CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 551

_id acadia12_391
id acadia12_391
authors Ajlouni, Rima
year 2012
title The Forbidden Symmetries
doi https://doi.org/10.52842/conf.acadia.2012.391
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 391-400
summary The emergence of quasi-periodic tiling theories in mathematics and material science is revealing a new class of symmetry, which had never been accessible before. Because of their astounding visual and structural properties, quasi-periodic symmetries can be ideally suited for many applications in art and architecture; providing a rich source of ideas for articulating form, pattern, surface and structure. However, since their discovery, the unique long-range order of quasi-periodic symmetries, is still posing a perplexing puzzle. As rule-based systems, the ability to algorithmically generate these complicated symmetries can be instrumental in understanding and manipulating their geometry. Recently, the discovery of quasi-periodic patterns in ancient Islamic architecture is providing a unique example of how ancient mathematics can inform our understanding of some basic theories in modern science. The recent investigation into these complex and chaotic formations is providing evidence to show that ancient designers, by using the most primitive tools (a compass and a straightedge) were able to resolve the complicated long-range principles of ten-fold quasi-periodic formations. Derived from these ancient principles, this paper presents a computational model for describing the long-range order of octagon-based quasi-periodic formations. The objective of the study is to design an algorithm for constructing large patches of octagon-based quasi-crystalline formations. The proposed algorithm is proven to be successful in producing an infinite and defect-free covering of the two-dimensional plane.
keywords computational model , quasi-crystalline , symmetries , algorithms , complex geometry
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2012_39
id ecaade2012_39
authors Asanowicz, Aleksander
year 2012
title Design: Analogue, Digital, and Somewhere in Between
doi https://doi.org/10.52842/conf.ecaade.2012.2.273
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 273-280
summary The problem considered in this paper is: “In what way do we design?” This paper concentrates on the early creative stages of the design process during which the designer gradually gathers the information about the problem, applying appropriate rules, tools and media. If the tools are chosen as a starting point of consideration, designing may be analysed as manual or digital. If we chose the medium - design may be considered as physical or virtual. The main thesis of this paper is that designing proceeds somewhere in between. “Somewhere in between” means the space where manual, digital, virtual are mixing, overlapping, and transforming one into the other. As a case study the process of designing of blurred function object is presented. In this experimental design studio we paid particular attention to the design process and we searched for the answer to the following questions: how to find an idea (what tools/media are helpful), how to express, fi x and transform that idea? In the paper the examples of students’ work will be presented and discussed.
wos WOS:000330320600027
keywords Creativity; digital design methods; mixed methods of design
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia12_479
id acadia12_479
authors Castorina, Giulio
year 2012
title Performative Topologies: An Evolutionary Shape Optimization Framework for Daylighting Performance Coupling a Particle-Spring System With an Energy Simulation Tool
doi https://doi.org/10.52842/conf.acadia.2012.479
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 479-490
summary This paper develops a methodological approach for use in design practice which combines an external simulation tool (EnergyPlus™) with an evo-lutionary optimisation strategy for the form-finding of complex fenestra-tion systems. On one hand, based on previous research, it presents a novel approach for the shape morphogenesis that exploits a generative algorithm technique to control a limited set of parameters whilst on the other hand it facilitates the integration of a simulation tool capable of handling increasing levels of complexity with greater data interoperabil-ity. In doing so it will argue the heuristic potential of the proposed meth-od in aiding the designers’ decision making whilst increasing the formal possibilities of their final design solutions.
