CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 551

_id sigradi2012_65
id sigradi2012_65
authors Garagnani, Simone; Mingucci, Roberto; Luciani, Stefano Cinti
year 2012
title Collaborative design for existing architecture: the Building Information Modeling as a frontier for coordinated process
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 96-100
summary Building Information Modeling (BIM) has been considered as an emerging collaborative strategy since its introduction, meant for AEC industry and heading to benefits in terms of costs and design quality during the whole building lifecycle. BIM approach, originally developed for new projects, can be successfully applied to existing contexts using TLS surveys to collect point clouds and turn them later into smart digital models, taking advantage of new technologies and methods. This paper addresses these themes paying attention to issues and opportunities, considering BIM as a paramount tool to collect and manage data destined to multiple disciplines
keywords BIM; laser scanner; AEC digital tools; architectural modeling; collaborative design
series SIGRADI
email
last changed 2016/03/10 09:52

_id acadia13_137
id acadia13_137
authors Kretzer, Manuel; In, Jessica; Letkemann, Joel; Jaskiewicz, Tomasz
year 2013
title Resinance: A (Smart) Material Ecology
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 137-146
doi https://doi.org/10.52842/conf.acadia.2013.137
summary What if we had materials that weren’t solid and static like traditional building materials are? What if these materials could dynamically change and adapt to varying environmental situations and stimulations and evolve and learn over time? What if they were autonomous, self-sufficient and independent but could communicate with each other and exchange information? What would this “living matter” mean for architecture and the way we perceive the built environment? This paper looks briefly at current concepts and investigations in regards to programmable matter that occupy various areas of architectural research. It then goes into detail in describing the most recent smart material installation “Resinance” that was supervised by Manuel Kretzer and Benjamin Dillenburger and realized by the 2012/13 Master of Advanced Studies class as part of the materiability research at the Chair for CAAD, ETH Zürich in March 2013. The highly speculative sculpture links approaches in generative design, digital fabrication, physical/ubiquitous computing, distributed networks, swarm behavior and agent-based communication with bioinspiration and organic simulation in a responsive entity that reacts to user input and adapts its behavior over time.
keywords Smart Materials; Distributed Networks; Digital Fabrication; Physical Computing; Responsive Environment
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:51

_id acadia12_97
id acadia12_97
authors Lilley, Brian ; Hudson, Roland ; Plucknett, Kevin ; Macdonald, Rory ; Cheng, Nancy Yen-Wen ; Nielsen, Stig Anton ; Nouska, Olympia ; Grinbergs, Monika ; Andematten, Stephen ; Baumgardner, Kyle ; Blackman, Clayton ; Kennedy, Matthew ; Chatinthu, Monthira ; Tianchen, Dai ; Sheng-Fu, Chen
year 2012
title Ceramic Perspiration: Multi-Scalar Development of Ceramic Material
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 97-108
doi https://doi.org/10.52842/conf.acadia.2012.097
summary Ceramic building material is a useful passive modulator of the environment. The subject area is based on traditional cultural and material knowledge of clay properties: from amphora to rammed earth building; and ranges to present uses: from desiccants and space shuttle tile patterns to bio-ceramics. The primary consideration is to control material density and porosity in a tile component, in response to specific environmental conditions. This depends on a number of key physical principles: the ability of the material to absorb thermal energy, the ability to absorb and then ‘wick’ moisture within the pore structure, and the decrement factor or ‘time lag’ of the effect. The interplay between these properties point to the importance of directionality in the porous microstructure, at the boundary layer. Material characteristics have been investigated in the laboratory at a micron scale and in the ceramics workshop at full scale, with some interplay between the two. Recent work done on monitoring has led to the development of software tools that allow feedback (approaching real time)- a visual representation of the dynamic thermal and hygrometric properties involved.
