CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 551

_id ecaade2012_240
id ecaade2012_240
authors Hradecny, Martin; Kolár, Zdenek
year 2012
title Design Process in the Stage of Changes: Architects Learning New Role
doi https://doi.org/10.52842/conf.ecaade.2012.2.201
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 201-209
summary Many researchers spent time analyzing design process, some of them were focused even on architectural design. Many of them presented possible views how to understand (architectural) design. They try to fi nd universal description of what design might be and how and what principles it uses. Concern in their approach is given on „conceptual“ stage of the design process, or simply all design process is referred as conceptual, with some features of „product“ design. That is an aspect, which we, as practitioners, see from a slightly different point of view. It relates to what we consider to be architecture. In our point of view architecture is completed building.
wos WOS:000330320600020
keywords Design process; design phases; project team
series eCAADe
email
last changed 2022/06/07 07:50

_id acadia12_269
id acadia12_269
authors Lally, Sean
year 2012
title Architecture of an Active Context
doi https://doi.org/10.52842/conf.acadia.2012.269
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 269-276
summary As we stand with our feet on earth’s outermost surface we build an architecture today that is much like it was several thousand years earlier, in an attempt to extend that outer shell with one of our own making. Artificial masses are built from a refinement of this existing geologic layer into materials of stone, steel, concrete, and glass that assemble to produce new pockets of space through the buildings they create. However, the sixth century BC writer Thales of Miletus put a different perspective on this: he insisted that we live, in reality, not on the summit of a solid earth but at the bottom of an ocean of air (Holmyard 1931). And so, as architecture continues to build up the outermost layer of earth’s surface through a mimicking, embellishing, and enhancing of the materials which it comes from, it raises the question of why we have not brought a similar relationship to the materialities at the bottom of this “ocean” of air to create the spaces we call architecture. If you were looking to level a complaint with the architectural profession, stating that it has not been ambitious enough in scope would not be one. Architects have never shied away from the opportunity to design everything from the building’s shell to the teaspoon used to stir your sugar in its matching cup. But it would seem that the profession has developed a rather large blind spot in terms of what it sees as a malleable material with which to engage. Architects have made assumptions as to what is beyond our scope of action, refraining from engaging a range of material variables due to a belief that the task would be too great or simply beyond our physical control. So even though we are enveloped by them continuously, both on the exterior as well as the interior of our buildings, it must be assumed that the particles, waves, and frequencies of energy that move around us are thought by architects to be too faint and shaky to unload upon them any heavy obligations, that they are too unwieldy for us to control to create the physical boundaries of separation, security, and movement required of architecture. This has resulted in a cultivated set of blinders that essentially defines architecture as a set of mediation devices (surfaces, walls, and inert masses) for tempering the environmental context it is situated in from the individuals and activities within. The spaces we inhabit are defined by their ability to decide what gets in and what stays out (sunlight, precipitation, winds). We place our organizational demands and aesthetic opinions on the surfaces that mediate these variables rather than seeing them as available for manipulation as a building material on their own. The intention here is to recalibrate the materialities that make up that environmental context to build architecture. The starting point is a rather naive question: can we design the energy systems that course in and around us daily as an architectural material so as to take on the needs of activities, securities, and lifestyles associated with architecture? Can the variables that we would normally mediate against instead be heightened and amplified so as to become the architecture itself? That which many would incorrectly dismiss as simply “air” today—thought to be homogeneous, scale-less, and vacant due in part to the limits of our human sensory system to perceive more fully otherwise—might tomorrow be further articulated, populated, and layered so as to become a materiality that will build spatial boundaries, define activities of individuals and movement, and act as architectural space. Our environmental context consists of a diverse range of materials (particles and waves of energy, spectrum of light, sound waves, and chemical particles) that can be manipulated and formed to meet our needs. The opportunity before us today is to embrace the needs of organizational structures and aesthetics by designing the active context that surrounds us through the material energies that define it.