keywords Performance-based design , Genetic Algorithm (GA) , daylighting simulation , shape optimisation , decision support system (DSS)
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ecaade2012_303
id ecaade2012_303
authors Cheng, Nancy Yen-wen
year 2012
title Shading With Folded Surfaces: Designing With Material, Visual and Digital Considerations
doi https://doi.org/10.52842/conf.ecaade.2012.2.613
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 613-620
summary This paper analyses a hybrid design approach; how physical and digital processes can inform each other in a multivalent design cycle. It describes the design of origami-inspired window shades, part of the Shaping Light project that explores how adjustable surface structures can modulate light levels and heat gain in response to the changing seasons. The screen uses sloped surfaces to diffuse light and create apertures that close when the screen is stretched and open when the screen is folded. The project complements digital methods for pattern proportioning and kinetic simulation with manual manipulation to generate 3D folding motifs and refi ne assemblies. Physical prototypes can shape digital refi nement by revealing visual and structural characteristics of materials, along with joint and production considerations. Physical models for simulating sunny and cloudy daylighting conditions provide a direct connection between spatial confi guration and visual effects. The paper concludes with guidelines for material-based digital-analog creation.
wos WOS:000330320600066
keywords Architectural design process; digital fabrication; shading devices; origami
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2012_139
id sigradi2012_139
authors Darcan, Tugçe; Gürer, Ethem
year 2012
title A Poe(Gene)tic Algorithm Method to Compute Gradient Spatiality
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 24-28
summary Related to the very common use of contemporary evolutionary methodologies, metaphorical relations coming out between architectural design and different structures (open and closed) and also new forms of spatiality are now being discussed. We are trying in this research, to query such a relationship between design and poetic language. In this regard, this paper concerns how haiku, well-known Japanese poem, may turn out to be an unfolding layer within the act of designing, by standing as a sort of syntactic generator. Genetic algorithms are benefited to compute the existing formalism in haiku structure, which gives rise to ‘gradient spatiality’.
keywords evolutionary design; genetic algorithms; poetic language; haiku; gradient spatiality
series SIGRADI
email
last changed 2016/03/10 09:50

_id sigradi2012_170
id sigradi2012_170
authors De Martino, Jarryer Andrade; Celani, Gabriela
year 2012
title O Algoritmo Evolutivo como método projetual [The Evolutionary Algorithm as design method]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 570-574
summary The evolutionary algorithm contributes significantly to the search for solutions to difficult problems of understanding and problems that have more than one solution, and all of which are satisfactory. This method is used by some architects as an optimization technique for design process; furthermore it is a possibility to obtain solutions which may not have been imagined by the designer. The aim of this article is to introduce the main concepts of evolutionary algorithm and to explain its structure. The article ends with example of the application of evolutionary algorithms in solving design problems.
keywords algoritmo evolutivo; método de projeto; diversidade.
series SIGRADI
email
last changed 2016/03/10 09:50

_id c4bd
id c4bd
authors Derix C, Gamlesæter A, Miranda P, Helme L and Kropf K
year 2012
title Simulation Heuristics for Urban Design
source In Mueller Arisona et al (eds), Digital Urban Modelling and Simulation: Communications in Computer and Information Science, Springer, Heidelberg, 2012
summary Designing simulations for urban design not only requires explicit performance criteria of planning standards but a synthesis of implicit design objectives, that we will call ‘purpose rules’, with computational approaches. The former would at most lead to automation of the existing planning processes for speed and evaluation, the latter to an understanding of perceived urban qualities and their effect on the planning of cities. In order to transform purpose rules into encoded principles we argue that the focus should not be on defining parametric constraints and quantities, but on aligning the perceptual properties of the simulations with the strategies of the stakeholders (planner/ urban designer/ architect/ developer/ community). Using projects from the Computational Design and Research group at Aedas [CDR] as examples, this chapter will discuss how an open framework of lightweight applications with simple functionality can be integrated into the design and planning process by using computational simulations as urban design heuristics.
keywords urban design, design heuristics, meta-heuristics, simulation, algorithm visualization
series book
type normal paper
email
more http://www.springerlink.com/content/g58114676q4228h8/?MUD=MP
last changed 2012/09/20 14:17

_id sigradi2012_229
id sigradi2012_229
authors Fernández, Luciano; Lecaros, Denis
year 2012
title Computer Vision aplicado a la evaluación de prototipos físicos [Computer Vision applied to the evaluation of physical prototypes]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 140-143
summary This work was born from the need to have an objective way to analyze the movement of water drops deflected by a prototype mudguard. To satisfy this need, using computer vision appears as a possibility. This paper defines the parameters that a possible program should work on, and suggests an algorithm to treat the information in order to give a first step for its application.