keywords Synthetic tectonics , composite materials , smart assemblies , emerging material processes , Responsive environments , sensing , real-time computation , feedback loops , Information Visualization
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id ecaade2012_82
id ecaade2012_82
authors Mohammad, Kareem El Sayed; Hanafi, Mohammad Assem; Nasr, Mohammad
year 2012
title A Closer Perspective on Fabrication Realities
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 169-179
doi https://doi.org/10.52842/conf.ecaade.2012.2.169
wos WOS:000330320600017
summary Digital Fabrication has arguably stirred the return of the architect to the long-held position as a master builder. The close engagement with materials offered by the digital fabrication technologies places necessary limitations and calls the architects for a deeper understanding of and awareness about the fabrication realities during the design process. The research conducted uses parametric modeling for the alteration of the design according to a wide range of infl uences, one of which is fabrication. This paper offers a close perspective on some fabrication necessities and limitations that emerged through the manufacturing of a number of scaled models of a parametrically designed shed and a full scale pavilion. The scope of this work falls into the realm of physical testing, tolerance, structure and assembly. It also points out the fabrication parameters that were part of the digital setting used to create the physical models. The paper argues that craft is still practically alive when deploying digital technologies as it has been ever present in the pre-digital era.
keywords Digital fabrication; tolerances; parametric design; assembly; Laser cutting
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia13_427
id acadia13_427
authors Ng, Rashida; Patel, Sneha
year 2013
title Trajectories of Performative Materials
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 427-428
doi https://doi.org/10.52842/conf.acadia.2013.427
summary An enduring consideration within architectural discourse, the notion of performance is intrinsically embedded within design. Over the past several years, architecture has been increasingly attentive to the framework of performance and its potential contributions to contemporary issues within the field. Numerous derivatives of the word perform—for example performance, performative, performalism, performalist—have been applied to architectural contexts within several significant publications providing evidence of the mounting interest of researchers, academics, and theorists to this premise. Within his essay “Architecture as Performative Art,” architect and historian Antoine Picon remarks, “From its Renaissance origins, architecture inherited a concern with effectiveness that other arts did not possess,” (Grobman and Neuman 2012) while also emphasizing that current inquiry into performative criteria within the profession instigates even broader aspirations. Contemporary research surrounding performance in architecture articulates mediated aspirations that negotiate between quantitative and qualitative measures.
keywords Next Generation Technology; performance, materiality, responsive, technologies, design research
series ACADIA
type Research Poster
email
last changed 2022/06/07 07:58

_id acadia12_259
id acadia12_259
authors Sabin, Jenny E.
year 2012
title The Greenhouse & Cabinet of Future Fossils: Interfacing Nature in the Built Environment
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 259-268
doi https://doi.org/10.52842/conf.acadia.2012.259
summary The Greenhouse and Cabinet of Future Fossils was commissioned by the American Philosophical Society Museum, funded by Heritage Philadelphia Program, a program of The Pew Center for Arts & Heritage. The Greenhouse and Cabinet of Future Fossils attempts to gather, digest, and disseminate information about nature while also incorporating cutting-edge design and fabrication techniques to ultimately produce a greenhouse of the future. The pavilion structure is populated with cold frame modules and futuristic ceramic and 3D printed curiosities, prefabricated and assembled in the Jefferson Garden, Philadelphia. Taking inspiration from the artifacts in the exhibition, Of Elephants and Roses: Encounters with French Natural History, 1790–1830, the greenhouse revisits 19th-century thematic issues related to nature, culture, and the city to offer new interpretations of greenhouse architecture as urban hybrid ecosystems whose nonstandard form features new material and fabrication logics that inspire a shift away from a technical approach to sustainable architecture to one rooted in design and the built environment. The pavilion mobilizes concepts of event as the public is invited to actively participate in the planting of the cold frames, thus contributing to the actual secondary structure of the greenhouse, and then disassembling the structure at the end of the installation period and disseminating the planted materials. As a conceptual and provocative backdrop to this project, references are made to important contributions recently made by a small group of accomplished scientists, architects, and researchers at a university symposium whose central theme was to discuss next steps for sustaining sustainability.
