CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 551

_id ascaad2012_024
id ascaad2012_024
authors Abeer, Samy Yousef Mohamed
year 2012
title Sustainable Design and Construction: New Approaches Towards Sustainable Manufacturing
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 241-251
summary Ecological and environmental issues are playing an important and larger role in corporate and manufacturing strategies. For complete creative design process, buildings require both for construction and manufacturing, due to their comparatively long life cycle for maintenance, significant raw material and energy resources. Thinking in terms of product life cycles is one of the challenges facing manufacturers today. “Life Cycle Management” (LCM) considers the product life cycle as a whole and optimizes the interaction of product design, construction, manufacturing and life cycle activities. The goal of this approach is to protect resources and maximize the effectiveness during usage by means of Life Cycle Assessment, Product Data Management, Technical Support and last but not least by Life Cycle Costing. In this paper the environmental consciousness issues pertaining to design, construction, manufacturing and operations management are presented through computer intelligent technologies of this 21century. So, this paper shows the existing approaches of LCM and discusses their visions and further development.
series ASCAAD
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_024.pdf
last changed 2012/05/15 20:46

_id caadria2012_132
id caadria2012_132
authors Baerlecken, Daniel and David Duncan
year 2012
title Junk: Design build studio
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 305–314
doi https://doi.org/10.52842/conf.caadria.2012.305
summary The paper presents a design build studio that investigates the role of waste as building material and develops a proposal for an installation that uses CAAD and CAM tools in combination with traditional fabrication tools to design and build an installation out of waste materials. The paper describes the concept development and the construction process through the help of computational tools. Recycling is in the process of becoming an integral part of sustainable architecture. However, there are very few digital design projects that use re-used or recycled materials in combination with their architectural and aesthetic qualities and potentials. The potential of such an investigation is explored within a design build studio. What is junk? What is a building material? What are the aesthetics of junk?
keywords Education in CAAD; digital fabrication and construction; practice-based and interdisciplinary CAAD; parametric modelling
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2012_280
id ecaade2012_280
authors Baerlecken, Daniel; Reitz, Judith; Duncan, David
year 2012
title Junk: Reuse of Waste Materials
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 143-150
doi https://doi.org/10.52842/conf.ecaade.2012.2.143
wos WOS:000330320600014
summary The paper presents a series of design build studio that investigate the role of waste as building material. The series develops proposals for constructions that use CAAD and CAM tools in combination with traditional fabrication tools to design and build an installation out of waste materials. The fi rst construction uses waste to create two installations that questions human consumption, The second project is a future project, that intends the use of waste as an actual building material. Recycling is in the process of becoming an integral part of sustainable architecture. However, there are very few digital design projects that use re-used or recycled materials in combination with their architectural and aesthetic qualities and potentials. The potential of such an investigation is explored within these design build studios. What is junk? What is a building material? What are the aesthetics of junk?
keywords Education in CAAD; digital fabrication and construction; practice-based and interdisciplinary CAAD; parametric modeling
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia12_199
id acadia12_199
authors Beorkrem, Chris ; Corte, Dan
year 2012
title Zero-Waste, Flat-Packed, Tri-Chord Truss: Continued Investigations of Structural Expression in Parametric Design"
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 199-208
doi https://doi.org/10.52842/conf.acadia.2012.199
summary The direct and rapid connections between scripting, modeling and prototyping allow for investigations of computation in fabrication. The manipulation of planar materials with two-dimensional CNC cuts can easily create complex and varied forms, volumes, and surfaces. However, the bulk of research on folding using CNC fabrication tools is focused upon surfaces, self-supporting walls and shell structures, which do not integrate well into more conventional building construction models. This paper attempts to explain the potential for using folding methodologies to develop structural members through a design-build process. Conventional building practice consists of the assembly of off-the-shelf parts. Many times, the plinth, skeleton, and skin are independently designed and fabricated, integrating multiple industries. Using this method of construction as an operative status quo, this investigation focused on a single structural component: the truss. Using folding methodologies and sheet steel to create a truss, this design investigation employed a recyclable and prolific building material to redefine the fabrication of a conventional structural member. The potential for using digital design and two-dimensional CNC fabrication tools in the design of a foldable truss from sheet steel is viable in the creation of a flat-packed, minimal waste structural member that can adapt to a variety of aesthetic and structural conditions. Applying new methods to a component of the conventional ‘kit of parts’ allowed for a novel investigation that recombines zero waste goals, flat-packing potential, structural expression and computational processes. This paper will expand (greatly) upon previous research into bi-chord truss designs, developing a tri-chord truss, which is parametrically linked to its structural moment diagram. The cross section of each truss is formed based on the loading condition for each beam. This truss design has been developed through a thorough series of analytical models and tests performed digitally, to scale and in full scale. The tri-chord truss is capable of resisting rotational failures well beyond the capacity of the bi-chord designs previously developed. The results are complex, and elegant expressions of structural logics embodied in a tightly constrained functional design.
