outermost surface we build an architecture today that is much like it was several thousand years earlier, in an attempt to extend that outer shell with one of our own making. Artificial masses are built from a refinement of this existing geologic layer into materials of stone, steel, concrete, and glass that assemble to produce new pockets of space through the buildings they create. However, the sixth century BC writer Thales of Miletus put a different perspective on this: he insisted that we live, in reality, not on the summit of a solid earth but at the bottom of an ocean of air (Holmyard 1931). And so, as architecture continues to build up the outermost layer of earth’s surface through a mimicking, embellishing, and enhancing of the materials which it comes from, it raises the question of why we have not brought a similar relationship to the materialities at the bottom of this “ocean” of air to create the spaces we call architecture. If you were looking to level a complaint with the architectural profession, stating that it has not been ambitious enough in scope would not be one. Architects have never shied away from the opportunity to design everything from the building’s shell to the teaspoon used to stir your sugar in its matching cup. But it would seem that the profession has developed a rather large blind spot in terms of what it sees as a malleable material with which to engage. Architects have made assumptions as to what is beyond our scope of action, refraining from engaging a range of material variables due to a belief that the task would be too great or simply beyond our physical control. So even though we are enveloped by them continuously, both on the exterior as well as the interior of our buildings, it must be assumed that the particles, waves, and frequencies of energy that move around us are thought by architects to be too faint and shaky to unload upon them any heavy obligations, that they are too unwieldy for us to control to create the physical boundaries of separation, security, and movement required of architecture. This has resulted in a cultivated set of blinders that essentially defines architecture as a set of mediation devices (surfaces, walls, and inert masses) for tempering the environmental context it is situated in from the individuals and activities within. The spaces we inhabit are defined by their ability to decide what gets in and what stays out (sunlight, precipitation, winds). We place our organizational demands and aesthetic opinions on the surfaces that mediate these variables rather than seeing them as available for manipulation as a building material on their own. The intention here is to recalibrate the materialities that make up that environmental context to build architecture. The starting point is a rather naive question: can we design the energy systems that course in and around us daily as an architectural material so as to take on the needs of activities, securities, and lifestyles associated with architecture? Can the variables that we would normally mediate against instead be heightened and amplified so as to become the architecture itself? That which many would incorrectly dismiss as simply “air” today—thought to be homogeneous, scale-less, and vacant due in part to the limits of our human sensory system to perceive more fully otherwise—might tomorrow be further articulated, populated, and layered so as to become a materiality that will build spatial boundaries, define activities of individuals and movement, and act as architectural space. Our environmental context consists of a diverse range of materials (particles and waves of energy, spectrum of light, sound waves, and chemical particles) that can be manipulated and formed to meet our needs. The opportunity before us today is to embrace the needs of organizational structures and aesthetics by designing the active context that surrounds us through the material energies that define it.
keywords Material energies
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id sigradi2012_368
id sigradi2012_368
authors Vannini, Virgínia; Bueno, Ernesto; Turkienicz, Benamy
year 2012
title Otimização geométrica de superfícies de fachada para uso fotovoltaico [Geometric optimization of facade surfaces for use of photovoltaic]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 426-430
summary This work describes a methodology to optimize solar incidence in photovoltaic facades of multi-floor buildings. The methodology identifies and parameterizes the building volume according to geometric principles of photovoltaic capture for all facades orientations. Initially, geometric modeling is made through an algorithm developed in a graphic-algorithm editor, Grasshopper – integrated with the modeling tool, Rhinoceros – then establishing the shape restrictions and variables. Secondly, twist and taper geometric transformation is correlated with solar incidence data through the interface of genetic platform, Galapagos. The results indicate that it’s possible explore the method to obtain: optimal solutions, reduced design time and better energy performance.
keywords optimization; photovoltaic facades; genetic algorithm; parametric design.
series SIGRADI
email
last changed 2016/03/10 10:02

