CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 61

_id ecaade2012_262
id ecaade2012_262
authors Pasternak, Agata
year 2012
title Robotic Prototypes Optimization: Incorporation of Optimization Procedures in the Design Process
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 265-272
doi https://doi.org/10.52842/conf.ecaade.2012.2.265
wos WOS:000330320600026
summary The use of computer-aided design combined with robotics and evolutionary principles of optimization, during the architectural design process, is discussed in this paper. The research is based on the examples of four case studies out of six projects designed during the Experimental Design Studio: ROBO Studio and a parallel seminar on optimization techniques on Architecture for Society of Knowledge Master course at Warsaw University of Technology, Faculty of Architecture. The project’s main goal was to combine robotic prototypes construction with an optimization process executed in parallel within one design procedure. The results of the course and the discussion about the impact of both factors on the architectural design process are presented in this paper.
keywords Genetic algorithm; optimization; robotics; Galapagos, Firefly, digital fabrication, design integration, kinetic structures
series eCAADe
type normal paper
email
last changed 2022/06/07 07:59

_id ecaade2021_257
id ecaade2021_257
authors Cichocka, Judyta Maria, Loj, Szymon and Wloczyk, Marta Magdalena
year 2021
title A Method for Generating Regular Grid Configurations on Free-From Surfaces for Structurally Sound Geodesic Gridshells
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 493-502
doi https://doi.org/10.52842/conf.ecaade.2021.2.493
summary Gridshells are highly efficient, lightweight structures which can span long distances with minimal use of material (Vassallo & Malek 2017). One of the most promising and novel categories of gridshells are bending-active (elastic) systems (Lienhard & Gengnagel 2018), which are composed of flexible members (Kuijenhoven & Hoogenboom 2012). Timber elastic gridshells can be site-sprung or sequentially erected (geodesic). While a lot of research focus is on the site-sprung ones, the methods for design of sequentially-erected geodesic gridshells remained underdeveloped (Cichocka 2020). The main objective of the paper is to introduce a method of generating regular geodesic grid patterns on free-form surfaces and to examine its applicability to design structurally feasible geodesic gridshells. We adopted differential geometry methods of generating regular bidirectional geodesic grids on free-form surfaces. Then, we compared the structural performance of the regular and the irregular grids of the same density on three free-form surfaces. The proposed method successfully produces the regular geodesic grid patterns on the free-form surfaces with varying curvature-richness. Our analysis shows that gridshells with regular grid configurations perform structurally better than those with irregular patterns. We conclude that the presented method can be readily used and can expand possibilities of application of geodesic gridshells.
keywords elastic timber gridshell; bending-active structure; grid configuration optimization; computational differential geometry; material-based design methodology; free-form surface; pattern; geodesic
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2017_142
id caadria2017_142
authors Kaijima, Sawako, Tan, Ying Yi and Lee, Tat Lin
year 2017
title Functionally Graded Architectural Detailing using Multi-Material Additive Manufacturing
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 427-436
doi https://doi.org/10.52842/conf.caadria.2017.427
summary The paper presents a future architectural detailing strategy enabled by the design of functionally graded materials (FGM). In specific, our proposal suggests the possibility of removing mechanical fasteners and adhesives from joint details. This is achieved by combining the principles of interlocking joineries found in traditional timber structures and current Multi-Material Additive Manufacturing (MMAM) technology to materialise FGMs. FGM belongs to a class of advanced materials characterised by variation in properties as the dimension varies by combining two or more materials at a microscopic scale (Mahamood et al. 2012). FGM is ubiquitous in nature and, when properly designed, can exhibit superior performance characteristics compared to objects comprised of homogeneous material properties. With the aim of developing interlocking details with improved performance, reliability, and design flexibility, we focus on controlling material stiffness, joint fitting, and geometry through the design of the microscopic material layout. A case study design will be presented to illustrate the process.
keywords Functionality Graded Material; Multi-Material Additive Manufacturing ; Architectural Detailing; Interlocking Joints
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2012_102
id ecaade2012_102
authors Pavlícek, Jiri; Kaftan, Martin
year 2012
title Parametric Design System for Passive Houses
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 487-494
doi https://doi.org/10.52842/conf.ecaade.2012.2.487
wos WOS:000330320600051
summary The intention of this research is to develop a design system for geometrically complex passive houses. Research focuses especially on the link-up of the CAAD (Computer-aided architectural design) and the CAM process (Computer-aided manufacturing) and deals only with timber structures. The aim of the project is to develop a system that would automate a creation of the computer model of the geometrically complex timber structures and link it to fabrication process. It should be possible to use the system for houses of the size of a family house up to an apartment house. The advantages of the system ought to be the fabrication preciseness, economical availability, high speed of construction, eco-friendliness and above all absence of geometrical constraints.
