CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 548

_id acadia12_269
id acadia12_269
authors Lally, Sean
year 2012
title Architecture of an Active Context
doi https://doi.org/10.52842/conf.acadia.2012.269
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 269-276
summary As we stand with our feet on earth’s outermost surface we build an architecture today that is much like it was several thousand years earlier, in an attempt to extend that outer shell with one of our own making. Artificial masses are built from a refinement of this existing geologic layer into materials of stone, steel, concrete, and glass that assemble to produce new pockets of space through the buildings they create. However, the sixth century BC writer Thales of Miletus put a different perspective on this: he insisted that we live, in reality, not on the summit of a solid earth but at the bottom of an ocean of air (Holmyard 1931). And so, as architecture continues to build up the outermost layer of earth’s surface through a mimicking, embellishing, and enhancing of the materials which it comes from, it raises the question of why we have not brought a similar relationship to the materialities at the bottom of this “ocean” of air to create the spaces we call architecture. If you were looking to level a complaint with the architectural profession, stating that it has not been ambitious enough in scope would not be one. Architects have never shied away from the opportunity to design everything from the building’s shell to the teaspoon used to stir your sugar in its matching cup. But it would seem that the profession has developed a rather large blind spot in terms of what it sees as a malleable material with which to engage. Architects have made assumptions as to what is beyond our scope of action, refraining from engaging a range of material variables due to a belief that the task would be too great or simply beyond our physical control. So even though we are enveloped by them continuously, both on the exterior as well as the interior of our buildings, it must be assumed that the particles, waves, and frequencies of energy that move around us are thought by architects to be too faint and shaky to unload upon them any heavy obligations, that they are too unwieldy for us to control to create the physical boundaries of separation, security, and movement required of architecture. This has resulted in a cultivated set of blinders that essentially defines architecture as a set of mediation devices (surfaces, walls, and inert masses) for tempering the environmental context it is situated in from the individuals and activities within. The spaces we inhabit are defined by their ability to decide what gets in and what stays out (sunlight, precipitation, winds). We place our organizational demands and aesthetic opinions on the surfaces that mediate these variables rather than seeing them as available for manipulation as a building material on their own. The intention here is to recalibrate the materialities that make up that environmental context to build architecture. The starting point is a rather naive question: can we design the energy systems that course in and around us daily as an architectural material so as to take on the needs of activities, securities, and lifestyles associated with architecture? Can the variables that we would normally mediate against instead be heightened and amplified so as to become the architecture itself? That which many would incorrectly dismiss as simply “air” today—thought to be homogeneous, scale-less, and vacant due in part to the limits of our human sensory system to perceive more fully otherwise—might tomorrow be further articulated, populated, and layered so as to become a materiality that will build spatial boundaries, define activities of individuals and movement, and act as architectural space. Our environmental context consists of a diverse range of materials (particles and waves of energy, spectrum of light, sound waves, and chemical particles) that can be manipulated and formed to meet our needs. The opportunity before us today is to embrace the needs of organizational structures and aesthetics by designing the active context that surrounds us through the material energies that define it.
keywords Material energies
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id ecaade2012_214
id ecaade2012_214
authors Das, Subhajit ; Dutt, Florina
year 2012
title Design optimization in a hotel and offi ce tower through intuitive design procedures and advanced computational design methodologies. Façade design optimization by computational methods
doi https://doi.org/10.52842/conf.ecaade.2012.1.235
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 235-243
summary The research topic of this paper exemplifies design optimization techniques of a hotel/office tower in Central China (Nanjing city), which faces subtropical humid climate throughout the year. The main intent of the project is to fi nd optimized design solution with the aid of parametric design tools and Visual Basic Scripting techniques (in Rhino Script & Grasshopper) combined with intuitive design process. In any urban context, we firmly believe that architectural design is a responsive phenomenon, which faces diverse interaction with the user & the local climate. The building design of the proposed tower acknowledges these responsive factors of the design with the environment along with building users or residents. Consequently, we strive to develop a sustainable design solution, which is ecologically efficient and psychologically conducive to the wellbeing of the user. We developed our intuitive design product with complex computational design toolsets to leverage design and energy efficiency. In this procedure, we draw major design concepts and geometrical typologies from natural systems in the form of bio mimicry or biologically inspired design process. Overall, this research paper outlines the significance and relevant benefi ts of the combination of intuitive design (from experience, expertise and architects skills) with parametric scripting tools.
