CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 544

_id ijac201210204
id ijac201210204
authors Davis, Felecia
year 2012
title Sensing Touch Curtain: Soft Architecture and Augmented Communication
source International Journal of Architectural Computing vol. 10 - no. 2, 219-236
summary The Sensing Touch Curtain prototype demonstrates one type of sensing that can be woven into soft building components. It is a computational textile that senses the nearness of a person or people and registers absolute touch on fabric through capacitive sensing. Capacitive sensing measures position and distance between the textile and a target object by sending forth electric signals.The methods of construction, method of electronic weaving and ways to consider models for somatosensory textiles are discussed in the paper. The Sensing Touch project frames an expanded role for soft architecture enclosures.
series journal
last changed 2019/05/24 09:55

_id caadria2012_108
id caadria2012_108
authors Gerber, David and Shih-Hsin (Eve) Lin
year 2012
title Designing-in performance through parameterisation, automation, and evolutionary algorithms: ‘H.D.S. BEAGLE 1.0’
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 141–150
doi https://doi.org/10.52842/conf.caadria.2012.141
summary Design is both a goal oriented and decision making activity. It is ill-defined by nature as designing includes weighing and understanding trade-offs amongst soft and hard objectives or in other words vague or imprecise and computationally definable criteria and goals. In this regard designers in most contemporary practices face a crisis of sorts. How do we achieve performance or sustainability under these large degrees of uncertainty or with limited design cycle times? Fundamentally design collaborations, teams of domain experts, are not typically given enough time to design-explore, generate design alternatives in order to find or evolve solution quality through expansive design search spaces. Given these limitations of time and the ever more complex criteria for ‘designing-in’ performance our research approach provides a computational strategy to expand the solution space as well as pre-sort and qualify candidate designs. The research presents a novel methodology and technology framework and an initial implementation that was developed to enhance the human activity of design exploration, domain integration, and further evolve design process for performance goals. The research does so through generating and optimising a highly correlated solution space in conjunction with a near simultaneous evaluation of design alternative fitness.
keywords Parametric design; multi-disciplinary design optimisation (MDO); evolutionary algorithms; performative design process
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia12_67
id acadia12_67
authors Gerber, Dr. David Jason ; Lin, Shih-Hsin
year 2012
title Synthesizing Design Performance: An Evolutionary Approach to Multidisciplinary Design Search
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 67-75
doi https://doi.org/10.52842/conf.acadia.2012.067
summary Design is a goal oriented decision-making activity. Design is ill defined and requiring of synthetic approaches to weighing and understanding tradeoffs amongst soft and hard objectives, and the imprecise and or computationally explicit criteria and goals. In this regard designers in contemporary practice face a crisis of sorts. How do we achieve performance under large degrees of uncertainty and limited design cycle time? How do we better design for integrating performance? Fundamentally design teams, are not typically given enough time nor the best tools to design explore, to generate design alternatives, and then evolve solution quality to search for best fit through expansive design solution spaces. Given the complex criteria for defining performance in architecture our research approach experiments upon an evolutionary and integrative computational strategy to expand the solution space of a design problem as well as pre-sort and qualify candidate designs. We present technology and methodology that supports rapid development of design problem solution spaces in which three design domains objectives have multi-directional impact on each other. The research describes the use of an evolutionary approach in which a genetic algorithm is used as a means to automate the design alternative population as well as to facilitate multidisciplinary design domain optimization. The paper provides a technical description of the prototype design, one that integrates associative parametric modeling with an energy use intensity evaluation and with a financial pro forma. The initial results of the research are presented and analyzed including impacts on design process; the impacts on design uncertainty and design cycle latency; and the affordances for ‘designing-in’ performance and managing project complexity. A summary discussion is developed which describes a future cloud implementation and the future extensions into other domains, scales, tectonic and system detail.
keywords Parametric Design , Domain Integration , Design Methods , Multidisciplinary Design Optimization (MDO) , Evolutionary Algorithms , Design Decision Support , Generative Design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id ecaade2012_292
id ecaade2012_292
authors Reinhardt, Dagmar ; Martens, William ; Miranda, Luis
year 2012
title Acoustic Consequences of Performative Structures Modelling Dependencies between Spatial Formation and Acoustic Behaviour
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 577-586
doi https://doi.org/10.52842/conf.ecaade.2012.1.577
wos WOS:000330322400059
summary The paper discusses an interdisciplinary exchange between parametric design and acoustic simulation. It reviews a strategic development of temporary dynamic structures that can be manipulated by intersecting variations of formation in generative architecture with acoustic simulation. The research investigates drivers that interface knowledge between parametric design, structural engineering and fabrication, interaction design and acoustics, and theatre and performance. It reviews the simulation of a temporary theatre installation into an existent industrial hall, whereby different formation of a modular structure are explored, and the acoustic effects of this installation are evaluated in relation to an enhancement of the audiences spatial and acoustic experience. The research goes beyond the morphological, aesthetic or structural values that have become key aspects of contemporary digital architecture, and relates them to the field of auralisation (forecasting acoustic behaviour). In that manner, the simulation and analysis of a future (material, spatial) objects is developed through the communication of an interdisciplinary team, thus exploring synergetic qualities of the physical and the digital.
keywords Computational design; generative geometries; acoustic simulation
series eCAADe
email
last changed 2022/06/07 08:00