keywords computer vision; gotas de agua; prototipos físicos
series SIGRADI
email
last changed 2016/03/10 09:51

_id caadria2012_107
id caadria2012_107
authors Gerber, David and A. Senel Solmaz
year 2012
title PARA-Typing the making of difference: Associative parametric design methodologies for teaching the prototyping of material affect
doi https://doi.org/10.52842/conf.caadria.2012.233
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 233–242
summary PARA-Typing the Making of Difference presents design research and instruction into the use of constraint based digital and analogue modelling techniques and the development of associative parametric models to simulate highly differentiated fabricated form. These design research projects were conceived as manual analogue generative processes for prototyping modularity and serial differentiation. Then through associative parametric design technologies and methodologies, modular fields were design explored and developed in concert with material properties and constraints. Utilising digital fabrication full-scale installations were designed, manufactured, and constructed as tiled walls that created differentiated space within site-specific configurations.
keywords Generative design; parametric modelling; prototyping; digital fabrication; tectonics
series CAADRIA
email
last changed 2022/06/07 07:51

_id ijac201210403
id ijac201210403
authors Gerber, David J.
year 2012
title PARA-Typing Informing Form and the Making of Difference
source International Journal of Architectural Computing vol. 10 - no. 4, 501-520
summary This paper presents design research and instruction into the use of constraint based digital and analogue modelling techniques and the development of associative parametric models to simulate highly differentiated fabricated form. One set of these design research projects were conceived as manual analogue generative processes for prototyping modularity and serial differentiation.Then through parametric design techniques, modular aggregations were design explored and developed in concert with material properties and constraints. Utilizing digital fabrication full-scale installations were designed, manufactured, and for site-specific configurations. A second set of projects provides an extension of the design instruction that includes the integration of performance criteria into these design objectives.The objectives of the research are to present benefits and limitations of the incorporation of parametric design, performance analysis, and prototyping techniques in comprehensive studio instruction.The paper discusses the resultant informed materialized difference and the impacts on achieving reinforced and hands on learning objectives.
keywords Generative design; parametric modelling; prototyping; digital fabrication; design pedagogy; performative design
series journal
last changed 2019/05/24 09:55

_id caadria2012_109
id caadria2012_109
authors Gerber, David; Mohamed M. ElSheikh and Aslihan Senel Solmaz
year 2012
title Associative parametric design and financial optimisation - 'Cash Back 1.0': Parametric design for visualising and optimising Return on Investment for early stage design decision-making
doi https://doi.org/10.52842/conf.caadria.2012.047
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 47–56
summary Cash-Back 1.0 presents research on the development of methodologies and technologies to simulate the cause and effect of early stage geometric design alternatives of buildings and the real time results upon financial pro-forma. Through the encoding of design rules and their associative relationships to financial pro-forma the research illustrates enhanced visualization of early stage building design decisions and their cumulative impact on financial goals and constraints. The research presents value an associative parametric design process affords often-disparate domains through correlation and visualization. The paper describes incorporation of a feedback loop between pro-forma and geometric models in conjunction with an optimization method. Given the level of uncertainty in early stage design decision making the research contributes partial solutions to the domain problems of design decision uncertainty and design cycle latency and is further argumentation for increased use of parametric design methods and automation to support design domain integration.