wos WOS:000330322400023
keywords Sustainable Building Façade; Parametric Architecture; Intelligent building skin; Solar Architecture
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2012_038
id caadria2012_038
authors Kato, Kody and Hyoung-June Park
year 2012
title Toward a performance-oriented architecture: An integrated design approach to a real time responsive structure
doi https://doi.org/10.52842/conf.caadria.2012.059
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 59–68
summary This paper started from the study of “performance-oriented architecture” for the purpose of developing a real time responsive prototype that can enclose large expansive interior space. Questions regarding the relationship between the structural arrangement of systems and the natural environment initiated an investigation in Phyllotaxis. It has been found in plant systems for the optimisation of photosynthesis with harvesting maximum amounts of solar energy. In the design of a real time responsive prototype, an algorithmic approach is introduced with the mathematical interpretation of Phyllotaxis and its translation into the global geometry of the prototype. Also, the usage of a Voronoi diagram is parametrically configured to form the local geometry of the prototype. The interactive mechanism of the prototype was achieved with an assorted computational application. Furthermore, with the demonstration of the aforementioned prototype in both digital and physical environments, its implementation process is explained.
keywords Performance-oriented architecture; phyllotaxis; Voronoi diagram; real-time-responsive structure
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia12_447
id acadia12_447
authors Rossi, Dino ; Nagy, Zoltan ; Schlueter, Arno
year 2012
title Adaptive Distributed Architectural Systems
doi https://doi.org/10.52842/conf.acadia.2012.447
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 447-456
summary Artificial Intelligence has a long and rich history in the field of architecture. Building upon this history, we clarify the term “adaptive” and its use within the field. This allows us to explore the application of adaptive systems to architectural design through the prototyping of an adaptive solar envelope (ASE). The building envelope was chosen because it is a common place to address issues of energy performance and occupant comfort and thereby offers an ideal scenario in which to explore the negotiative potential of adaptive systems in architecture. The ASE prototype addresses issues of distributed shading, solar power generation through integrated thin film photovoltaics, and daylight distribution. In addition, building envelopes, being the most publically visible part of a building, play an important role in the aesthetic result of a design. Therefore, conceiving buildings as dynamic systems with the ability to adapt to the fluctuating environments in which they exist opens new aesthetic possibilities for designers. Additionally we present examples of student work created during workshops based on the theme of integrating adaptive distributed systems into architectural design. We argue that with presently available technology, and an increased exposure of architecture students and practitioners to adaptive design techniques, adaptive architectures will soon become a regular element of the built environment.
keywords adaptive , distributed , systems , reinforcement , learning , architecture , design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ijac201210302
id ijac201210302
authors Rossi, Dino; Zoltán Nagy, Arno Schlueter
year 2012
title Adaptive Distributed Robotics for Environmental Performance, Occupant Comfort and Architectural Expression
source International Journal of Architectural Computing vol. 10 - no. 3, 341-359
summary The integration of adaptive distributed robotics in architectural design has the potential to improve building energy performance while simultaneously increasing occupant comfort. In addition, conceiving buildings as dynamic systems with the ability to adapt to the changing environments in which they exist, opens new aesthetic possibilities for designers. As the façade of a building is a common place to address issues of energy performance and occupant comfort, this paper presents a first prototype of an adaptive solar envelope (ASE). Its functions are to provide distributed shading, solar power generation through integrated photovoltaics, and daylight distribution. We describe the interdisciplinary design process, and illustrate the architectural possibilities that arise from a distributed systems approach. The ASE is expanded to work in parallel with an adaptive artificial lighting element. Rather than being preprogrammed, the systems adapt their behavior through interaction with the environment and building occupants. This adaptation to the user's wishes is demonstrated successfully for the artificial light controller. We argue that with presently available technology and an increased exposure of architecture students and practitioners to adaptive design techniques, adaptive architectures will soon become a regular element of the built environment.