keywords Parametric; passive house; timber; CLT; geometry
series eCAADe
email
last changed 2022/06/07 07:59

_id caadria2012_008
id caadria2012_008
authors Schimek, Heimo; Emmanuel Ruffo Calderon Dominguez, Albert Wiltsche and Markus Manahl
year 2012
title Sewing timber panels: An innovative digitally supported joint system for self-supported timber plate structures
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 213–222
doi https://doi.org/10.52842/conf.caadria.2012.213
summary This paper focuses on the joint system of flat panels as parts of a freeform building. This topic is a key area of the ongoing founded research project, in which we investigate nonstandard shapes, realized with standard building materials, namely cross-laminated timber (CLT). We use different discretization algorithms to overlay arbitrary freeform surfaces with ornaments consisting of polygonal flat panels. We investigate a series of ornaments and their discretization results on different surfaces. In this paper, we will present and discuss a new timber-to-timber joint system that we developed exclusively for this project. We discuss the results of the load tests that we performed recently and we take a look at the construction dependent requirements of the joint system concerning the tolerances and the geometry and also, how these constraints inform the digital process. As we will discuss throughout the paper, in earlier publications we described the form finding process and the geometrical guidelines for the discretization of a desired freeform building using ornamental flat patterns. This paper moves one step further as the digital becomes physical and it is closely related to building construction and the computational design outset.
keywords Digital fabrication technology; computational algorithmic design; building construction; freeform optimisation; CLT joint system
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2012_067
id caadria2012_067
authors Delfosse, Vincent; John Schrayen, Roland Juchmes and Pierre Leclercq
year 2012
title Some advice for migrating to IFC
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 265–274
doi https://doi.org/10.52842/conf.caadria.2012.265
summary Nowadays, the BIM (Building Information Modelling) paradigm is a central topic in the CAAD community. Next to the commercial solutions, the IFC (Industry Foundation Classes) have emerged as the best open standard candidate for BIM interoperability. Despite the efforts of the community for promoting IFC over the last 15 years, it seems that its practical adoption in real-life projects has been very limited. The goal of this article is to explore how useful IFC can be today and to provide the reader with some advice for an effective adoption of IFC. Over the last year, we have conducted a project aiming at acquiring a sound understanding of IFC. It was made of two complementary investigations. On one hand, we have focused on the commercial modelling tools and the IFC support they were offering. On the other hand, we have focused on the IFC-based software developments. We have developed a tool converting IFC files into a dedicated thermal assessment based model. We will summarise the experience we have acquired in this project into some advice for users migrating to IFC. Our goal is to confront the practical aspects of the IFC developments, with both the theoretical ambitions and the commercial support currently available.
keywords Building information modelling; industry foundation classes; interoperability
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2014_124
id caadria2014_124
authors Williams, Nicholas; Sascha Bohnenberger and John Cherrey
year 2014
title A System for Collaborative Design on Timber Gridshells
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 441–450
doi https://doi.org/10.52842/conf.caadria.2014.441
summary The bent timber laths of the Sound Bites gridshell create two types of performance space over an area of almost 100 m2. Such postformed gridshells are a wellestablished design solution for creating curved forms from linear elements. Extending principles developed since the 1970s, contemporary digital tools have been utilised to drive a renewed interest in them, primarily through so-called form-finding techniques which connect digital and material models through a simulation of shape under bending loads (Nettlebladt, 2013) and the definition of efficient structural geometry acting under compression loads only (Hernandez et. al., 2012). This paper describes the workflow conceived and implemented for the Sound Bites structure. A central challenge of the research was for such a workflow to allow for the principles of gridshell design to be engaged in parallel to other tight constraints and design drivers. As such it needed to facilitate close collaboration between architectural, engineering and fabrication experts. This workflow was tested in the design and realisation of the full-scale structure within a six-week period. The gridshell design was developed through the manipulation of the shape of two edge profiles and the shell form spanning between these. Architectural and fabrication constraints were met and the workflow allowed for a sufficient level of structural analysis to be fed back to inform the design.