_id ijac201210405
id ijac201210405
authors Braumann, Johannes; Sigrid-Brell Cokcan
year 2012
title Digital and Physical Tools for Industrial Robots in Architecture: Robotic Interaction and Interfaces
source International Journal of Architectural Computing vol. 10 - no. 4, 541-554
summary The development of digital and physical tools is highly dependent on interfaces, which define the terms of interaction both between humans and machines, as well as between machines and other machines.This research explores how new, advanced human machine interfaces, that are built upon concepts established by entertainment electronics can enhance the interaction between users and complex, kinematic machines. Similarly, physical computing greatly innovates machine-machine interaction, as it allows designers to easily customize microcontroller boards and to embed them into complex systems, where they drive actuators and interact with other machines such as industrial robots.These approaches are especially relevant in the creative industry, where customized soft- and hardware is now enabling innovative and highly effective fabrication strategies that have the potential to compete with high-tech industry applications.
series journal
last changed 2019/05/24 09:55

_id caadria2012_045
id caadria2012_045
authors Khoo, C. K. and F. D. Salim
year 2012
title A responsive morphing media skin
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 517–526
doi https://doi.org/10.52842/conf.caadria.2012.517
summary Existing media façades do not function as fenestration devices. They have been used mainly for visual communication and aesthetic purposes. This paper introduces a responsive morphing skin that can act as an active fenestration device as well as a media skin. We investigate new possibilities of using form-changing materials in designing responsive morphing skins that respond to environmental conditions and act as a communicative display. The design experiment that embodied this investigation, namely Blind, serves as a new layer of analogue media brise-soleil for existing space. It communicates the relationships between interior and exterior spaces visually and projects mutable imageries to the surrounding environment through sunlight. The design process of Blind simulates the responsive behaviour of the intended architectural skin by integrating physical computing and parametric design tools. This process includes the integration of soft apertures and architectural morphing skin to introduce a novel design method that enables an architectural skin to be a means of communication and fenestration. It responds to changing stimuli and intends to improve the spatial quality of existing environments through two types of transformations: morphological and patterned.
keywords Media façades; elasticity; responsive architecture; formchanging materials; kinetic skin
series CAADRIA
email
last changed 2022/06/07 07:52

_id sigradi2012_177
id sigradi2012_177
authors Davis, Felecia
year 2012
title Form Active Translations: Knitted Textiles to 3D Printed Textiles
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 392-396
summary Material translation as a driver of innovation through craft, specifically the translation from machine knitted textiles to 3D rapidly prototyped textiles is discussed in this paper. If architects and designers can develop methods to translate existing textile structures and behaviors, then architects and designers can harness the vast extant knowledge base that goes into the design and fabrication of geometric textile structures and resultant behaviors to develop new materials and tools to construct active building systems that use the pliability of textiles to advantage.
keywords 3D Printed Textiles, 3D Printing, Architextiles, Knitted Materials
series SIGRADI
email
last changed 2016/03/10 09:50

_id acadia13_137
id acadia13_137
authors Kretzer, Manuel; In, Jessica; Letkemann, Joel; Jaskiewicz, Tomasz
year 2013
title Resinance: A (Smart) Material Ecology
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 137-146
doi https://doi.org/10.52842/conf.acadia.2013.137
summary What if we had materials that weren’t solid and static like traditional building materials are? What if these materials could dynamically change and adapt to varying environmental situations and stimulations and evolve and learn over time? What if they were autonomous, self-sufficient and independent but could communicate with each other and exchange information? What would this “living matter” mean for architecture and the way we perceive the built environment? This paper looks briefly at current concepts and investigations in regards to programmable matter that occupy various areas of architectural research. It then goes into detail in describing the most recent smart material installation “Resinance” that was supervised by Manuel Kretzer and Benjamin Dillenburger and realized by the 2012/13 Master of Advanced Studies class as part of the materiability research at the Chair for CAAD, ETH Zürich in March 2013. The highly speculative sculpture links approaches in generative design, digital fabrication, physical/ubiquitous computing, distributed networks, swarm behavior and agent-based communication with bioinspiration and organic simulation in a responsive entity that reacts to user input and adapts its behavior over time.
keywords Smart Materials; Distributed Networks; Digital Fabrication; Physical Computing; Responsive Environment
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:51