keywords ecology , emerging technologies , alternative materials , greenhouse architecture , digital fabrication , designbuild , sustainability
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id acadia12_47
id acadia12_47
authors Aish, Robert ; Fisher, Al ; Joyce, Sam ; Marsh, Andrew
year 2012
title Progress Towards Multi-Criteria Design Optimisation Using Designscript With Smart Form, Robot Structural Analysis and Ecotect Building Performance Analysis"
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 47-56
doi https://doi.org/10.52842/conf.acadia.2012.047
summary Important progress towards the development of a system that enables multi-criteria design optimisation has recently been demonstrated during a research collaboration between Autodesk’s DesignScript development team, the University of Bath and the engineering consultancy Buro Happold. This involved integrating aspects of the Robot Structural Analysis application, aspects of the Ecotect building performance application and a specialist form finding solver called SMART Form (developed by Buro Happold) with DesignScript to create a single computation environment. This environment is intended for the generation and evaluation of building designs against both structural and building performance criteria, with the aim of expediently supporting computational optimisation and decision making processes that integrate across multiple design and engineering disciplines. A framework was developed to enable the integration of modeling environments with analysis and process control, based on the authors’ case studies and experience of applied performance driven design in practice. This more generalised approach (implemented in DesignScript) enables different designers and engineers to selectively configure geometry definition, form finding, analysis and simulation tools in an open-ended system without enforcing any predefined workflows or anticipating specific design strategies and allows for a full range of optimisation and decision making processes to be explored. This system has been demonstrated to practitioners during the Design Modeling Symposium, Berlin in 2011 and feedback from this has suggested further development.
keywords Design Optimisation , Scripting , Form Finding , Structural Analysis , Building Performance
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id 75d6
id 75d6
authors Derix, C and Gamlesaeter, A
year 2012
title Behavioural Prototypes In Spatial Design Computation
source In Petruschat and Adenauer (eds), Neue Formen des Prototypings in Gestaltungsprozessen, Form+Zweck, Berlin, 2012
summary Architects by profession, Christian Derix and Asmund Gamlesæter are interested in expanding the capabilities of digital technology to inform, support and enrich the design process in architecture and spatial planning. The computational prototypes they develop range from form studies to visualization of complex processes in spatial planning such as movement behaviors of people in a city. They work analytically as well as generatively and the approach is deeply affected by the understanding that computing systems should not define solutions but offer creative freedom and create a symbiosis between the designer and the algorithmic intelligence. They are rather designed to help the designer view the design problem and consequences of decisions from different perspectives. Encouraging the designer to play through different narratives. They are rather tools for thinking through multiple solutions and allow the designer to play with the possibilities. The generation of the final design is inspired and validated by the tools but remains in the hands of the designer.
keywords algorithmic behaviour, design evolution, computational design
series book
type normal paper
email
more http://www.formundzweck.de/de/buecher/prototype-physical-virtual-hybrid-smart/beschreibung.html
last changed 2012/09/20 14:12

_id acadia12_277
id acadia12_277
authors Kelley, Thomas ; Blankenbaker, Sarah
year 2012
title Smart Disassembly: Or, How I Learned to Take Things Apart"
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 277-283
doi https://doi.org/10.52842/conf.acadia.2012.277
summary Taking things apart is easy. How something works, or even what it is, is irrelevant to its dismantling. If assembly can be perceived as a rational act, then disassembly is certainly its counterpart: an intuitive, foolproof, and mindless errand of the seemingly curious subject. It is in this unflattering description, however, that disassembly warrants an analysis of its smart potential Smart Disassemblies locates the exploded view drawing, a representation that conveys the instructions for assembly, within its architectural legacy, from its origins in the Renaissance to its more contemporary appropriation by Thom Mayne and Daniel Libeskind. The categorical rules, and the part-to-whole relationships they imply, gleaned from these precedents are then subverted toward the end of disassembling an object. The proposed rule sets (Point of Explosion, Point of View, and Explosion Sequence) and their variants are tested through their application to a complex assembly of objects, a jazz quintet.
keywords part-to-whole , smart assembly , synthetic tectonics
series ACADIA
type panel paper
email
last changed 2022/06/07 07:52

_id ascaad2012_023
id ascaad2012_023
authors Ochs, Steven W.
year 2012
title Architectural Sociability as a Strategy to Drive Technology Integrations into Architectural Structures and Smart Environments
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 225-240
summary Traditional architectural design fulfills the basic needs of society, but its influence as a system to facilitate personal connection has declined with the growth of telecommunications and social networks. The advance of interactive architecture is now positioning buildings to once again fulfill the role as facilitator of connections and fulfill our personal need of belonging. While current attempts to integrate social communication, technology with built environments are nominally effective; Architectural Sociability is proposed as an effective design solution. Strategy details include a purpose based social approach in which social networks, localized data streams, ubiquitous computing, pervasive networks, and smart environments are considered a traditional part of an architectural structure.