series journal
last changed 2019/05/24 09:55

_id sigradi2020_455
id sigradi2020_455
authors Bastian, Andrea Verri; Filho, Jarede Joaquim de Souza; Garcia, Júlia Assis de Souza Sampaio
year 2020
title Urban modelling for evaluating photovoltaic potential through solar radiation incidence
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 455-463
summary This study aims to better ascertain the influence that urbanistic parameters exert on the production of solar photovoltaic energy regarding different contexts in the city. Modifications implemented between the years of 2012 and 2016, especially on variables such as Maximum Lot Coverage, Floor Area Ratio, and Setbacks, have been evaluated through virtual models that cover areas in three different city districts. Amongst other implications, an increase in the area occupied by the buildings, as well as a decrease in the distance between them, occurred, causing more mutual shading and the loss of the photovoltaic potential associated with the building envelope.
keywords Urbanistic parameters, Photovoltaic solar energy, Virtual models, Architecture, Urbanism
series SIGraDi
email
last changed 2021/07/16 11:49

_id caadria2015_185
id caadria2015_185
authors De Oliveira, Maria João and Vasco Moreira Rato
year 2015
title From Morphogenetic Data to Performative Behaviour
doi https://doi.org/10.52842/conf.caadria.2015.765
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 765-774
summary This paper presents part of CORK’EWS, a research work developed within the framework of the Digital Architecture Advanced Program 2012/13 at ISCTE-IUL. The main goal of this investigation was to develop a parametric, customizable and adaptive wall system designed for environmental performance. Moreover, the system is based on standard industrial products: expanded cork blocks produced by Amorim Insulation industries. CAD/CAM resources were the essential tools of the research process, where fundamental and practical knowledge is integrated to understand the microstructure morphological properties of the raw material – cork – and its derivate – natural expanded cork. These properties were upscale and adapted to create a wall with an optimized solar control environmental performance. The result is a digitally fabricated prototype of a new customizable industrial product, adaptable to specific environmental conditions and installation setups being therefore easily commercialized. From microstructural morphology to macroscale construction, the research explores new application possibilities through morphogenesis and opens new possible markets for these customizable products.
keywords Morphogenesis; performance; shading systems; cork.
series CAADRIA
email
last changed 2022/06/07 07:55

_id acadia12_343
id acadia12_343
authors Leidi, Michele ; Schlüter, Arno
year 2012
title Formal and Functional Implications of Dynamics-Related Solar Design Schemes
doi https://doi.org/10.52842/conf.acadia.2012.343
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 343-354
summary In recent years several solar radiation simulation tools have been developed to assist architects in analyzing the performance of existing building designs. However it is often unclear how the results of these analyses can help to generate new solutions and thus be truly beneficial for innovation in sustainable architectural design. Recent developments in open source applications that allow links between energy simulation engines and 3D modeling environments open a new layer of understanding. The possibility to better understand the dynamic interaction between incident solar radiation and building envelopes allows the synthesis of new architectural design-schemes. This paper presents the results of a series of experiments based on the case-study of a mid-latitude single-family house in Taiki-Cho, Japan. The first experiment describes how the incident solar energy interacts with the exposed components of the envelope. The second experiment describes how the energy demand of the building can be partially reduced through the design of passive interventions that are based on the dynamics of the demand. Finally, the third experiment exemplifies how, based on the knowledge extracted from the first two experiments, it is possible to synthesize new dynamics-related solar design-schemes that join passive techniques, active technologies, and formal aspects.