keywords Material energies
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id acadia12_439
id acadia12_439
authors As, Imdat ; Angelico, Maria
year 2012
title Crowdsourcing Architecture: A Disruptive Model in Architectural Practice
doi https://doi.org/10.52842/conf.acadia.2012.439
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 439-443
summary This paper discusses the use of crowdsourcing as a new approach for architectural design acquisition. We will give an overview of the concept of crowdsourcing, and elaborate on its particular application in architecture via concrete projects executed on Arcbazar, a firstof- its-kind crowdsourcing platform for architectural design services. We argue that online crowdsourcing platforms can have an immense impact on smaller-scale design challenges, e.g., home remodeling projects and landscape and interior design challenges, and can potentially carry these often neglected projects into the architectural design sphere. In this paper we will discuss the methods and techniques of architectural crowdsourcing and illustrate the processes and outcomes through a series of projects: a remodeling project for a closet; an interior design challenge for a dining space; and a layout problem for an apartment complex. We will then evaluate the protocol and outcome of architectural crowdsourcing, and convey the professional and popular media response to this new method of architectural design acquisition.
keywords crowdsourcing , competitions , networking , interaction , collaboration
series ACADIA
type panel paper
email
last changed 2022/06/07 07:54

_id acadia12_199
id acadia12_199
authors Beorkrem, Chris ; Corte, Dan
year 2012
title Zero-Waste, Flat-Packed, Tri-Chord Truss: Continued Investigations of Structural Expression in Parametric Design"
doi https://doi.org/10.52842/conf.acadia.2012.199
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 199-208
summary The direct and rapid connections between scripting, modeling and prototyping allow for investigations of computation in fabrication. The manipulation of planar materials with two-dimensional CNC cuts can easily create complex and varied forms, volumes, and surfaces. However, the bulk of research on folding using CNC fabrication tools is focused upon surfaces, self-supporting walls and shell structures, which do not integrate well into more conventional building construction models. This paper attempts to explain the potential for using folding methodologies to develop structural members through a design-build process. Conventional building practice consists of the assembly of off-the-shelf parts. Many times, the plinth, skeleton, and skin are independently designed and fabricated, integrating multiple industries. Using this method of construction as an operative status quo, this investigation focused on a single structural component: the truss. Using folding methodologies and sheet steel to create a truss, this design investigation employed a recyclable and prolific building material to redefine the fabrication of a conventional structural member. The potential for using digital design and two-dimensional CNC fabrication tools in the design of a foldable truss from sheet steel is viable in the creation of a flat-packed, minimal waste structural member that can adapt to a variety of aesthetic and structural conditions. Applying new methods to a component of the conventional ‘kit of parts’ allowed for a novel investigation that recombines zero waste goals, flat-packing potential, structural expression and computational processes. This paper will expand (greatly) upon previous research into bi-chord truss designs, developing a tri-chord truss, which is parametrically linked to its structural moment diagram. The cross section of each truss is formed based on the loading condition for each beam. This truss design has been developed through a thorough series of analytical models and tests performed digitally, to scale and in full scale. The tri-chord truss is capable of resisting rotational failures well beyond the capacity of the bi-chord designs previously developed. The results are complex, and elegant expressions of structural logics embodied in a tightly constrained functional design.
keywords Parametric Design , Structural Expression , Material constraints
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia12_511
id acadia12_511
authors Borowski, Darrick ; Poulimeni, Nikoletta ; Janssen, Jeroen
year 2012
title Edible Infrastructures: Emergent Organizational Patterns for the Productive City
doi https://doi.org/10.52842/conf.acadia.2012.511
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 511-526
summary Edible Infrastructures is an investigation into a projective mode of urbanism which considers food as an integral part of a city's metabolic infrastructure. Working with algorithms as design tools, we explore the generative potential of such a system to create an urban ecology that: provides for its residents via local, multi-scalar, distributed food production, reconnects urbanites with their food sources, and de-couples food costs from fossil fuels by limiting transportation at all levels, from source to table. The research is conducted through the building up of a sequence of algorithms, beginning with the ‘Settlement Simulation’, which couples consumers to productive surface area within a cellular automata type computational model. Topological analysis informs generative operations, as each stage builds on the output of the last. In this way we explore the hierarchical components for a new Productive City, including: the structure and programming of the urban circulatory network, an emergent urban morphology based around productive urban blocks, and opportunities for new architectural typologies. The resulting prototypical Productive City questions the underlying mechanisms that shape modern urban space and demonstrates the architectural potential of mathematical modeling and simulation in addressing complex urban spatial and programmatic challenges.