keywords Parametric design; genetic algorithm; design decision support; multi domain optimisation; domain integration
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia12_67
id acadia12_67
authors Gerber, Dr. David Jason ; Lin, Shih-Hsin
year 2012
title Synthesizing Design Performance: An Evolutionary Approach to Multidisciplinary Design Search
doi https://doi.org/10.52842/conf.acadia.2012.067
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 67-75
summary Design is a goal oriented decision-making activity. Design is ill defined and requiring of synthetic approaches to weighing and understanding tradeoffs amongst soft and hard objectives, and the imprecise and or computationally explicit criteria and goals. In this regard designers in contemporary practice face a crisis of sorts. How do we achieve performance under large degrees of uncertainty and limited design cycle time? How do we better design for integrating performance? Fundamentally design teams, are not typically given enough time nor the best tools to design explore, to generate design alternatives, and then evolve solution quality to search for best fit through expansive design solution spaces. Given the complex criteria for defining performance in architecture our research approach experiments upon an evolutionary and integrative computational strategy to expand the solution space of a design problem as well as pre-sort and qualify candidate designs. We present technology and methodology that supports rapid development of design problem solution spaces in which three design domains objectives have multi-directional impact on each other. The research describes the use of an evolutionary approach in which a genetic algorithm is used as a means to automate the design alternative population as well as to facilitate multidisciplinary design domain optimization. The paper provides a technical description of the prototype design, one that integrates associative parametric modeling with an energy use intensity evaluation and with a financial pro forma. The initial results of the research are presented and analyzed including impacts on design process; the impacts on design uncertainty and design cycle latency; and the affordances for ‘designing-in’ performance and managing project complexity. A summary discussion is developed which describes a future cloud implementation and the future extensions into other domains, scales, tectonic and system detail.
keywords Parametric Design , Domain Integration , Design Methods , Multidisciplinary Design Optimization (MDO) , Evolutionary Algorithms , Design Decision Support , Generative Design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id acadia12_169
id acadia12_169
authors Helm, Volker ; Ercan, Selen ; Gramazio, Fabio ; Kohler, Matthias
year 2012
title In-Situ Robotic Construction: Extending the Digital Fabrication Chain in Architecture
doi https://doi.org/10.52842/conf.acadia.2012.169
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 169-176
summary In this paper, viable applications of mobile robotic units on construction sites are explored. While expanding on potential objectives for in-situ fabrication in the construction sector, the intention is also to build upon innovative man-machine interaction paradigms to deal with the imprecision and tolerances often faced on construction sites. By combining the precision of the machine with the cognitive environmental human skills, a simple but effective mobile fabrication system is experimented for the building of algorithmically designed additive assemblies that would not be possible through conventional manual methods if the large amount of individual building blocks and the size of the structure to be built are taken into account. It is believed that this new approach to man-machine collaboration, aimed at a deeper integration of human ability with the strengths of digitally controlled machines, will result in advances in the construction sector, thus opening up new design and application fields for architects and planners.
keywords in-situ robotic fabrication , mobile robotics , 1:1 scale fabrication , additive assembly , algorithmically designed structures , man-machine interaction , cognitive , object recognition , construction site
series ACADIA
type normal paper
email
last changed 2022/06/07 07:49

_id acadia12_239
id acadia12_239
authors Jackson, Jesse ; Stern, Luke
year 2012
title Fabricating Sustainable Concrete Elements: A Physical Instantiation of the Marching Cubes Algorithm
doi https://doi.org/10.52842/conf.acadia.2012.239
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 239-247
summary This paper explores how an algorithm designed to represent form can be made physical, and how this physical instantiation can be made to respond to a set of design imperatives. Specifically, the paper demonstrates how Marching Cubes (Lorensen and Cline 1987), an algorithm that extracts a polygonal mesh from a scalar field, can be used to initiate the design for a system of modular concrete armature elements that permit a large degree of variability using a small number of discrete parts. The design of these elements was developed in response to a close examination of Frank Lloyd Wright's Usonian Automatic system, an architecturally pertinent historical precedent. The fabricated results positively satisfy contemporary design criteria, including maximal formal freedom, optimal environmental performance, and minimal life-cycle costs.