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_023.pdf
last changed 2012/05/15 20:46

_id caadria2012_132
id caadria2012_132
authors Baerlecken, Daniel and David Duncan
year 2012
title Junk: Design build studio
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 305–314
doi https://doi.org/10.52842/conf.caadria.2012.305
summary The paper presents a design build studio that investigates the role of waste as building material and develops a proposal for an installation that uses CAAD and CAM tools in combination with traditional fabrication tools to design and build an installation out of waste materials. The paper describes the concept development and the construction process through the help of computational tools. Recycling is in the process of becoming an integral part of sustainable architecture. However, there are very few digital design projects that use re-used or recycled materials in combination with their architectural and aesthetic qualities and potentials. The potential of such an investigation is explored within a design build studio. What is junk? What is a building material? What are the aesthetics of junk?
keywords Education in CAAD; digital fabrication and construction; practice-based and interdisciplinary CAAD; parametric modelling
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2012_280
id ecaade2012_280
authors Baerlecken, Daniel; Reitz, Judith; Duncan, David
year 2012
title Junk: Reuse of Waste Materials
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 143-150
doi https://doi.org/10.52842/conf.ecaade.2012.2.143
wos WOS:000330320600014
summary The paper presents a series of design build studio that investigate the role of waste as building material. The series develops proposals for constructions that use CAAD and CAM tools in combination with traditional fabrication tools to design and build an installation out of waste materials. The fi rst construction uses waste to create two installations that questions human consumption, The second project is a future project, that intends the use of waste as an actual building material. Recycling is in the process of becoming an integral part of sustainable architecture. However, there are very few digital design projects that use re-used or recycled materials in combination with their architectural and aesthetic qualities and potentials. The potential of such an investigation is explored within these design build studios. What is junk? What is a building material? What are the aesthetics of junk?
keywords Education in CAAD; digital fabrication and construction; practice-based and interdisciplinary CAAD; parametric modeling
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia12_199
id acadia12_199
authors Beorkrem, Chris ; Corte, Dan
year 2012
title Zero-Waste, Flat-Packed, Tri-Chord Truss: Continued Investigations of Structural Expression in Parametric Design"
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 199-208
doi https://doi.org/10.52842/conf.acadia.2012.199
summary The direct and rapid connections between scripting, modeling and prototyping allow for investigations of computation in fabrication. The manipulation of planar materials with two-dimensional CNC cuts can easily create complex and varied forms, volumes, and surfaces. However, the bulk of research on folding using CNC fabrication tools is focused upon surfaces, self-supporting walls and shell structures, which do not integrate well into more conventional building construction models. This paper attempts to explain the potential for using folding methodologies to develop structural members through a design-build process. Conventional building practice consists of the assembly of off-the-shelf parts. Many times, the plinth, skeleton, and skin are independently designed and fabricated, integrating multiple industries. Using this method of construction as an operative status quo, this investigation focused on a single structural component: the truss. Using folding methodologies and sheet steel to create a truss, this design investigation employed a recyclable and prolific building material to redefine the fabrication of a conventional structural member. The potential for using digital design and two-dimensional CNC fabrication tools in the design of a foldable truss from sheet steel is viable in the creation of a flat-packed, minimal waste structural member that can adapt to a variety of aesthetic and structural conditions. Applying new methods to a component of the conventional ‘kit of parts’ allowed for a novel investigation that recombines zero waste goals, flat-packing potential, structural expression and computational processes. This paper will expand (greatly) upon previous research into bi-chord truss designs, developing a tri-chord truss, which is parametrically linked to its structural moment diagram. The cross section of each truss is formed based on the loading condition for each beam. This truss design has been developed through a thorough series of analytical models and tests performed digitally, to scale and in full scale. The tri-chord truss is capable of resisting rotational failures well beyond the capacity of the bi-chord designs previously developed. The results are complex, and elegant expressions of structural logics embodied in a tightly constrained functional design.
keywords Parametric Design , Structural Expression , Material constraints
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ijac201210303
id ijac201210303
authors Bohnenberger, Sascha; Chin Koi Khoo, Daniel Davis, et al.