_id acadia12_501
id acadia12_501
authors Willis, Bryce R. ; Hemsath, Timothy L. ; Hardy, Steve
year 2012
title A Parametric Multi-Criterion Housing Typology
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 501-510
doi https://doi.org/10.52842/conf.acadia.2012.501
summary Architects have been using computers for documentation but they are yet to engage them within a process designing that goes beyond basic representation. This paper explains a project that explores an alternate way computers could be unitized in architecture. More specifically, for the creation of mass customizable homes whose design quality can be controlled through the use of shape and grammar based rules that reliably produce controlled variation with its structure. The ultimate goal of the project was to develop a prototype within the parametric software grasshopper. The development of this project was based on the idea that homebuilders could engage this type of tool to deliver better products that could be custom tailored for their clients and architects could utilize within their design process.
keywords Parametric , Housing , Shape Grammar
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id ascaad2012_017
id ascaad2012_017
authors Simeone, Davide; Antonio Fioravanti
year 2012
title An Ontology-Based Template of User-Actor to Support Agent-Based Simulation in Built Environments
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 171-179
summary The behavior of a human being in a building, its activities, its interactions with it and with other people are certainly a highly complex phenomenon extremely hard to predict and evaluate. At the same time, the response of a built environment to future users’ needs is one of the key factors of its performance. The Agent-based Modeling paradigm is considered potentially the best way to represent human behavior but, in the building design field, its experiences are limited to representation of partial aspects of human behavior in discrete events. Currently, a more "extended" representation of human behavior able to offer an overview of the human activities related to the building ‘functioning’, is missing,. This lack is due to the complexity of interaction among users and built environment, and to the extensive knowledge, provided by different disciplines, needed to reliably represent it. The proposed research focuses on the construction of a general representation template of user-actor, easy to implement and flexible enough to structure the large amount of data affecting human behavior. The development of the ontology-based template shown in this paper can lead to a user-agent’s entity whose parameters and behavioral rules can encode and represent several ‘aspects’ of real users and their interactions with the other entities (building components, furniture, other people) in a built environment.
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_017.pdf
last changed 2012/05/15 20:46

_id caadria2012_124
id caadria2012_124
authors Fischer, Thomas
year 2012
title Design enigma: A typographical metaphor for epistemological processes, including designing
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 679–688
doi https://doi.org/10.52842/conf.caadria.2012.679
summary Presenting a hard-to-predict typography-varying system predicated on Nazi-era cryptography, this paper illustrates conditions under which unrepeatable phenomena can arise, even from straight-forward mechanisms. Such conditions arise where systems are observed from outside of boundaries that arise through their observation, and where such systems refer to themselves in a circular fashion. This illustration aims to show the dilemma of scientific design research: Objective outsiders are mystified while those subjectively involved understand.
keywords System boundaries; design; objectivity; subjectivity
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2012_102
id caadria2012_102
authors Manahl, Markus; Heimo Schimek, Emmanuel Ruffo Calderon Dominguez and Albert Wiltsche
year 2012
title Ornamental discretisation of free-form surfaces: Developing digital tools to integrate design rationalisation with the form finding process
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 347–356
doi https://doi.org/10.52842/conf.caadria.2012.347
summary The adoption of digital planning methods has given rise to an unprecedented formal freedom in architectural design. Free-form shapes enjoy considerable popularity in architectural production today. However, these shapes prove to be notoriously hard to fabricate. This paper reports on an ongoing research project investigating the approximation of continuous double-curved surfaces by discrete meshes consisting solely of planar facets, which can be constructed efficiently by using standardised, mass-produced building materials. We introduce our geometrical approach, which is based on the intersection of tangent planes to the surface, and present the digital tools we conceived to integrate the processes of design rationalisation and form-finding.
keywords Digital tool-making; parametric design; free-form surfaces; design rationalisation; planar discretisation
series CAADRIA
email
last changed 2022/06/07 07:59