keywords Form , Function , Dynamics , Solar , Design-Scheme , Mid-latitude
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id sigradi2012_187
id sigradi2012_187
authors Sharif, Shani; Gentry, T Russell; Yen, Jeannette; Goodman, Jose N
year 2012
title Kinetic Solar Panels: A Transformative and Expandable Geometric System for Photovoltaic Structures
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 649-652
summary This paper focuses on the applications of geometrically transformable and expandable structures with deployed “energy production mode and retracted “wind shedding” mode to replace the fixed photovoltaic (PV) panels and racking systems currently used in buildings rooftop installations. The significance of this expandable geometric system relies on its embedded motion grammar, i.e. rotation and translation transformations, in the system. The research draws inspiration from reconfiguration of compound tree leaves in nature, and addresses issues of redesign and modeling challenges that led to digital fabrication of the prototype.
keywords Kinetic system, photovoltaic panels, geometric transformation, motion grammar, parametric modeling
series SIGRADI
email
last changed 2016/03/10 10:00

_id ecaade2012_256
id ecaade2012_256
authors Steinfeld, Kyle ; Schiavon, Stefano ; Moon, Dustin
year 2012
title Open Graphic Evaluative Frameworks: A climate analysis tool based on an open web-based weather data visualization platform
doi https://doi.org/10.52842/conf.ecaade.2012.1.675
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 675-682.
summary Buildings are the world’s largest consumer of energy, accounting for 34% of total use. In the United States residential and commercial buildings are responsible for 72% of electricity use and 40% of CO2 emissions. In order to reduce the impact of buildings on the environment and to utilize freely available environmental resources, building design must be based on site climate conditions, e.g. solar radiation and air temperature. This paper presents a web-based framework that enables the production of user-generated visualizations of weather data. The Open Graphic Evaluative Framework (Open GEF) was developed using the Graphic Evaluative Frameworks (GEF) approach to authoring design-assistant software, which is more appropriate than the now dominant ‘generalized design tool’ approach when supporting design processes that require a high level of calibration to the cyclic and acyclic shifting of environmental resources. Building on previous work that outlined the theoretical underpinnings and basic methodology of the GEF approach, technical specifi cations are presented here for the implementation of a Java driven web-based visualization platform. By enabling more nuanced and customizable views of weather data, the software offers designers an exploratory framework rather than a highly directed tool. Open GEF facilitates design processes more highly calibrated to climatic fl ows that could reduce the overall impact of buildings in the environment.
wos WOS:000330322400071
keywords Visualization; Sustainable architectural design; Climate analysis; Weather data
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia12_231
id acadia12_231
authors Bell, Brad
year 2012
title Parametric Precast Concrete Panel System
doi https://doi.org/10.52842/conf.acadia.2012.231
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 231-238
summary The working hypothesis of this research focuses on the potential of utilizing a digital toolset to engage information within a surrounding context for the purpose of creating a more intelligent pre-cast concrete panel system. The Parametric Pre-Cast Concrete Panel System is a research project attempting to parametrically define geometry for the purpose of producing formwork based on quantitative information related to issues such as environmental control systems, sound abatement, as well as qualitative information like non-standard variation paneling, and aesthetic composition.