year 2012
title Sensing Material Systems - Novel Design Strategies
source International Journal of Architectural Computing vol. 10 - no. 3, 361-375
summary The development of new building materials has decisively influenced the progression of architecture through the link between built form and available material systems. The new generation of engineered materials are no exception. However, to fully utilise these materials in the design process, there is a need for designers to understand how these new materials perform. In this paper we propose a method for sensing and representing the response of materials to external stimuli, at the early design stage, to help the designer establish a material awareness. We present a novel approach for embedding capacitive sensors into material models in order to improve material performance of designs. The method was applied and tested during two workshops, both discussed in this paper. The outcome is a method for anticipating engineered material behaviour.
series journal
last changed 2019/05/24 09:55

_id sigradi2012_291
id sigradi2012_291
authors Braida, Frederico; Marques, Aline Calazans; Pedroso, Emmanuel Sá Resende; Lima, Fernando Tadeu de Araújo
year 2012
title O papel das impressoras 3D nas diversas etapas do projeto [O papel das impressoras 3D nas diversas etapas do projeto The 3D printer paper at various stages of project]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 580-583
summary This article aims to address the use of 3D printers in the stages of design, development and final presentation in projects of architecture and urbanism. To evaluate the performance of 3D printers, we emphasize in each of these stages of the project, the representational demands and cognitive processes involved as well as analytical categories taken as cost, running time, accuracy and level finish, the representation of materials, scale and size of three-dimensional models and possibilities for intervention in the models themselves.
keywords Impressoras 3D; Prototipagem rápida; Projeto; Fabricação Digital; Modelagem tridimensional
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2012_303
id ecaade2012_303
authors Cheng, Nancy Yen-wen
year 2012
title Shading With Folded Surfaces: Designing With Material, Visual and Digital Considerations
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 613-620
doi https://doi.org/10.52842/conf.ecaade.2012.2.613
wos WOS:000330320600066
summary This paper analyses a hybrid design approach; how physical and digital processes can inform each other in a multivalent design cycle. It describes the design of origami-inspired window shades, part of the Shaping Light project that explores how adjustable surface structures can modulate light levels and heat gain in response to the changing seasons. The screen uses sloped surfaces to diffuse light and create apertures that close when the screen is stretched and open when the screen is folded. The project complements digital methods for pattern proportioning and kinetic simulation with manual manipulation to generate 3D folding motifs and refi ne assemblies. Physical prototypes can shape digital refi nement by revealing visual and structural characteristics of materials, along with joint and production considerations. Physical models for simulating sunny and cloudy daylighting conditions provide a direct connection between spatial confi guration and visual effects. The paper concludes with guidelines for material-based digital-analog creation.
keywords Architectural design process; digital fabrication; shading devices; origami
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia12_109
id acadia12_109
authors Comodromos, Demetrios A ; Ellinger, Jefferson
year 2012
title Material Intensities
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 109-113
doi https://doi.org/10.52842/conf.acadia.2012.109
summary As host organizers of the Smartgeometry 2012 Conference, professors of Architecture, and as principals in design firms, our work aims to use as a productive resistance the notion of Material Intensity described below as both a foil and measure to current concepts of simulation and intensive modeling in architectural computation. The holding of SG 2012 aimed to stage this resistance in the form of workshop, round-table discussions, lectures and symposia, with the outcome attempting to define a new synthetic notion of material intensities in modes of architectural production. This paper aims to form the basis of a continued exploration and development of this work. In summary we focused on: 1-Intensive thinking as derived from the material sciences as an actual and philosophical framework that emphasizes qualitative attributes, which is likened to behavior, simulation, and dynamic modeling. Extensive attributes lead to analytical, representational and static modeling. 2-Material practices can also be formed and as a result of this method of thinking. As demonstrated by the glasswork of Evan Douglis, ‘paintings’ by Perry Hall—the managed complexity possible by working with materials during intensive states of change allow for scalar, morphological and performative shifts according to a designer’s criteria. 3- Although both are necessary and actually complement each other, architects need to ‘catch-up’ to intensive thinking in process and modeling strategies. Our methods rely on static modeling that yield often complicated frameworks and results, wherein accepting methods of dynamic modeling suggests the capacity to propose complex and nuanced relationships and frameworks.