_id sigradi2012_109
id sigradi2012_109
authors Vaz, Carlos Eduardo; Pereira, Natalia
year 2012
title A modelagem paramétrica e o ensino de geometria descritiva – as superfícies de Felix Candela [Parametric modeling and descriptive geometry education in architecture - Felix Candela’s surfaces]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 216-218
summary This paper aims to discuss the possible contributions that parametric modeling environments can bring to descriptive geometry teaching process in architecture courses. The paper shows a method where models developed in Grasshopper are used to illustrate how is possible to combine computing concepts, shape generation and design references during descriptive geometry classes. In this work is used as design precedent, solutions created by the Mexican architect and mathematician Felix Candela. His concrete shells developed from hyperbolic paraboloids are recognized as important references in architecture. As was said, during the research was developed a set of models in Grasshopper. This models were created in a way to show to the students the concepts required to build an hyperbolic paraboloid.
keywords Felix Candela, descriptive Geometry, design
series SIGRADI
email
last changed 2016/03/10 10:02

_id ijac201210302
id ijac201210302
authors Rossi, Dino; Zoltán Nagy, Arno Schlueter
year 2012
title Adaptive Distributed Robotics for Environmental Performance, Occupant Comfort and Architectural Expression
source International Journal of Architectural Computing vol. 10 - no. 3, 341-359
summary The integration of adaptive distributed robotics in architectural design has the potential to improve building energy performance while simultaneously increasing occupant comfort. In addition, conceiving buildings as dynamic systems with the ability to adapt to the changing environments in which they exist, opens new aesthetic possibilities for designers. As the façade of a building is a common place to address issues of energy performance and occupant comfort, this paper presents a first prototype of an adaptive solar envelope (ASE). Its functions are to provide distributed shading, solar power generation through integrated photovoltaics, and daylight distribution. We describe the interdisciplinary design process, and illustrate the architectural possibilities that arise from a distributed systems approach. The ASE is expanded to work in parallel with an adaptive artificial lighting element. Rather than being preprogrammed, the systems adapt their behavior through interaction with the environment and building occupants. This adaptation to the user's wishes is demonstrated successfully for the artificial light controller. We argue that with presently available technology and an increased exposure of architecture students and practitioners to adaptive design techniques, adaptive architectures will soon become a regular element of the built environment.
series journal
last changed 2019/05/24 09:55

_id ecaade2012_193
id ecaade2012_193
authors Barczik, Günter
year 2012
title Leaving Flatland behind: Algebraic surfaces and the chimaera of pure horizontality in Architecture
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 433-441
doi https://doi.org/10.52842/conf.ecaade.2012.1.433
wos WOS:000330322400044
summary We argue that the prevalence of continuous flat floor surfaces in architecture is comprehensible but fallacious, and that this chimaera can be overcome through studying and employing the sculptural potential of algebraic surfaces which suggest spatial possibilities that enrich designers’ vocabulary enormously. We continue, deepen and extend research the basics and early results of which were presented at the last two eCAADe conferences in Istanbul and Zürich. We present and discuss a university-based experimental design and research project that demonstrates how Algebraic Surfaces can drastically amplify the so far only tentative exploration of the possibilities of non-fl at fl oor surfaces in Architecture.
keywords Algebraic Geometry; Shape; Sculpture; Design; Tool; Experiment; Methodology; Software
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia12_199
id acadia12_199
authors Beorkrem, Chris ; Corte, Dan
year 2012
title Zero-Waste, Flat-Packed, Tri-Chord Truss: Continued Investigations of Structural Expression in Parametric Design"
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 199-208
doi https://doi.org/10.52842/conf.acadia.2012.199
summary The direct and rapid connections between scripting, modeling and prototyping allow for investigations of computation in fabrication. The manipulation of planar materials with two-dimensional CNC cuts can easily create complex and varied forms, volumes, and surfaces. However, the bulk of research on folding using CNC fabrication tools is focused upon surfaces, self-supporting walls and shell structures, which do not integrate well into more conventional building construction models. This paper attempts to explain the potential for using folding methodologies to develop structural members through a design-build process. Conventional building practice consists of the assembly of off-the-shelf parts. Many times, the plinth, skeleton, and skin are independently designed and fabricated, integrating multiple industries. Using this method of construction as an operative status quo, this investigation focused on a single structural component: the truss. Using folding methodologies and sheet steel to create a truss, this design investigation employed a recyclable and prolific building material to redefine the fabrication of a conventional structural member. The potential for using digital design and two-dimensional CNC fabrication tools in the design of a foldable truss from sheet steel is viable in the creation of a flat-packed, minimal waste structural member that can adapt to a variety of aesthetic and structural conditions. Applying new methods to a component of the conventional ‘kit of parts’ allowed for a novel investigation that recombines zero waste goals, flat-packing potential, structural expression and computational processes. This paper will expand (greatly) upon previous research into bi-chord truss designs, developing a tri-chord truss, which is parametrically linked to its structural moment diagram. The cross section of each truss is formed based on the loading condition for each beam. This truss design has been developed through a thorough series of analytical models and tests performed digitally, to scale and in full scale. The tri-chord truss is capable of resisting rotational failures well beyond the capacity of the bi-chord designs previously developed. The results are complex, and elegant expressions of structural logics embodied in a tightly constrained functional design.
keywords Parametric Design , Structural Expression , Material constraints
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ascaad2012_016
id ascaad2012_016
authors Bourbia, Fatiha ; Yasmina Bouchahm and Ouarda Mansouri
year 2012
title The Influence of Albedo on the Urban Microclimatic Street Canyon
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 159-169
summary In city, when temperatures run higher than those in suburban and rural areas, this generate a phenomenon called Urban Heat Island (UHI), this effect occurs, primarily because growing numbers of buildings have supplanted vegetation and trees. The main causes of the different microclimatic conditions in cities are linked among other parameters to urban geometry which influences incoming and outgoing radiations as well as surface material properties, such as color and texture. In hot climates the elevated surface temperatures of materials directly affect, not only the urban microclimate, but also thermal comfort conditions in urban open spaces. In order to evaluate the microclimate variation of urban street canyon compared to the variation of walls and ground surfaces materials, series of field simulation are used by software tool , Envi-met v3.0, in down town of Constantine, Algeria.
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_016.pdf
last changed 2012/05/15 20:46