keywords Parametric Design , Structural Expression , Material constraints
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2012_078
id caadria2012_078
authors Beorkrem, Christopher
year 2012
title Running Interference: Complex Systems Intervention as Design Process
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 183–192
doi https://doi.org/10.52842/conf.caadria.2012.183
summary This paper presents a case study problem statement tested in the design studio with the intent of teaching methods for engaging systematic thinking as a process for deriving solutions to parametric design problems. The intent is to address the simulation environment developed through complex systems and interject a curve ball, or unexpected constraint delimiting the solution as part of the design process. This method was tested through the submittal of the projects to international design competitions. The students were asked to manipulate the competition criteria by appealing not only to the design criteria but also to the juries desire (whether conscious or unconscious) for novel sustainable processes of material usage and program. This material ecology is developed as a method for linking parametric modelling, not as a process for the application of a construction technique, but as a way to pre-rationalise material constraints and discover how program and form can operate within those constraints. In the first year of the studio two of six teams were selected as finalists and in the second year of the studio five of seven of the teams were selected as finalists.
keywords Studio pedagogy; computational instruction; parametrics; material constraints
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2015_185
id caadria2015_185
authors De Oliveira, Maria João and Vasco Moreira Rato
year 2015
title From Morphogenetic Data to Performative Behaviour
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 765-774
doi https://doi.org/10.52842/conf.caadria.2015.765
summary This paper presents part of CORK’EWS, a research work developed within the framework of the Digital Architecture Advanced Program 2012/13 at ISCTE-IUL. The main goal of this investigation was to develop a parametric, customizable and adaptive wall system designed for environmental performance. Moreover, the system is based on standard industrial products: expanded cork blocks produced by Amorim Insulation industries. CAD/CAM resources were the essential tools of the research process, where fundamental and practical knowledge is integrated to understand the microstructure morphological properties of the raw material – cork – and its derivate – natural expanded cork. These properties were upscale and adapted to create a wall with an optimized solar control environmental performance. The result is a digitally fabricated prototype of a new customizable industrial product, adaptable to specific environmental conditions and installation setups being therefore easily commercialized. From microstructural morphology to macroscale construction, the research explores new application possibilities through morphogenesis and opens new possible markets for these customizable products.
keywords Morphogenesis; performance; shading systems; cork.
series CAADRIA
email
last changed 2022/06/07 07:55

_id acadia12_239
id acadia12_239
authors Jackson, Jesse ; Stern, Luke
year 2012
title Fabricating Sustainable Concrete Elements: A Physical Instantiation of the Marching Cubes Algorithm
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 239-247
doi https://doi.org/10.52842/conf.acadia.2012.239
summary This paper explores how an algorithm designed to represent form can be made physical, and how this physical instantiation can be made to respond to a set of design imperatives. Specifically, the paper demonstrates how Marching Cubes (Lorensen and Cline 1987), an algorithm that extracts a polygonal mesh from a scalar field, can be used to initiate the design for a system of modular concrete armature elements that permit a large degree of variability using a small number of discrete parts. The design of these elements was developed in response to a close examination of Frank Lloyd Wright's Usonian Automatic system, an architecturally pertinent historical precedent. The fabricated results positively satisfy contemporary design criteria, including maximal formal freedom, optimal environmental performance, and minimal life-cycle costs.