keywords Form-finding Algorithms , Digital Fabrication , Sustainability , Frank Lloyd Wright , Concrete , Tectonic Elements
series ACADIA
type panel paper
email
last changed 2022/06/07 07:52

_id caadria2012_095
id caadria2012_095
authors Johansson, Mikael and Mattias Roupé
year 2012
title Real-time rendering of large building information models: Current state vs. state-of-the-art
doi https://doi.org/10.52842/conf.caadria.2012.647
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 647–656
summary With the use of Building Information Models (BIM), real-time 3D visualisations have become a natural tool in order to communicate ideas and share information between all involved parties in a project. Currently, several different BIM viewers are available for the purpose of interactive presentations and design reviews. However, as BIMs become larger and more detailed, it provides a challenge for available software solutions to manage them interactively. In this paper we present our findings from analysing three commonly used BIM viewers - Tekla BIMSight, Autodesk Navisworks and Solibri Model Viewer - in terms of real-time rendering performance. In addition we have developed a prototype BIM viewer to test modern approaches for efficient real-time rendering. Specifically, we have implemented the latest version of the Coherent Hierarchical Culling algorithm. Our results show that existing BIM viewers all share limitations in their ability to handle large and complex BIMs interactively. However, for the same test models, our prototype BIM viewer enables smooth real-time performance with no visual artefacts. The results from our tests thus shows that the technology to enable correct real-time rendering of large and complex BIMs is already accessible, but are currently not utilised by any of the tested BIM viewers.
keywords 3D graphics; BIM; real-time rendering
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia12_305
id acadia12_305
authors Kock, Jeffrey ; Bradley, Benjamin ; Levelle, Evan
year 2012
title The Digital-Physical Feedback Loop: A Case Study
doi https://doi.org/10.52842/conf.acadia.2012.305
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 305-314
summary Kukje Art Center, Seoul’s new gallery designed by SO-IL, features a totally bespoke chainmail mesh system (submission note: the authors are not affiliated with SO-IL). A single sheet of complex-curved, tensioned mesh, made up of interlocking 40mm diameter stainless steel rings, wraps the building. This paper discusses the stages of a feedback loop process employed by the authors to refine a digital model of the mesh. The mesh’s perimeter attachment system does not prescribe ring locations, allowing the mesh to form find for itself during installation. As a result, the digital model must capture the behavioral tendencies of the mesh as it negotiates the building’s geometry. Paramount in meeting this challenge was the use of physical mockups. At each stage of the feedback loop process, the working digital model was used to develop a physical mockup of increased scale and complexity, and this mockup was used to refine the digital model. Ultimately, the model output of a mesh relaxation algorithm was used as the basis for engineering simulations and predictions of the mesh vertical ringcount needed at specific locations around the building. Mesh vertical ringcount predictions are validated relative to a 1:1 mockup and the installed Kukje Art Center mesh.
keywords minimal surface , chainmail mesh , form finding , dynamic relaxation , finite element analysis , feedback loop , tensioned fabric , physical mockup , bespoke cladding , Kukje , Seoul
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id ecaade2016_119
id ecaade2016_119
authors Koenig, Reinhard and Varoudis, Tasos
year 2016
title Spatial Optimisations - Merging depthmapX, spatial graph networks and evolutionary design in Grasshopper
doi https://doi.org/10.52842/conf.ecaade.2016.2.249
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 249-254
summary In the Space Syntax community, the standard tool for computing all kinds of spatial graph network measures is depthmapX (Varoudis, 2012). The process of evaluating many design variants of networks is relatively complicated, since they need to be drawn in a separated CAD system, exported and imported in depthmapX via dxf file format. This procedure disables a continuous integration into a design process. Furthermore, the standalone character of depthmapX makes it impossible to use its network centrality calculation for optimization processes. To overcome this limitations, we present in this paper the first steps of experimenting with a Grasshopper component (Varoudis, 2016) that can access the functions of depthmapX and integrate them into Grasshopper/Rhino3D. Here the component is implemented in a way that it can be used directly for an evolutionary algorithm (EA) implemented in a Python scripting component in Grasshopper.