keywords Urban Agriculture , Urban Ecologies and Food Systems , Productive Cities , Urban Metabolism , Computational Modeling and Simulation , Algorithmic/ Procedural Design Methodologies , Emergent Organization , Self-Organizing Systems
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2012_318
id ecaade2012_318
authors Fioravanti, Antonio ; Loffreda, Gianluigi ; Simeone, Davide ; Trento, Armando
year 2012
title “Divide et Impera” to dramatically and consciously simplify design: The mental/instance path - How reasoning among spaces, components and goals
doi https://doi.org/10.52842/conf.ecaade.2012.1.269
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 269-278
summary In our times, in a complex and universal village where problems are intertwined and pervasive beyond our imagination, we need new approaches to deal with them – appropriately. In a previous work we highlighted the importance to reason ontologies: a ‘world’ f.i. a building – as a mental image – is not a Linnaeus’s classifi cation (structured set of entities) but a system (goals oriented set of classes) able to reasoning upon selectively chosen entities belonging to different Realms (ontology universes) (Fioravanti et al., 2011a). The general aim of our research– to be an effective aid to design – is to simulate wo/man as designer and user of designed spaces, hence how mental skill can be computably included in new tools able to tackle these problems. This paper is focused on the fi rst role: how actor-designers approach design problems and how the inference mechanism can help them and affect the design process. A ‘Building Object’ - the dual system of Spaces and Technology elements – is inferred in several ways according to different goals and the inference mechanism can, simulating human mental shortcuts, optimize thinking.
wos WOS:000330322400027
keywords Design process; design operational theory; thinking optimization; inferential mechanisms; human-machine collaboration
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2012_221
id ecaade2012_221
authors Gül, Leman Figen
year 2012
title Educating new generation of architects
doi https://doi.org/10.52842/conf.ecaade.2012.1.077
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 77-85
summary Recently the developments in and the extensive use of digital design technologies have brought about fundamental changes in the way architects design and represent. As a result of the changing architectural design practise, there have been significant changes in architectural curricula to accommodate new demands, opportunities, processes and potentials provided by advance digital design tools and fabrication-based design techniques. Based on this new demand in design education, a number of additional subjects have been introduced in architectural curricula facilitating the experimentation of free-form /complex design artefact, building components and material attributes. Reported in this paper is the experience of the students as well is a commentary on the quality of the outcomes they achieved whilst confronting this new learning experience. Based on the analysis of collected questionnaire answers, this paper will document the issues that the students experienced during digital design development, the modelling and assembling level as well as in the process of fabrication.
wos WOS:000330322400007
keywords Digital architecture; fabrication; design teaching and learning
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2012_125
id caadria2012_125
authors Hanafin, S.; S. Datta, B. Rolfe, M. Hobbs
year 2012
title Envelope tesselation with stochastic rotation of 4-fold penttiles
doi https://doi.org/10.52842/conf.caadria.2012.253
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 253–262
summary The challenge of developing adaptive, responsive low-energy architecture requires new knowledge about the complex and dynamic interaction between envelope architecture and optimisation between competing environmental performance metrics. Advances in modelling the geometry of building envelopes and control technologies for adaptive buildings now permit the sophisticated evaluation of alternative envelope configurations for a set of performance criteria. This paper reports on a study of the parametric control of a building envelope based on moveable façade components, acting as a shading device to reduce thermal gain within the building. This is investigated using a novel pentagonal tiling strategy considering the component design, tessellation and control methods.