keywords Digital Workflow; Collaborative Design; Digital Formfinding; Digital Fabrication
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2012_284
id ecaade2012_284
authors Ameijde, Jeroen van; Carlin, Brendon
year 2012
title Digital Construction: Automated Design and Construction Experiments Using Customised On-Site Digital Devices
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 439-446
doi https://doi.org/10.52842/conf.ecaade.2012.2.439
wos WOS:000330320600046
summary This paper presents a currently on-going research trajectory, investigating integrated design and build work-fl ows using generative design strategies and custom built fabrication devices. The aim of the research, which is being developed through a series of experiments and workshops, is to explore scenarios in which these work-flows can produce emergent architectural structures which are highly adapted towards the intended performance within their specifi c context and site. The research has produced a number of installations and prototypical structures which test the practical and theoretical dimensions of the methodology explored. This paper will introduce intriguing new scenarios in which the architects’ role is focused on an indirect, advanced level of control of the process of design, allowing for a more open-ended method of negotiation between structure, users and environment.
keywords Generative design; digital fabrication; customised CNC devices; digital on-site construction
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2012_250
id ecaade2012_250
authors Baerlecken, Daniel ; Swarts, Matthew ; Gentry, Russell ; Wonoto, Nixon
year 2012
title Bio-Origami: Form Finding and Evaluation of Origami Structures
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 497-504
doi https://doi.org/10.52842/conf.ecaade.2012.1.497
wos WOS:000330322400051
summary This paper presents a concept of origami as a form-generator for a structural system that allows deployability for structures with large spans. The presented approach studies the embedded kinetic possibilities of folded structures and focuses on a parametric modelling process that allows evaluating the structural performance of different types of the same origami family in order to optimize the geometry for a given scenario. The workfl ow between scripting based form generation – within Rhinoceros and Excel – and LS-DYNA is presented in detail. In addition to that the question of scalability from a thin microstructure to a thickened roof structure is discussed in the context of an architectural project.
keywords Parametric modelling; form fi nding; origami; LS-DYNA; scripting
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2012_247
id ecaade2012_247
authors Balaban, Özgün; Kilimci, Elif Sezen Yagmur; Cagdas, Gülen
year 2012
title Automated Code Compliance Checking Model for Fire Egress Codes
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 117-125
doi https://doi.org/10.52842/conf.ecaade.2012.2.117
wos WOS:000330320600011
summary Architecture today has come to its most complex form. There are lots of criteria such as fi re safety, structure, sustainability etc… which must be controlled by the designers. To improve the performance and accessibility of buildings, governing bodies publish different codes for each of the different criteria. Buildings must comply with these codes to get a permit for construction. The checking of the buildings according the codes is done manually by code offi cials. This process is time consuming, high in cost and prone to errors. To remedy this problem by using the tools like BIM and AI, systems that can automatically check the code compliance of projects are being developed. In this paper we provide an overview of the structures and capabilities of these systems and present the automated code compliance checking system that we develop for checking building models against some parts of the Turkish Fire Codes.
keywords Automated Code Compliance Checking; Fire Codes; BIM
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia12_231
id acadia12_231
authors Bell, Brad
year 2012
title Parametric Precast Concrete Panel System
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 231-238
doi https://doi.org/10.52842/conf.acadia.2012.231
summary The working hypothesis of this research focuses on the potential of utilizing a digital toolset to engage information within a surrounding context for the purpose of creating a more intelligent pre-cast concrete panel system. The Parametric Pre-Cast Concrete Panel System is a research project attempting to parametrically define geometry for the purpose of producing formwork based on quantitative information related to issues such as environmental control systems, sound abatement, as well as qualitative information like non-standard variation paneling, and aesthetic composition.