_id ijac201210408
id ijac201210408
authors Manahl, Markus; Milena Stavric, Albert Wiltsche
year 2012
title Ornamental Discretisation of Free-form Surfaces
source International Journal of Architectural Computing vol. 10 - no. 4, 595-612
summary The adoption of digital planning methods has given rise to an unprecedented formal freedom in architectural design. Free-form shapes enjoy considerable popularity in architectural production today. However, these shapes prove to be notoriously hard to fabricate. In the course of a funded research project we investigated the approximation of continuous double-curved surfaces by discrete meshes consisting solely of planar facets, which can be fabricated efficiently using standardised, mass-produced building materials.We introduce our geometrical approach, which is based on the intersection of tangent planes to the surface, and present the digital tools we conceived to integrate the processes of design rationalisation and form-finding.
series journal
last changed 2019/05/24 09:55

_id caadria2012_074
id caadria2012_074
authors Markova, Stanimira and Andreas Dieckmann
year 2012
title An IFC based design check approach for the optimisation of material efficiency in the built environment
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 275–284
doi https://doi.org/10.52842/conf.caadria.2012.275
summary Compared to other industries, the built environment is still the largest and one of the least efficient consumers of resources. Existing measures and procedures for resource recovery and reuse are focused on the demolition phase, when the composition of materials and structures is mostly unknown and hard to be analysed. Therefore, these measures are somewhat inefficient for overall high-rate material recovery. The enhancement of the integrated semantic planning process by the introduction of the IFC unified data standard and BIM technology is a first-time opportunity to track, analyse, document and simulate all relevant players, parameters and processes with an impact on the resource and material efficiency through the entire life cycle of a building in the design phase of a building project. The presented work explores the potential of IFC to serve as a framework for achieving a higher material efficiency in the built environment. A proposed design check approach for the simulation and optimisation of material efficiency in a building over its life cycle is based on a system of key parameters and actions organised in logic trees. The parameters and actions are translated into IFC objects. Additionally required IFC objects and properties are identified and described.
keywords BIM; IFC; integrative design; material efficiency design
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia12_287
id acadia12_287
authors McGee, Wes ; Newell, Catie ; Willette, Aaron
year 2012
title Glass Cast: A Reconfigurable Tooling System for Free-Form Glass Manufacturing
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 287-294
doi https://doi.org/10.52842/conf.acadia.2012.287
summary Despite glass’s ubiquity in the modern built environment it is rarely applied in applications requiring complex curvature. The high temperatures and complexity of techniques utilized in forming curved glass panels are typically very expensive to employ, requiring dedicated hard-tooling which ultimately limits the formal variation that can be achieved. This combination of economic and manufacturing barriers limits both the formal possibilities and potentially the overall envelope-performance characteristics of the glazing system. This research investigates a methodology for utilizing reconfigurable tooling to form glass into doubly curved geometries, offering the potential for improved structural and environmental performance in a material that has remained largely unchanged since the advent of its industrial manufacturing. A custom built forming kiln has been developed and tested, integrated through a parametric modeling workflow to provide manufacturing constraint feedback directly into the design process. The research also investigates the post-form trimming of glass utilizing robotic abrasive waterjet cutting, allowing for the output of machine control data directly from the digital model. The potentials of the methodologies developed in this process are shown through the fabrication of a full-scale installation. By integrating material, fabrication, and design constraints into a streamlined computational methodology, the process also serves as a model for a more intuitive production workflow, expanding the understanding of glass as a material with wide-ranging possibilities for a more performative architecture.
keywords Digital Fabrication , Robotic Fabrication , Computational Design , Material Computation
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ijac201210203
id ijac201210203
authors Abdelhameed, Wael A.
year 2012
title Micro-Simulation Function to Display Textual Data in Virtual Reality
source International Journal of Architectural Computing vol. 10 - no. 2, 205-218
summary Virtual reality creates an effective communication platform with a high degree of perception and exploration, increasing the benefits of VR applied functions.This research paper reports a virtual reality function of using the micro-simulation editor-player with XML file in the virtual reality environment.The details of the function are presented.The function aiming at combining visual and textual data in VR model visualisation, was developed by the researcher, and was included in the micro-simulation plug-in of a virtual reality program,VR Studio version 6, previously known as UC-Win/Road, by the program developers.The research paper discusses the computer simulation techniques and uses in virtual reality in general.The research paper proceeds to introduce a case study of construction process visualization in the virtual reality environment, in which the newly developed function is utilized to simultaneously visualise data reports related to the stages of VR model visualisation.The concluding remarks accentuate this micro-simulation function with its potential uses in different fields.
keywords Micro-Simulation, XML,Virtual Reality, Construction Process Visualisation
series journal
last changed 2019/05/24 09:55