keywords Responsive envelopes; moveable façade components; parametric modelling; tiling geometry; stochastic rotation
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia12_305
id acadia12_305
authors Kock, Jeffrey ; Bradley, Benjamin ; Levelle, Evan
year 2012
title The Digital-Physical Feedback Loop: A Case Study
doi https://doi.org/10.52842/conf.acadia.2012.305
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 305-314
summary Kukje Art Center, Seoul’s new gallery designed by SO-IL, features a totally bespoke chainmail mesh system (submission note: the authors are not affiliated with SO-IL). A single sheet of complex-curved, tensioned mesh, made up of interlocking 40mm diameter stainless steel rings, wraps the building. This paper discusses the stages of a feedback loop process employed by the authors to refine a digital model of the mesh. The mesh’s perimeter attachment system does not prescribe ring locations, allowing the mesh to form find for itself during installation. As a result, the digital model must capture the behavioral tendencies of the mesh as it negotiates the building’s geometry. Paramount in meeting this challenge was the use of physical mockups. At each stage of the feedback loop process, the working digital model was used to develop a physical mockup of increased scale and complexity, and this mockup was used to refine the digital model. Ultimately, the model output of a mesh relaxation algorithm was used as the basis for engineering simulations and predictions of the mesh vertical ringcount needed at specific locations around the building. Mesh vertical ringcount predictions are validated relative to a 1:1 mockup and the installed Kukje Art Center mesh.
keywords minimal surface , chainmail mesh , form finding , dynamic relaxation , finite element analysis , feedback loop , tensioned fabric , physical mockup , bespoke cladding , Kukje , Seoul
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id sigradi2012_115
id sigradi2012_115
authors Lima, Fernando Tadeu de Araújo; Marques, Aline Calazans; Pedroso, Emmanuel Sa Resende; Braida, Frederico
year 2012
title Building Information Modeling: Um ensaio sobre as inovações nas formas de representação e gerenciamento de projeto e suas implicações na produção da arquitetura contemporânea [Building Information Modeling: An essay on the innovations in the forms of representation and project management and its implications in the production of contemporary architecture]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 491-494
summary This article aims to promote the discussion about how the adoption of Building Information Modeling systems in management processes and three-dimensional geometric modeling can interfere in the design process and construction of complex shapes in architecture. To that end, we assembled a theoretical-practical referential about the use of non-Euclidean forms in contemporary architecture and BIM tools, illustrated with iconic design processes developed by Frank Gehry and Zaha Hadid. Finally, there was the importance of BIM tools to a new understanding of architecture, by enabling the construction of complex shapes.
keywords Building Infomation Modeling; Modelagem Geométrica Tridimensional; Projeto de Arquitetura; Computação Gráfica; Representação Gráfica
series SIGRADI
email
last changed 2016/03/10 09:55

_id acadia12_187
id acadia12_187
authors Mei-Ling, Lin ; Han, Ling ; Kothapuram, Shankara ; Jiawei, Song
year 2012
title Digital Vernacular
doi https://doi.org/10.52842/conf.acadia.2012.187
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 187-195
summary Digital Vernacular investigates the potential of the process of depositing a paste like material with precision using a CNC device which has produced an innovative system for design and fabrication of environmentally responsive housing. Architectural practice has been greatly impacted by technical innovations in the past, usually new building types emerge as part of new ideologies. Yet the current revolution in computer-aided design and fabrication has architecture focusing on form – without questioning what these new processes can bring for the masses. The research project 'Digital Vernacular' has investigated the potential of using CNC technology for the production of housing. It has focused on the design of the machinic devices as well as computational design tools, and revolves around the concept of fabrication on site. Using an additive and layered manufacturing process and locally available material, the project proposes a revolutionary new digital design and fabrication system that is based on one of the oldest and most sustainable construction methods in the world. The main potentials of this method are not to create complex forms for the sake of design, but to use parametric control to adapt each design to the specificities of its site. Using geometrical rules found during many research experiments with real material behaviour, a new architectural language is created that merges several environmental functionalities into a single integrated design.