_id ecaade2012_266
id ecaade2012_266
authors Casucci, Tommaso ; Erioli, Alessio
year 2012
title Behavioural Surfaces: Project for the Architecture Faculty library in Florence
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 339-345
doi https://doi.org/10.52842/conf.ecaade.2012.1.339
wos WOS:000330322400034
summary Behavioural Surfaces is a thesis project in Architecture discussed on December 2010 at the University of Florence. The project explores the surfacespace relationship in which a surface condition, generated from intensive datascapes derived from environmental data, is able to produce spatial differentiation and modulate structural and environmental preformance. Exploiting material self-organization in sea sponges as surfaces that deploy function and performance through curvature modulation and space defi nition, two different surface definition processes were explored to organize the system hierarchy and its performances at two different scales. At the macroscale, the global shape of the building is shaped on the base of isopotential surfaces while at a more detailed level the multi-performance skin system is defi ned upon the triply periodic minimal surfaces (TPMS).
keywords Digital datascape; Isosurfaces; Material intelligence; Minimal sufaces
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2012_303
id ecaade2012_303
authors Cheng, Nancy Yen-wen
year 2012
title Shading With Folded Surfaces: Designing With Material, Visual and Digital Considerations
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 613-620
doi https://doi.org/10.52842/conf.ecaade.2012.2.613
wos WOS:000330320600066
summary This paper analyses a hybrid design approach; how physical and digital processes can inform each other in a multivalent design cycle. It describes the design of origami-inspired window shades, part of the Shaping Light project that explores how adjustable surface structures can modulate light levels and heat gain in response to the changing seasons. The screen uses sloped surfaces to diffuse light and create apertures that close when the screen is stretched and open when the screen is folded. The project complements digital methods for pattern proportioning and kinetic simulation with manual manipulation to generate 3D folding motifs and refi ne assemblies. Physical prototypes can shape digital refi nement by revealing visual and structural characteristics of materials, along with joint and production considerations. Physical models for simulating sunny and cloudy daylighting conditions provide a direct connection between spatial confi guration and visual effects. The paper concludes with guidelines for material-based digital-analog creation.
keywords Architectural design process; digital fabrication; shading devices; origami
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2012_195
id sigradi2012_195
authors dos Santos, Denise Mônaco; Tramontano, Marcelo
year 2012
title Hibridismos na cidade: considerações sobre interfaces tangíveis urbanas [Hybridism in the city: thoughts about tangible urban interfaces]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 162-166
summary The consideration about contemporary urban spaces incorporates a set of investigations linked to spatial implementation of digital technologies. This paper is about the different ways in which tangible computational interfaces have been arranged in urban environments, be they projections onto urban surfaces, interactive façades, or even architecture and interactive and/or responsive urban objects. It examines the nature of this phenomenon from perspectives presented by different authors and based on systematized information on a wide array of interfaces. It also posits some significant attributes that should be taken into account when performing a close examination of these interventions. Its aim is to contribute theoretical explorations to the study of hybrid urban spaces.
keywords Interfaces tangíveis urbanas; espaços híbridos; espaços urbanos contemporâneos
series SIGRADI
email
last changed 2016/03/10 09:50