keywords Form-finding Algorithms , Digital Fabrication , Sustainability , Frank Lloyd Wright , Concrete , Tectonic Elements
series ACADIA
type panel paper
email
last changed 2022/06/07 07:52

_id acadia12_187
id acadia12_187
authors Mei-Ling, Lin ; Han, Ling ; Kothapuram, Shankara ; Jiawei, Song
year 2012
title Digital Vernacular
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 187-195
doi https://doi.org/10.52842/conf.acadia.2012.187
summary Digital Vernacular investigates the potential of the process of depositing a paste like material with precision using a CNC device which has produced an innovative system for design and fabrication of environmentally responsive housing. Architectural practice has been greatly impacted by technical innovations in the past, usually new building types emerge as part of new ideologies. Yet the current revolution in computer-aided design and fabrication has architecture focusing on form – without questioning what these new processes can bring for the masses. The research project 'Digital Vernacular' has investigated the potential of using CNC technology for the production of housing. It has focused on the design of the machinic devices as well as computational design tools, and revolves around the concept of fabrication on site. Using an additive and layered manufacturing process and locally available material, the project proposes a revolutionary new digital design and fabrication system that is based on one of the oldest and most sustainable construction methods in the world. The main potentials of this method are not to create complex forms for the sake of design, but to use parametric control to adapt each design to the specificities of its site. Using geometrical rules found during many research experiments with real material behaviour, a new architectural language is created that merges several environmental functionalities into a single integrated design.
keywords Digital , Vernacular , CNC , CAM , Housing , fabrication , environmental
series ACADIA
type panel paper
email
last changed 2022/06/07 07:58

_id acadia12_259
id acadia12_259
authors Sabin, Jenny E.
year 2012
title The Greenhouse & Cabinet of Future Fossils: Interfacing Nature in the Built Environment
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 259-268
doi https://doi.org/10.52842/conf.acadia.2012.259
summary The Greenhouse and Cabinet of Future Fossils was commissioned by the American Philosophical Society Museum, funded by Heritage Philadelphia Program, a program of The Pew Center for Arts & Heritage. The Greenhouse and Cabinet of Future Fossils attempts to gather, digest, and disseminate information about nature while also incorporating cutting-edge design and fabrication techniques to ultimately produce a greenhouse of the future. The pavilion structure is populated with cold frame modules and futuristic ceramic and 3D printed curiosities, prefabricated and assembled in the Jefferson Garden, Philadelphia. Taking inspiration from the artifacts in the exhibition, Of Elephants and Roses: Encounters with French Natural History, 1790–1830, the greenhouse revisits 19th-century thematic issues related to nature, culture, and the city to offer new interpretations of greenhouse architecture as urban hybrid ecosystems whose nonstandard form features new material and fabrication logics that inspire a shift away from a technical approach to sustainable architecture to one rooted in design and the built environment. The pavilion mobilizes concepts of event as the public is invited to actively participate in the planting of the cold frames, thus contributing to the actual secondary structure of the greenhouse, and then disassembling the structure at the end of the installation period and disseminating the planted materials. As a conceptual and provocative backdrop to this project, references are made to important contributions recently made by a small group of accomplished scientists, architects, and researchers at a university symposium whose central theme was to discuss next steps for sustaining sustainability.
keywords ecology , emerging technologies , alternative materials , greenhouse architecture , digital fabrication , designbuild , sustainability
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id acadia12_457
id acadia12_457
authors Shook, David ; Sarkisian, Mark
year 2012
title Weighted Metrics: Synthesizing Elements for Tall Building Design
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 457-466
doi https://doi.org/10.52842/conf.acadia.2012.457
summary Salient attributes of previously designed projects can be examined to understand how key parameters could inform current design practices. These parameters include gross floor area, number of stories, occupancy, material type, geographic location, seismicity, climatic influences, etc. Two informative analysis tools for intelligent design have been developed which can be used from preliminary planning stages to the final design of individual structures to district-wide developments. These tools can evaluate concurrent influences of these parameters on the built environment. The first is the Environmental Analysis Tool™ (EA Tool). The EA Tool quantifies the estimated equivalent carbon dioxide emissions of structural components. The second analysis tool is Parametric City Modeling (PCM). PCM estimates the usable area of a tower by estimating net floor area. These tools can also be applied to multiple buildings at a district scale to facilitate a new level of design in urban planning efforts. Design information embodied in the physical built environment finds new purpose in the informative prediction of performance at the on-set of digital design. Harvesting and mining data as a natural resource brings new potential to informed design. These concepts and subsequent tools are vital to building sustainable and efficient cities of the future.