keywords Digital , Vernacular , CNC , CAM , Housing , fabrication , environmental
series ACADIA
type panel paper
email
last changed 2022/06/07 07:58

_id ecaade2008_190
id ecaade2008_190
authors Russell, Peter; Elger, Dietrich
year 2008
title The Meaning of BIM
doi https://doi.org/10.52842/conf.ecaade.2008.531
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 531-536
summary The paper is a position paper, not a report about a research project. It concerns the paradigm-shift that is taking place in the CAAD software and its implications for the business of architecture and more importantly, for the education of future members of the profession. Twenty years ago the use of CAAD software as a replacement for hand drafting was starting. Since then the transformation is complete: hardly a final project in the universities is drawn by hand. Currently, we are witnessing a second paradigm shift and its name is BIM. The meaning of BIM is rooted in two significant differences to current CAAD software and this will have implications for teaching and practicing architecture. The first difference is the way the software structures information in the CAAD file. The standard way to save CAAD information was to organise simple geometric objects according to membership in groups and to sort them according to a layer-metaphor, which primarily controlled the visibility of the geometric elements. Three-dimensional modelling is/was nothing more than the same structure with a more complex geometry. BIM software changes this structure by storing classes of geometries and then to store the specific values of individual geometries according to factors that can be determined by external or internal logical factors. The implication for architects is that we have the chance to be the people in control of the building information model, so long as we invest the time and energy to fully understand what is happening to the building information during the planning process. If we ignore this, the real danger exists that the last control of the building’s final configuration will be usurped. As educators we are currently teaching students that will be leaving the schools in 2012 and beyond. By then, the paradigm-shift will be in full motion and so it behoves us to consider which skill sets we want the next generation of architects to possess. This means not just teaching students about how to use particular BIM software or how to program a certain parametric/genetic algorithm in a form-finding process. We need to teach our students to take the leadership in building information management and that means understanding and controlling how the building information flows, how the methodologies that are used by the consulting engineers affect our building models, and knowing what kind of logical inconsistencies (internal or external) can threaten the design intention.
keywords Building Information Modelling, Digital Curriculum, Architectural Pedagogy
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2012_025
id ecaade2012_025
authors Tonn, Christian ; Tatarin, René
year 2012
title Volume Rendering in Architecture: Overlapping and combining 3d voxel volume data with 3d building models
doi https://doi.org/10.52842/conf.ecaade.2012.1.719
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 719-726.
summary Volume rendering is an illustration technique for visualising different 3D measured data or 3D simulation data interactively on screen. This paper introduces a method that overlays several types of volume data on an architectural surface model. This complex calculation takes place on the graphics card using hardware-accelerated shaders. An implemented software prototype entitled “VolumeRendering” is introduced. In addition to interactive visualisation, the objective was to create a user-friendly interface. Synergies and new evaluation possibilities arise through the overlay, e.g. of different measuring techniques, with a surface model. Finally the use of the software prototype is illustrated using examples from our interdisciplinary research project.
wos WOS:000330322400076
keywords Multiple Volume Rendering; Overlay; 3D Surface Models
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia12_251
id acadia12_251
authors Winn, Kelly ; Vollen, Jason ; Dyson, Anna
year 2012
title Re-Framing Architecture for Emerging Ecological and Computational Design Trends for the Built Ecology
doi https://doi.org/10.52842/conf.acadia.2012.251
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 251-258
summary The dualities of ‘Humanity and Nature’, ‘Organic and Inorganic’, Artificial and Synthetic’ are themes that have permeated architectural discourse since the beginning of the 20th c. The interplay between nature and machine can be directly related to the 19th c. discussion of nature and industrialism that was exemplified in the works of Louis Sullivan and Frank Lloyd Wright that spawned the organic architect movement. Echoes of these dichotomous themes have been resuscitated with the introduction of computational and information processing as a fundamental part of contemporary theory and critical praxis. The ability to go beyond simplistic dualities is promised by the introduction of data informed multi-variable processes that allow for complex parametric processes that introduce a range of criteria within evaluative design frameworks. The investigations detailed herein focuses on surface morphology development that are explored and evaluated for their capacity to reintegrate the ideas from genetic and developmental biology into an architectural discourse that has historically been dominated by the mechanistic metaphor perpetuated throughout the modern era. Biological analogues in nature suggest that the zone of decoration plays an important role in the environmental response and climate adaptability of architecture. The building envelope represents the greatest potential energetic gain or loss, as much as 50 %, therefore the architectural envelope plays the most significant role in energy performance of the building. Indeed, from an environmental performance standpoint, the formal response of the envelope should tend toward complexity, as biology suggests, rather than the reduced modernist aesthetic. Information architecture coupled with environment and contextual data has the potential to return the focus of design to the rhizome, as the functional expressions of climatic performance and thermal comfort interplay within other cultural, social and economic frameworks informing the architectural artifact. Increasing the resolution that ornament requires in terms of geometric surface articulation has a reciprocal affect on the topological relationship between surface and space: the architectural envelope can respond through geometry on the surface scale in order to more responsively interface with the natural environment. This paper responds to increasing computational opportunities in architectural design and manufacturing; first by exploring the historical trajectory of discourse on nature vs. machine in architecture, then exploring the implications for utilizing environmental data to increase the energy performance of architecture at the building periphery, where building meets environment creating the synthetic Built Ecology.