keywords Energy , form , structures , performance , simulation , prototyping , precast , concrete
series ACADIA
type panel paper
email
last changed 2022/06/07 07:54

_id ecaade2012_267
id ecaade2012_267
authors Caldas, Luísa G. ; Santos, Luís
year 2012
title Generation of Energy-Efficient Patio Houses with GENE_ARCH: Combining an Evolutionary Generative Design System with a Shape Grammar
doi https://doi.org/10.52842/conf.ecaade.2012.1.459
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 459-470
summary GENE_ARCH is a Generative Design System that combines Pareto Genetic Algorithms with an advanced building energy simulation engine. This work explores its integration with a Shape Grammar, acting as GENE_ARCH’s shape generation module. The urban patio house typology is readdressed in a contemporary context, both by improving its energy-effi ciency standards, and by rethinking its role in the genesis of high-density urban areas, while respecting its specifi c spatial organization and cultural grounding. Field work was carried out in Marrakesh, surveying a number of patio houses which became the Corpus of Design, from where a Shape Grammar was extracted. The computational implementation of the patio house grammar was done within GENE_ARCH. The resulting program was able to generate new, alternative patio houses designs that were more energy effi cient, while respecting the traditional rules captured from the analysis of existing houses. After the computational system was fully implemented, it was possible to complete different sets of experiments. The first experiments kept more restrained rules, thus generating new designs that closer resembled the existing ones. The progressive relaxation of rules and constraints allowed for a larger number of variations to emerge. Analysis of energy results provide insight into the main patterns resulting from the evolutionary search processes, namely in terms of form factors of generated solutions, and urban densities achieved.
wos WOS:000330322400047
keywords Generative Design Systems; Genetic Algorithms; Shape Grammars; Patio Houses; Energy Efficiency
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia12_479
id acadia12_479
authors Castorina, Giulio
year 2012
title Performative Topologies: An Evolutionary Shape Optimization Framework for Daylighting Performance Coupling a Particle-Spring System With an Energy Simulation Tool
doi https://doi.org/10.52842/conf.acadia.2012.479
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 479-490
summary This paper develops a methodological approach for use in design practice which combines an external simulation tool (EnergyPlus™) with an evo-lutionary optimisation strategy for the form-finding of complex fenestra-tion systems. On one hand, based on previous research, it presents a novel approach for the shape morphogenesis that exploits a generative algorithm technique to control a limited set of parameters whilst on the other hand it facilitates the integration of a simulation tool capable of handling increasing levels of complexity with greater data interoperabil-ity. In doing so it will argue the heuristic potential of the proposed meth-od in aiding the designers’ decision making whilst increasing the formal possibilities of their final design solutions.
keywords Performance-based design , Genetic Algorithm (GA) , daylighting simulation , shape optimisation , decision support system (DSS)
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ascaad2012_003
id ascaad2012_003
authors Elseragy, Ahmed
year 2012
title Creative Design Between Representation and Simulation
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 11-12
summary Milestone figures of architecture all have their different views on what comes first, form or function. They also vary in their definitions of creativity. Apparently, creativity is very strongly related to ideas and how they can be generated. It is also correlated with the process of thinking and developing. Creative products, whether architectural or otherwise, and whether tangible or intangible, are originated from ‘good ideas’ (Elnokaly, Elseragy and Alsaadani, 2008). On one hand, not any idea, or any good idea, can be considered creative but, on the other hand, any creative result can be traced back to a good idea that initiated it in the beginning (Goldschmit and Tatsa, 2005). Creativity in literature, music and other forms of art is immeasurable and unbounded by constraints of physical reality. Musicians, painters and sculptors do not create within tight restrictions. They create what becomes their own mind’s intellectual property, and viewers or listeners are free to interpret these creations from whichever angle they choose. However, this is not the case with architects, whose creations and creative products are always bound with different physical constraints that may be related to the building location, social and cultural values related to the context, environmental performance and energy efficiency, and many more (Elnokaly, Elseragy and Alsaadani, 2008). Remarkably, over the last three decades computers have dominated in almost all areas of design, taking over the burden of repetitive tasks so that the designers and students can focus on the act of creation. Computer aided design has been used for a long time as a tool of drafting, however in this last decade this tool of representation is being replaced by simulation in different areas such as simulation of form, function and environment. Thus, the crafting of objects is moving towards the generation of forms and integrated systems through designer-authored computational processes. The emergence and adoption of computational technologies has significantly changed design and design education beyond the replacement of drawing boards with computers or pens and paper with computer-aided design (CAD) computer-aided engineering (CAE) applications. This paper highlights the influence of the evolving transformation from Computer Aided Design (CAD) to Computational Design (CD) and how this presents a profound shift in creative design thinking and education. Computational-based design and simulation represent new tools that encourage designers and artists to continue progression of novel modes of design thinking and creativity for the 21st century designers. Today computational design calls for new ideas that will transcend conventional boundaries and support creative insights through design and into design. However, it is still believed that in architecture education one should not replace the design process and creative thinking at early stages by software tools that shape both process and final product which may become a limitation for creative designs to adapt to the decisions and metaphors chosen by the simulation tool. This paper explores the development of Computer Aided Design (CAD) to Computational Design (CD) Tools and their impact on contemporary design education and creative design.