_id ascaad2012_009
id ascaad2012_009
authors Abdelmohsen, Sherif
year 2012
title Genres of Communication Interfaces in BIM-Enabled Architectural Practice
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 81-91
summary This paper explores the interaction and different types of representations enacted in a BIM-enabled environment that involves interdisciplinary and intradisciplinary collaboration among teams of designers in an architectural praxis context. By means of an ethnographic study conducted over the course of an architectural project from schematic design to construction documents, including five disciplines and twenty subjects, genres of communication interfaces are identified between BIM-authoring tools, sketching interfaces and domain specific analysis tools, and explored within the realm of distributed cognition. Implications in architectural practice and education are then discussed.
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_009.pdf
last changed 2012/05/15 20:46

_id ascaad2012_007
id ascaad2012_007
authors Abdelsalam, Mai M.
year 2012
title The Use of Smart Geometry in Islamic Patterns - Case Study: Mamluk Mosques
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 49-68
summary It is noted that architects need new and quick methods designing the historic architectural styles, as well as restoring the historical urban areas particularly the Islamic ones. These designs and restorations should adapt to the basics of the Islamic style used; general concept, module and features. Smart Geometry provides advanced design concepts and increases alternative variations. Parametric design softwares also add more rules and relations on the design process. Obviously, the Islamic module and proportions are used as design generators that result in extracting a number of alternatives easily in a little time. Generative Components (GC) is the parametric software used to achieve the desired objectives of this research.
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_007.pdf
last changed 2012/05/15 20:46

_id ascaad2012_024
id ascaad2012_024
authors Abeer, Samy Yousef Mohamed
year 2012
title Sustainable Design and Construction: New Approaches Towards Sustainable Manufacturing
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 241-251
summary Ecological and environmental issues are playing an important and larger role in corporate and manufacturing strategies. For complete creative design process, buildings require both for construction and manufacturing, due to their comparatively long life cycle for maintenance, significant raw material and energy resources. Thinking in terms of product life cycles is one of the challenges facing manufacturers today. “Life Cycle Management” (LCM) considers the product life cycle as a whole and optimizes the interaction of product design, construction, manufacturing and life cycle activities. The goal of this approach is to protect resources and maximize the effectiveness during usage by means of Life Cycle Assessment, Product Data Management, Technical Support and last but not least by Life Cycle Costing. In this paper the environmental consciousness issues pertaining to design, construction, manufacturing and operations management are presented through computer intelligent technologies of this 21century. So, this paper shows the existing approaches of LCM and discusses their visions and further development.
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_024.pdf
last changed 2012/05/15 20:46

_id ecaade2012_002
id ecaade2012_002
authors Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejdan, Dana (eds.)
year 2012
title Physical Digitality
source Proceedings of the 30th International Conference on Education and research in Computer Aided Architectural Design in Europe - Volume 2 [ISBN 978-9-4912070-3-7], Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, 714 p.
doi https://doi.org/10.52842/conf.ecaade.2012.2
summary Physical Digitality is the second volume of the conference proceedings of the 30th eCAADe conference, held from 12-14 september 2012 in Prague at the Faculty of Architecture of Czech Technical University in Prague. The companion volume is called Digital Physicality. Together, both volumes contain 154 papers that were submitted to this conference. Digitality is the condition of living in a world where ubiquitous information and communication technology is embedded in the physical world. Although it is possible to point out what is “digital” and what is “real,” the distinction has become pointless, and it has no more explanatory power for our environment, buildings, and behaviour. Material objects are invested with communication possibilities, teams are communicating even when not together, and buildings can sense and respond to the environment, each other, and to inhabitants. Digital is no longer an add-on, extra, or separate software. Reality is partly digital and partly physical. The implication of this condition is not clear however, and it is necessary to investigate its potential. New strategies are necessary that acknowledge the synergetic qualities of the physical and the digital. This is not limited to our designs but it also infl uences the process, methods, and what or how we teach. The subdivision of papers in these volumes follow the distinction made in the conference theme. The papers in Physical Digitality have their orientation mainly in the physical realm, and reach towards the digital part. It has to be granted that this distinction is rather crude, because working from two extremes (digital versus physical) tends to ignore the arguably most interesting middle ground.
keywords Digital physicality; physical digitality
series eCAADe
email
last changed 2022/06/07 07:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_708438 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002