keywords ecology , biomimicry , biophilia , natural , synthetic , artificial , parametric , digital , function , production , performance , modernism , form , ornament , decoration
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id ascaad2012_019
id ascaad2012_019
authors Blibli, Mustapha; Ammar Bouchair and Faouzi Hannouf
year 2012
title Three Dimensional Reconstitution of an Old Town from Historical Documents: Case of the Medina of Jijel in Algeria
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 191; 285-303
summary The three-dimensional reconstitution of cities and urban tissues was the subject of several studies and researches. In order to obtain the acquisition of the geometry of architectural or urban sets, some studies are based on Photogrammetric or on computer vision. Others have focused on the development of tools of acquisition from a laser providing a 3D scatter plot. Some of them yet focused towards the development of CAD software. The automatic generation for morphological 3D representation based on the exploitation of the architectural knowledge basis is also an option. This type of work becomes more relevant and legitimate when it concerns old cities in state of ruin or more simply missing whose remains only prints or literary descriptions similar to our case study; the old town of Jijel that many people ignore its existence. The aim of this work is to achieve a 3D reconstitution of buildings of this town based on historical documents, mostly prints, digitized old maps and plans, as well as literary texts (tales of travelers, military records, and history books). The method developed can solve and generate possible urban volumes in the most frequent cases. The 3D model obtained, despite its geometric simplicity, can view the city from different angles and open new opportunities for research in history, architecture and town planning.
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_019.pdf
last changed 2012/05/15 20:46

_id caadria2012_049
id caadria2012_049
authors Rajasekaran, Balaji; T. Brahmani and C. Reshma
year 2012
title Spatial personality for human space interaction: Space for change
doi https://doi.org/10.52842/conf.caadria.2012.069
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 69–78
summary Exploring the duality of pervasive computing and architecture in order to propose new models of interaction between people and their built environment. One of the unique "affordances" of digital media is interactivity. This word has come to stand for all manners of engagements between people and things but as McCollough (2004) reminds us the word implies deliberation over the exchange of messages. "Objects" or architecture would be exempt from this mode of communication since, in a likewise manner, we don't interact with a door, we simply open it. However, computing provides a reflexive twist for it is not only the means through which we indirectly communicate with others but also a subject with which we can directly interact. They solicit information and based on the deliberation we ask them for return responses. This quality of computing, especially as it becomes pervasive, has profound implications for architecture and urbanism. When computation becomes embedded into the very materials we build, they along with their nature as inanimate objects become questionable. Our environment itself becomes the interactive subject through which we can inquire about our condition, perform diagnostic tasks or most significantly converse to discover more about our surrounding and ourselves.