wos WOS:000402064400024
keywords Space Syntax; Evolutionary Algorithm; Grasshopper; Python; DepthmapX; Optimization
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2012_136
id ecaade2012_136
authors Marin, Philippe ; Marsault, Xavier ; Saleri, Renato ; Duchanois, Gilles
year 2012
title Creativity with the help of evolutionary design tool
doi https://doi.org/10.52842/conf.ecaade.2012.1.319
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 319-327
summary The general thematic of our work tackles the question of the generative design tool efficiency to stimulate a creative architectural conception in the context of sustainable development. We focus our point of view on the conceptual research phases. We would like to characterise the human creative mechanisms in a situation of generative assistance where digital tool reveals some degree of autonomy and incorporates environmental constraints. Thus, we implement an evolutionary design tool in which energetic performances of the analogon are used in order to orient the evolution. Our tool is based on an interactive genetic algorithm that ensures both a broad exploration of the solutions space and the subjective user preferences accounting. Users groups were confronted to the tool in a conception situation and creativity was evaluated and characterized.
wos WOS:000330322400032
keywords Interactive genetic algorithm; evolutionary design; creativity; environmental parameters
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia12_87
id acadia12_87
authors Menicovich, David ; Gallardo, Daniele ; Bevilaqua, Riccardo ; Vollen, Jason
year 2012
title Generation and Integration of an Aerodynamic Performance Data Base Within the Concept Design Phase of Tall Buildings
doi https://doi.org/10.52842/conf.acadia.2012.087
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 87-96
summary Despite the fact that tall buildings are the most wind affected architectural typology, testing for aerodynamic performance is conducted during the later design phases well after the overall geometry has been developed. In this context, aerodynamic performance studies are limited to evaluating an existing design rather than a systematic performance study of design options driving form generation. Beyond constrains of time and cost of wind tunnel testing, which is still more reliable than Computational Fluid Dynamics (CFD) simulations for wind conditions around buildings, aerodynamic performance criteria lack an immediate interface with parametric design tools. This study details a framework for empirical data collection through wind tunnel testing of building mechatronic models and the expansion of the collected dataset by determining a mathematical interpolating model using an Artificial Neural Network (ANN) algorithm developing an Aerodynamic Performance Data Base (APDB). Frederick Keisler called the interacting of forces CO-REALITY, which he defined as The Science of Relationships. In the same article Keisler proclaims that the Form Follows Function is an outmoded understanding that design must demonstrate continuous variability in response to interactions of competing forces. This topographic space is both constant and fleeting where form is developed through the broadcasting of conflict and divergence as a system seeks balance and where one state of matter is passing by another; a decidedly fluid system. However, in spite of the fact that most of our environment consists of fluids or fluid reactions, instantaneous and geologic, natural and engineered, we have restricted ourselves to approaching the design of buildings and their interactions with the environment through solids, their properties and geometry; flow is considered well after the concept design stage and as validation of form. The research described herein explores alternative relations between the object and the flows around it as an iterative process, moving away from the traditional approach of Form Follows Function to Form Follows Flow.
keywords Tall Buildings , Mechatronics , Artificial Neural Network , Aerodynamic Performance Data Base
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id caadria2013_173
id caadria2013_173
authors Mueller, Volker; Drury B. Crawley and Xun Zhou
year 2013
title Prototype Implementation of a Loosely Coupled Design Performance Optimisation Framework
doi https://doi.org/10.52842/conf.caadria.2013.675
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 675-684
summary Integration of analyses into early design phases poses several challenges. An experimental implementation of an analysis framework in conjunction with an optimization framework ties authoring and analysis tools together under one umbrella. As a prototype it served intensive use-testing in the context of the SmartGeometry 2012 workshop in Troy, NY. In this prototype the data flow uses a mix of proprietary and publicised file formats, exchanged through publicly accessible interfaces. The analysis framework brokers between the parametric authoring tool and the analysis tools. The optimization framework controls the processes between the authoring tool and parametric engine on one side and the optimization algorithm on the other. In addition to some user-implemented analyses inside the parametric design model the prototype makes energy analysis and structural analysis available. The prototype allows testing assumptions about work flow, implementation, usability and general feasibility of the pursued approach.  
wos WOS:000351496100066
keywords Design-analysis integration, Design refinement, Optimization  
series CAADRIA
email
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_137437 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002