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_003.pdf
last changed 2012/05/15 20:46

_id ijac201210301
id ijac201210301
authors Pan, Cheng-An; Taysheng Jeng
year 2012
title Cellular Robotic Architecture
source International Journal of Architectural Computing vol. 10 - no. 3, 319-339
summary An emerging need for interactive architecture is currently making buildings mutable, flexible in use, and adaptable to changes in climate by introducing robotic systems. However, the feasibility of the seamless integration of building construction details and kinetic robotics has become a critical issue for developing robotic architecture. The objective of this work is to develop a robotic architecture with an emphasis on the integration of cellular robotics with a distributed kinetic building surface. The kinetic building surface integrates an actuating system, a localization and remote control system, which become part of the kinetic building system. This paper presents a systematic framework by reviewing theories and related work of robotic architecture and automated control. An architectural design scheme is proposed to simulate a scenario of application in a physical space. The functionality of the electrical and control system and the integration of the effects of actual construction were examined by a prototype of a kinetic surface. Our prototype presents a feasible construction method, and a prominent energy-saving effect. The potential strength and restrictions of the cellular robotic approach to architectural applications are discussed. The applicability of the prototype system and issues about controlling the behavior of spatial robots are demonstrated in this paper.
series journal
last changed 2019/05/24 09:55

_id ecaade2012_068
id ecaade2012_068
authors Wu, Tienyu ; Jeng, Taysheng
year 2012
title Reforming Design Studios: Experiments in integrating bim, parametric design, digital fabrication, and interactive technology
doi https://doi.org/10.52842/conf.ecaade.2012.1.049
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 49-54
summary Building Information Modelling (BIM) has been widely accepted as an integration tool that enables modelling of form, function, and behaviour of building systems and components. Using BIM, building design can be approached in a more logical way by integrating spatial, structural and mechanical systems as well as cost and energy performance in the early design stage. In this paper, we develop a design framework using BIM in varied design processes, including architectural programming, conceptual design, parametric design, digital fabrication, and interaction design. We conducted an experiment to reform design studios using BIM throughout the design process. A classroom of the future called iSTUDIO is constructed by applying BIM, parametric design, interactive technology, and digital fabrication.
wos WOS:000330322400004
keywords Building information model (BIM); Parametric Design; Digital Fabrication; Interaction Design
series eCAADe
type normal paper
email
last changed 2022/06/07 07:57

_id ecaade2012_161
id ecaade2012_161
authors Araujo, Bruno; Jorge, Joaquim; Duarte, Jose
year 2012
title Combining Virtual Environments and Direct Manipulation for Architectural Modeling
doi https://doi.org/10.52842/conf.ecaade.2012.2.419
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 419-428
summary In this paper we present an environment for conceptual design which mimicsthe interaction of designers with physical mockups. We present novel three dimensional on-and-above-the-surface interactive techniques which combine asymmetric bimanual operations with multi-touch direct manipulation on a fl at surface and depth cameras. These take advantage of a continuous interaction space to create and edit 3D models in a stereoscopic environment. To allow modeling architectural shapes directly, we combine hand and finger tracking in the space above the table with multi-touch on its surface without the need to change modes. This provides an alternative design environment where users can seamlessly switch between interacting on the surface or in the space above it depending on the task, which makes it easier to model complex shapes using simple operations.