keywords Interaction; communication; responsive; environment; performative
series CAADRIA
email
last changed 2022/06/07 08:00

_id acadia12_391
id acadia12_391
authors Ajlouni, Rima
year 2012
title The Forbidden Symmetries
doi https://doi.org/10.52842/conf.acadia.2012.391
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 391-400
summary The emergence of quasi-periodic tiling theories in mathematics and material science is revealing a new class of symmetry, which had never been accessible before. Because of their astounding visual and structural properties, quasi-periodic symmetries can be ideally suited for many applications in art and architecture; providing a rich source of ideas for articulating form, pattern, surface and structure. However, since their discovery, the unique long-range order of quasi-periodic symmetries, is still posing a perplexing puzzle. As rule-based systems, the ability to algorithmically generate these complicated symmetries can be instrumental in understanding and manipulating their geometry. Recently, the discovery of quasi-periodic patterns in ancient Islamic architecture is providing a unique example of how ancient mathematics can inform our understanding of some basic theories in modern science. The recent investigation into these complex and chaotic formations is providing evidence to show that ancient designers, by using the most primitive tools (a compass and a straightedge) were able to resolve the complicated long-range principles of ten-fold quasi-periodic formations. Derived from these ancient principles, this paper presents a computational model for describing the long-range order of octagon-based quasi-periodic formations. The objective of the study is to design an algorithm for constructing large patches of octagon-based quasi-crystalline formations. The proposed algorithm is proven to be successful in producing an infinite and defect-free covering of the two-dimensional plane.
keywords computational model , quasi-crystalline , symmetries , algorithms , complex geometry
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id sigradi2012_73
id sigradi2012_73
authors Amen, Fernando García; Álvarez, Marcelo Payssé; Bonifacio, Paulo Pereyra; Meirelles, Lucía
year 2012
title Fabricando mundos. Realidad, simulacro e inmanencia [Manufacturing worlds. Reality, simulacra and immanence]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 645-648
summary Digital manufacturing in both as art and technology is a new way of designing, re-creation and re-invention of reality. This paper considers, from an epistemological point of view, the process of digital fabrication and its hyperlinks to known and simulated reality, and its ontological nature. Through documentation and methodological approach to the construction of a Moebius strip, this paper analyzes the nature and specifications of digital manufacturing. For this purpose, it makes a study of some strip properties and establishes a correlation within digital manufacturing, emphasizing similarities, complexities and shared qualities. Thus, it aims to create a reflection and a critical perspective on the complex logic of creation and simulation of knowable reality. And also it contributes to explore a theoretical corpus on the role of architects and designers in this incipient and ongoing discipline.
keywords Fabricación digital, Realidad, Simulacro, Inmanencia
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2012_247
id ecaade2012_247
authors Balaban, Özgün; Kilimci, Elif Sezen Yagmur; Cagdas, Gülen
year 2012
title Automated Code Compliance Checking Model for Fire Egress Codes
doi https://doi.org/10.52842/conf.ecaade.2012.2.117
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 117-125
summary Architecture today has come to its most complex form. There are lots of criteria such as fi re safety, structure, sustainability etc… which must be controlled by the designers. To improve the performance and accessibility of buildings, governing bodies publish different codes for each of the different criteria. Buildings must comply with these codes to get a permit for construction. The checking of the buildings according the codes is done manually by code offi cials. This process is time consuming, high in cost and prone to errors. To remedy this problem by using the tools like BIM and AI, systems that can automatically check the code compliance of projects are being developed. In this paper we provide an overview of the structures and capabilities of these systems and present the automated code compliance checking system that we develop for checking building models against some parts of the Turkish Fire Codes.
wos WOS:000330320600011
keywords Automated Code Compliance Checking; Fire Codes; BIM
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2012_56
id sigradi2012_56
authors Barros, Diana Rodríguez
year 2012
title Diseño, Enseñanza y Prácticas Disruptivas. Marcos conceptuales de referencia [Design, Teaching and Disruptive Practices. Conceptual reference frameworks]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 251-254
summary From the complex perspective of modern information society, knowledge and digital culture, we have detected limitations and obsolescente levels of much of the university educational system. We consider that teaching and learning reflect a beta protoparadigm state in constant construction. We value new ideas within the limits of education, communication and transmedia aesthetics, which contribute to the visibility of innovative practices and transformations. We reflect about necessary changes in the current education, from the diversification and reinvention of the use of educational technologies to liquid infrastructures. Our intention is to contribute to the conceptual frameworks development to fit sustainable strategies and result transferences towards classroom practices known as learning ecosystems.
keywords Diseño; Enseñanza; Disrupción; Marcos conceptuales; Prácticas docentes
series SIGRADI
last changed 2016/03/10 09:47

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_304713 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002