_id caadria2012_029
id caadria2012_029
authors Dutt, Florina and Subhajit Dasd
year 2012
title Responsive achitectural surface design from nonlinear systems biology: Responsive architectural design by computational methods
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 465–474
doi https://doi.org/10.52842/conf.caadria.2012.465
summary The fundamental processes in living systems can be a potential resource to derive nonlinear relationships that could find application in the design of responsive surface from an architectural standpoint. This research focuses on deriving a parametric relationship from a phenomenon in cell biology to generate an architectural expression of responsive surface/ façade. It further delineates the dynamic feedback mechanism from the environment and user as control factors. Through extensive investigation of cell-to-cell connections in the mammary epithelial cells and review of evident relay of communication across the entire system of cells, we could unfold the logical parameters of the biological system. Parametric modelling indicating the causality of the surface condition, changes with the change in extracellular matrix. This gives an opportunity to manoeuvre the surface parameters, contrary to the involuntary cell environment where the behaviours are under the control of a physiological process. Architecturally, the dynamic relationship of surface in a hybridised model, explains that interactivity is not a mere one to one response to a stimulus. Evidently, this interactive process can be a sophisticated loop of feedback through different materiality and componentry that play their effects (and are played back) by “active” surfaces.
keywords Computational design; responsive architecture; sustainable façade design; bio-inspired design; bio-mimicry
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2023_318
id ecaade2023_318
authors Imam, Chowdhury Ali, Othman, Hanin Abdel Salam and Çapunaman, Özgüç Bertug
year 2023
title Robotic Plaster Carving: Formalizing subtractive detailing of plaster surfaces for construction and crafts
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 397–406
doi https://doi.org/10.52842/conf.ecaade.2023.1.397
summary Plaster has been a fundamental material in numerous interior and exterior applications in architectural construction due to its fire-resistant properties and capabilities for intricate detailing. Moreover, prior to the widespread adoption of computer-aided design tools, plaster played a crucial role in historic preservation and architectural education (Mankouche & Schulte, 2012). While the use of decorative plaster elements in architectural construction has waned in popularity, the renewed interest in plaster within the context of advanced robotic fabrication offers a compelling basis for research. This paper presents an investigation into robotic plaster carving for adding detail and texture to plaster surfaces. Within the scope of this study, we identify and systematically examine various fabrication and material parameters for emergent geometries and fabrication defects, subsequently formalizing this robotic workflow for diverse applications in construction and crafts. Among these parameters, we primarily concentrate on toolpath geometry, tool orientation, carving speed, carving profile, and aggregation of carving strokes. Through this bottom-up approach, our objective is to enhance the understanding of tool-material interaction during the fabrication process and achieve improved control over the resulting artifact. Building on these insights, we demonstrate how the proposed robotic plaster carving workflow can be employed for subtractive surface detailing in architectural construction and digital crafts.
keywords Robotic Fabrication, Plaster Carving, Surface Detailing, Digital Craft
series eCAADe
email
last changed 2023/12/10 10:49

_id acadia12_315
id acadia12_315
authors Imbern, Matias ; Raspall, Felix ; Su, Qi
year 2012
title Tectonic Tessellations: A Digital Approach to Ceramic Structural Surfaces
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 315-321
doi https://doi.org/10.52842/conf.acadia.2012.315
summary From the beginning of digital revolution, structural surfaces drew significant attention as a realm that interweaves formal explorations, form-finding and structural optimization. However, after successful experimentation in the virtual domain, it became evident that some of the main challenges lay on how to translate these structural forms into architectural assemblies at the scale of buildings. The development of digital fabrication is crucial in this task, as means to overcome traditional constraints such as need for modular pieces, scaffolding and optimal assembly sequences.This research focuses on digital workflows that combine form finding with robotic fabrication, surface tessellation and panelization. In the past years, the use of digital tools to assemble identical modules into complex formations has achieved significant results for loadbearing walls. Expanding this line of research, the proposed fabrication system carries these experiments on additive fabrication into the production of structural surfaces. The assembly sequence involves a two-step fabrication: off-site panel manufacturing and on-site assembly. The main components of the system consist of two triangular ceramic pieces that provide structural resistance, refined surface finish, and formwork for thin reinforced-concrete layer. Panelization strategies reduce the requirements on-site work and formwork.The paper describes background research, concept, construction process, methodology, results and conclusions.
keywords Digital Fabrication , Complex Geometry , Reinforced Ceramic , Structural Surfaces , Reduced Formwork
series ACADIA
type panel paper
email
last changed 2022/06/07 07:50