keywords Energy , form , structures , performance , simulation , prototyping , precast , concrete
series ACADIA
type panel paper
email
last changed 2022/06/07 07:54

_id acadia12_199
id acadia12_199
authors Beorkrem, Chris ; Corte, Dan
year 2012
title Zero-Waste, Flat-Packed, Tri-Chord Truss: Continued Investigations of Structural Expression in Parametric Design"
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 199-208
doi https://doi.org/10.52842/conf.acadia.2012.199
summary The direct and rapid connections between scripting, modeling and prototyping allow for investigations of computation in fabrication. The manipulation of planar materials with two-dimensional CNC cuts can easily create complex and varied forms, volumes, and surfaces. However, the bulk of research on folding using CNC fabrication tools is focused upon surfaces, self-supporting walls and shell structures, which do not integrate well into more conventional building construction models. This paper attempts to explain the potential for using folding methodologies to develop structural members through a design-build process. Conventional building practice consists of the assembly of off-the-shelf parts. Many times, the plinth, skeleton, and skin are independently designed and fabricated, integrating multiple industries. Using this method of construction as an operative status quo, this investigation focused on a single structural component: the truss. Using folding methodologies and sheet steel to create a truss, this design investigation employed a recyclable and prolific building material to redefine the fabrication of a conventional structural member. The potential for using digital design and two-dimensional CNC fabrication tools in the design of a foldable truss from sheet steel is viable in the creation of a flat-packed, minimal waste structural member that can adapt to a variety of aesthetic and structural conditions. Applying new methods to a component of the conventional ‘kit of parts’ allowed for a novel investigation that recombines zero waste goals, flat-packing potential, structural expression and computational processes. This paper will expand (greatly) upon previous research into bi-chord truss designs, developing a tri-chord truss, which is parametrically linked to its structural moment diagram. The cross section of each truss is formed based on the loading condition for each beam. This truss design has been developed through a thorough series of analytical models and tests performed digitally, to scale and in full scale. The tri-chord truss is capable of resisting rotational failures well beyond the capacity of the bi-chord designs previously developed. The results are complex, and elegant expressions of structural logics embodied in a tightly constrained functional design.
keywords Parametric Design , Structural Expression , Material constraints
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2012_115
id caadria2012_115
authors Biswas, Tajin; Tsung-Hsien Wang and Ramesh Krishnamurti
year 2012
title Data sharing for sustainable assessments: Using functional databases for interoperating multiple building information structures
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 193–202
doi https://doi.org/10.52842/conf.caadria.2012.193
summary This paper presents the development and implementation of an automatic sustainable assessment prototype using functional databases. For the practical purpose, we use Leadership in Energy and Environmental Design (LEED) as the exemplar standard to demonstrate the integrative process from building information aggregation to final evaluation. We start with a Building Information model, and use Construction Operations Building Information Exchange (COBie) as a bridge to integrate LEED requirements. At present, the process of sustainable building assessment requires information exchange from various building professionals. However, there is no procedure to manage, or use, information pertaining to sustainability. In our research, we translate rules from LEED into computable formulas and develop a prototype application to produce templates for LEED submission.
keywords Building information databases; sustainable assessment
series CAADRIA
email
last changed 2022/06/07 07:52

_id sigradi2012_88
id sigradi2012_88
authors Borda, Adriane; Pires, Janice; de Vasconselos, Tássia Borges
year 2012
title O Desenho (didático) para o Insight [Drawing didactic for Insight]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 277-280
summary Knowledge of geometric drawing, hitherto considered previous in the training context in architecture, has little emphasis in the school curriculum. In the context this work, were recognized approaches such as shape grammar, which explain design practices, unveiling relationships of the geometric form. It was also identified practices of the Gestalt, established under the modern architecture, which sought to stimulate the student to have insights to think about geometric structures implicit in the form. From these references and digital tools, it is demonstrated the types of concepts and some of the exercises that are being used for the configuration of an learning for the insight.
keywords Geometric drawing, insight, architectural design.
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2012_314
id ecaade2012_314
authors Bourdakis, Vassilis; Pentazou, Ioulia
year 2012
title Real City Museum/Virtual City Model: Real Datasets/Virtual Interactions
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 337-341
doi https://doi.org/10.52842/conf.ecaade.2012.2.337
wos WOS:000330320600034
summary Creating virtual city models at different scales, emphases and overall orientations is a topic that has attracted great interest in architectural and urban planning context over at least the last two decades. However the complexity of the city as a historical formation demands new methods of representation embracing interactive technologies. The work discussed in this paper is part of a large multidisciplinary project for the development of the Volos city museum. Enhancing the interaction between the public and the museum exhibits is essential. The paper focuses on the definition, complexity and orientation of the data structures and the integration of 3D contemporary and historic data that is the backbone for the digital representations and the interactive applications developed for the museum.
keywords Database design; XML; Dublin Core metadata; history; 3D modelling; geo-referencing
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2012_024
id caadria2012_024
authors Brell-Cokcan, Sigrid; Johannes Braumann, Baris Cokcan and Martin Kleindienst
year 2012
title Just in time design: Developing parametric design tools for architectural design
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 455–464
doi https://doi.org/10.52842/conf.caadria.2012.455
summary In this paper we will present custom design and parametric programming strategies for the design of complex spatial structures based on our applied research for a 10.000 m² freeform technology centre in Düzce, Turkey. The goal is to develop intuitive, easy-to-use parametric design components for layout, analysis, optimisation and aesthetic architectural free form design.