keywords Material Intensities , Intensive Thinking , Material Practice
series ACADIA
type panel paper
email
last changed 2022/06/07 07:56

_id acadia23_v3_115
id acadia23_v3_115
authors Dade-Robertson, Martyn
year 2023
title Designing with Agential Matter
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary There have been, very broadly, three eras in the understanding of matter in design. The first, associated with an Aristotelian view of matter as inert and as a receptacle of form, has dominated many of the formalisms in Architectural Design from the Renaissance through to Modernism. The second, sometimes described as “new materialism” (Menges 2012), considers matter as active through design processes which work with materials’ inherent tendencies and capacities. This has led to now-familiar design methods, including Material Based Design Computation (Oxman 2009), and many experiments with active materials such as bilayer metals and hygromorphs. These materials can be programmed to respond to their environments and often take inspiration from biology. I want to suggest that we are entering a new era of understanding matter, which I refer to as the “agential era.”
series ACADIA
type keynote
email
last changed 2024/04/17 13:59

_id acadia12_295
id acadia12_295
authors Dierichs, Karola ; Menges, Achim
year 2012
title Functionally Graded Aggregate Structures: Digital Additive Manufacturing With Designed Granulates
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 295-304
doi https://doi.org/10.52842/conf.acadia.2012.295
summary In recent years, loose granulates have come to be investigated as architectural systems in their own right. They are defined as large numbers of elements in loose contact, which continuously reconfigure into variant stable states. In nature they are observed in systems like sand or snow. In architecture, however, they were previously known only from rare vernacular examples and geoengineering projects, and are only now being researched for their innate material potentials. Their relevance for architecture lies in being entirely reconfigurable and in allowing for structures that are functionally graded on a macro level. Hence they are a very relevant yet unexplored field within architectural design. The research presented here is focused on the potential of working with designed granulates, which are aggregates where the individual particles are designed to accomplish a specific architectural effect. Combining these with the use of a computer-controlled emitter-head, the process of pouring these aggregate structures can function as an alternative form of 3D printing or digital additive manufacturing, which allows both for instant solidification, consequent reconfiguration, and graded material properties. In its first part, the paper introduces the field of research into aggregate architectures. In its second part, the focus is laid on designed aggregates, and an analytical design tool for the individual grains is discussed. The third part presents research conducted into the process of additive manufacturing with designed granulates. To conclude, further areas of investigation are outlined especially with regard to the development of the additive manufacturing of functionally graded architectural structures. The potentials of the methodologies developed in this process are shown through the fabrication of a full-scale installation. By integrating material, fabrication, and design constraints into a streamlined computational methodology, the process also serves as a model for a more intuitive production workflow, expanding the understanding of glass as a material with wide-ranging possibilities for a more performative architecture.
keywords Aggregate Architectures , Digital Additive Manufacturing , Functionally Graded Materials
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id caadria2012_098
id caadria2012_098
authors Fok, Wendy W.
year 2012
title Cross pollination of ideas: Design fabrication and experimentation
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 589–598
doi https://doi.org/10.52842/conf.caadria.2012.589
summary The following pages show a selection of studio projects which explore the opportunistic collaborative process between commercial fabricators, material sponsorships, and the institution. The articles speaks about the intersection of design experimentation and significance of fabrication within the contained process of [design | optimisation | fabrication]. Within this process the article intersects between practice, commercialisation, and design-research, into the development arena of architectural academic outcomes. The demonstrating fact within much of the research and development also touches upon intricate details of modularity, and designing with optimisation in mind for the purpose (and ease) of fabrication, prototyping, and ‘real-life’ production. While the focus of the academic studios deliberates and uses parametric design systems through digital and analogue modelling to contribute to a full scale designed installation, and actively working with a commercial fabricator and material sponsor (Luxx Newhouse & LG Hausys HI-MACS). The aim of the courses were to acquaint students with theoretical and practical conditions needed for the creating of experimental relational modularity between geometry, scale, and materials as well as the ability to negotiate between quick intuitive studies and definitive quantifiable decisions.
keywords Design fabrication; material investigation; industry collaboration; architecture; industrial design
series CAADRIA
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_148454 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002