wos WOS:000330320600044
keywords 3D Modeling; 3D User Interfaces; Virtual Reality; Procedural Modeling
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2012_009
id ecaade2012_009
authors Hua, Hao
year 2012
title Decoupling Grid and Volume: A generative approach to architectural design
doi https://doi.org/10.52842/conf.ecaade.2012.1.311
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 311-317
summary Computational design is apt to address all design problems in one model, though these problems usually originated from distinct models. The method of employing one model follows the problem-solving paradigm developed in the early years of CAAD. The paper argues that employing multiple models in one generative process is valid. Furthermore, it can be more productive than using single model. Two experimental programs are implemented. They suggest that each model could work without interrupting other models, thus multiple models can interplay in one design task.
wos WOS:000330322400031
keywords Model; generative; computation; grid
series eCAADe
email
last changed 2022/06/07 07:49

_id acadia12_315
id acadia12_315
authors Imbern, Matias ; Raspall, Felix ; Su, Qi
year 2012
title Tectonic Tessellations: A Digital Approach to Ceramic Structural Surfaces
doi https://doi.org/10.52842/conf.acadia.2012.315
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 315-321
summary From the beginning of digital revolution, structural surfaces drew significant attention as a realm that interweaves formal explorations, form-finding and structural optimization. However, after successful experimentation in the virtual domain, it became evident that some of the main challenges lay on how to translate these structural forms into architectural assemblies at the scale of buildings. The development of digital fabrication is crucial in this task, as means to overcome traditional constraints such as need for modular pieces, scaffolding and optimal assembly sequences.This research focuses on digital workflows that combine form finding with robotic fabrication, surface tessellation and panelization. In the past years, the use of digital tools to assemble identical modules into complex formations has achieved significant results for loadbearing walls. Expanding this line of research, the proposed fabrication system carries these experiments on additive fabrication into the production of structural surfaces. The assembly sequence involves a two-step fabrication: off-site panel manufacturing and on-site assembly. The main components of the system consist of two triangular ceramic pieces that provide structural resistance, refined surface finish, and formwork for thin reinforced-concrete layer. Panelization strategies reduce the requirements on-site work and formwork.The paper describes background research, concept, construction process, methodology, results and conclusions.
keywords Digital Fabrication , Complex Geometry , Reinforced Ceramic , Structural Surfaces , Reduced Formwork
series ACADIA
type panel paper
email
last changed 2022/06/07 07:50

_id ecaade2012_144
id ecaade2012_144
authors Wurzer, Gabriel ; Pak, Burak
year 2012
title Lawnmower: Designing a web-based visual programming environment that generates code to help students learn textual programming
doi https://doi.org/10.52842/conf.ecaade.2012.1.655
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 655-663.
summary Learning programming can be a challenging task for design students, especially when code is to be entered in textual form. Visual programming languages, such as McNeil’s Grasshopper, have helped students to engage in scripting without having to deal with lower level syntax that is often hindering them in expressing their thoughts. However, the problem with learning how to program textually is only postponed: When switching to a new platform, students may be forced to learn coding from scratch, and, even worse, to do so in a textual environment that is yet unfamiliar. Our idea is simple: Connect visual programming with textual coding, using code-generation as means. Using this approach enables students to think visually, and see the results textually. An added bonus is the possibility to use debugging, a feature that is yet lacking from Grasshopper. By this way, our language aims to enable students to gradually move from visual to textual programming in a comfortable manner.
wos WOS:000330322400069
keywords Visual Programming; Structured Code; Teaching; Code Generation
series eCAADe
email
last changed 2022/06/07 07:57

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_128768 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002