keywords Parametric design; freeform architecture; quadrilateral meshes; software development; fabrication
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2012_058
id ecaade2012_058
authors Bus, Peter
year 2012
title Emergence as a Design Strategy in Urban Development: Using Agent-Oriented Modelling in Simulation of Reconfiguration of the Urban Structure
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 599-605
doi https://doi.org/10.52842/conf.ecaade.2012.1.599
wos WOS:000330322400062
summary Agent-oriented modelling is one of the simulation methods for emergent behavior of a complex system that could be considered for application of urban city structures. Using advanced script techniques, the behavior and evolution of structures in the bottom-up strategies for the development of environment could be simulated in architecture and urbanism as well. The paper presents a research subproject in the area of verifi cation of the processes of spatial and social interaction of the agents according to the logic of defined intrinsic rules of Swarm behavior in the simulation model of the selected area. The research builds mainly upon two selected requirements of the bottom-up strategy: the approach distances to places of interest and mutual standoff distances between urban elements.
keywords Emergence; simulation; self-organization process; agent-oriented modelling
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2012_303
id ecaade2012_303
authors Cheng, Nancy Yen-wen
year 2012
title Shading With Folded Surfaces: Designing With Material, Visual and Digital Considerations
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 613-620
doi https://doi.org/10.52842/conf.ecaade.2012.2.613
wos WOS:000330320600066
summary This paper analyses a hybrid design approach; how physical and digital processes can inform each other in a multivalent design cycle. It describes the design of origami-inspired window shades, part of the Shaping Light project that explores how adjustable surface structures can modulate light levels and heat gain in response to the changing seasons. The screen uses sloped surfaces to diffuse light and create apertures that close when the screen is stretched and open when the screen is folded. The project complements digital methods for pattern proportioning and kinetic simulation with manual manipulation to generate 3D folding motifs and refi ne assemblies. Physical prototypes can shape digital refi nement by revealing visual and structural characteristics of materials, along with joint and production considerations. Physical models for simulating sunny and cloudy daylighting conditions provide a direct connection between spatial confi guration and visual effects. The paper concludes with guidelines for material-based digital-analog creation.
keywords Architectural design process; digital fabrication; shading devices; origami
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2012_302
id ecaade2012_302
authors Colakoglu, Birgül; Durmisevic, Elma; Pasic, Adnan
year 2012
title International Collaborative Design Studio: Green Transformable Buildings
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 107-114
doi https://doi.org/10.52842/conf.ecaade.2012.2.107
wos WOS:000330320600010
summary Current trends in architectural practice such as an increased focus on sustainable design, integrated design, and the globalization of architecture are increasing the need for practitioners that are skilled in collaboration. Collaboration fosters innovation and creativity. It is a key operating principle for the 21st century and an important skill that an architecture student must be exposed to. The change in knowledge generation and creative problem solving is transforming education towards collaborative learning forcing architecture and engineering schools to address new course structures with “collaborative” aspect. The work presented in this paper draws its base from collaborative design learning. It describes an international collaborative design studio titled “International Design Studio: Green Transformable Buildings” conducted between three institutions, Y_ld_z Technical University (YTU)–Istanbul, University of Twente (TU)-Enschede Engineering Sciences and Industrial Design School, and Architecture Faculty of Sarajevo (AFS).
keywords Collaborative design; collaborated learning; team work; design process
series eCAADe
email
last changed 2022/06/07 07:56

_id sigradi2012_139
id sigradi2012_139
authors Darcan, Tugçe; Gürer, Ethem
year 2012
title A Poe(Gene)tic Algorithm Method to Compute Gradient Spatiality
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 24-28
summary Related to the very common use of contemporary evolutionary methodologies, metaphorical relations coming out between architectural design and different structures (open and closed) and also new forms of spatiality are now being discussed. We are trying in this research, to query such a relationship between design and poetic language. In this regard, this paper concerns how haiku, well-known Japanese poem, may turn out to be an unfolding layer within the act of designing, by standing as a sort of syntactic generator. Genetic algorithms are benefited to compute the existing formalism in haiku structure, which gives rise to ‘gradient spatiality’.
keywords evolutionary design; genetic algorithms; poetic language; haiku; gradient spatiality
series SIGRADI
email
last changed 2016/03/10 09:50

For more results click below:

this is page 0show page 1show page 2show page 3HOMELOGIN (you are user _anon_632239 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002