_id caadria2012_102
id caadria2012_102
authors Manahl, Markus; Heimo Schimek, Emmanuel Ruffo Calderon Dominguez and Albert Wiltsche
year 2012
title Ornamental discretisation of free-form surfaces: Developing digital tools to integrate design rationalisation with the form finding process
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 347–356
doi https://doi.org/10.52842/conf.caadria.2012.347
summary The adoption of digital planning methods has given rise to an unprecedented formal freedom in architectural design. Free-form shapes enjoy considerable popularity in architectural production today. However, these shapes prove to be notoriously hard to fabricate. This paper reports on an ongoing research project investigating the approximation of continuous double-curved surfaces by discrete meshes consisting solely of planar facets, which can be constructed efficiently by using standardised, mass-produced building materials. We introduce our geometrical approach, which is based on the intersection of tangent planes to the surface, and present the digital tools we conceived to integrate the processes of design rationalisation and form-finding.
keywords Digital tool-making; parametric design; free-form surfaces; design rationalisation; planar discretisation
series CAADRIA
email
last changed 2022/06/07 07:59

_id ijac201210408
id ijac201210408
authors Manahl, Markus; Milena Stavric, Albert Wiltsche
year 2012
title Ornamental Discretisation of Free-form Surfaces
source International Journal of Architectural Computing vol. 10 - no. 4, 595-612
summary The adoption of digital planning methods has given rise to an unprecedented formal freedom in architectural design. Free-form shapes enjoy considerable popularity in architectural production today. However, these shapes prove to be notoriously hard to fabricate. In the course of a funded research project we investigated the approximation of continuous double-curved surfaces by discrete meshes consisting solely of planar facets, which can be fabricated efficiently using standardised, mass-produced building materials.We introduce our geometrical approach, which is based on the intersection of tangent planes to the surface, and present the digital tools we conceived to integrate the processes of design rationalisation and form-finding.
series journal
last changed 2019/05/24 09:55

_id sigradi2012_209
id sigradi2012_209
authors Muñoz, Patricia
year 2012
title Relaciones in-formadas entre la investigación y la enseñanza de morfología [In-formed relationships between morphology investigation and teaching]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 308-311
summary This paper describes two case studies in which digital media and morphology are closely related. The first one refers to the evolution of the different instruments applied in a research area comprising spatial surfaces generated by double rotation. The second one deals from the start with laser cutting, and its possibilities of providing flexibility to rigid sheets through density and shape of the incisions. It presents the latest results in the development of joint design for this kind of products. Finally, the current trends in our research are briefly mentioned.
keywords investigación; enseñanza; morfología; diseño; fabricación digital
series SIGRADI
email
last changed 2016/03/10 09:55

_id ijac201210103
id ijac201210103
authors Rashid, Mahbub
year 2012
title Shape-Sensitive Configurational Descriptions of Building Plans
source International Journal of Architectural Computing vol. 10 - no. 1, 33-52
summary While the traditional graph-theoretic techniques of space syntax are able to provide a rich description of the spatial configuration of buildings, they are not sufficiently shape sensitive. Therefore, techniques are proposed to describe building plans as configurations of spaces taking into consideration the elements of shape explicitly. First, the traditional space syntax techniques are applied to a more shape-sensitive partition of a plan in order to find out if these techniques would reveal any interesting shape property of the plan. Following this, a technique to characterize the spatial units of a plan is suggested taking into consideration how surfaces become visible from these units. Finally, a plan is described as the configuration of triangles defined by the vertices of the shape of the plan, and triangulation is used as a technique for a shape-sensitive description of spatial configuration.
series journal
last changed 2019/07/30 10:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_794173 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002