keywords Data Harvesting , Sustainability , Building Efficiency , Urban Planning , Parametric Design , Optimization
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ecaade2012_002
id ecaade2012_002
authors Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejdan, Dana (eds.)
year 2012
title Physical Digitality
source Proceedings of the 30th International Conference on Education and research in Computer Aided Architectural Design in Europe - Volume 2 [ISBN 978-9-4912070-3-7], Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, 714 p.
doi https://doi.org/10.52842/conf.ecaade.2012.2
summary Physical Digitality is the second volume of the conference proceedings of the 30th eCAADe conference, held from 12-14 september 2012 in Prague at the Faculty of Architecture of Czech Technical University in Prague. The companion volume is called Digital Physicality. Together, both volumes contain 154 papers that were submitted to this conference. Digitality is the condition of living in a world where ubiquitous information and communication technology is embedded in the physical world. Although it is possible to point out what is “digital” and what is “real,” the distinction has become pointless, and it has no more explanatory power for our environment, buildings, and behaviour. Material objects are invested with communication possibilities, teams are communicating even when not together, and buildings can sense and respond to the environment, each other, and to inhabitants. Digital is no longer an add-on, extra, or separate software. Reality is partly digital and partly physical. The implication of this condition is not clear however, and it is necessary to investigate its potential. New strategies are necessary that acknowledge the synergetic qualities of the physical and the digital. This is not limited to our designs but it also infl uences the process, methods, and what or how we teach. The subdivision of papers in these volumes follow the distinction made in the conference theme. The papers in Physical Digitality have their orientation mainly in the physical realm, and reach towards the digital part. It has to be granted that this distinction is rather crude, because working from two extremes (digital versus physical) tends to ignore the arguably most interesting middle ground.
keywords Digital physicality; physical digitality
series eCAADe
email
last changed 2022/06/07 07:49

_id sigradi2012_186
id sigradi2012_186
authors Aghaei Meibodi, Mania; Aghaiemeybodi, Hamia
year 2012
title Symbiosis of Structural & Non-Structural properties in Building
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 602-606
summary This paper highlights the different interplays between structural and non-structural parts in building artifact as the result of modes of building processes and massing. The massing is understood as processes of assembling material into a body through which we identify with the building physically. In the last decade architecture discipline as the result of technological inventions has faced shifts in the design processes, massing processes and topology of the artefact. In which we witness integral coexistence between the structural and non-structural elements of building. In this paper the seeds of this integral interplay is scrutinised through the study of design and massing processes of a multi-functional pavilion prototype as a case study.
keywords digital surface; prototype; design processes; structural; formation
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia12_391
id acadia12_391
authors Ajlouni, Rima
year 2012
title The Forbidden Symmetries
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 391-400
doi https://doi.org/10.52842/conf.acadia.2012.391
summary The emergence of quasi-periodic tiling theories in mathematics and material science is revealing a new class of symmetry, which had never been accessible before. Because of their astounding visual and structural properties, quasi-periodic symmetries can be ideally suited for many applications in art and architecture; providing a rich source of ideas for articulating form, pattern, surface and structure. However, since their discovery, the unique long-range order of quasi-periodic symmetries, is still posing a perplexing puzzle. As rule-based systems, the ability to algorithmically generate these complicated symmetries can be instrumental in understanding and manipulating their geometry. Recently, the discovery of quasi-periodic patterns in ancient Islamic architecture is providing a unique example of how ancient mathematics can inform our understanding of some basic theories in modern science. The recent investigation into these complex and chaotic formations is providing evidence to show that ancient designers, by using the most primitive tools (a compass and a straightedge) were able to resolve the complicated long-range principles of ten-fold quasi-periodic formations. Derived from these ancient principles, this paper presents a computational model for describing the long-range order of octagon-based quasi-periodic formations. The objective of the study is to design an algorithm for constructing large patches of octagon-based quasi-crystalline formations. The proposed algorithm is proven to be successful in producing an infinite and defect-free covering of the two-dimensional plane.
keywords computational model , quasi-crystalline , symmetries , algorithms , complex geometry
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2012_243
id ecaade2012_243
authors Araya, Sergio; Zolotovsky, Ekaterina; Gidekel, Manuel
year 2012
title Living Architecture: Micro Performances of Bio Fabrication
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 447-457
doi https://doi.org/10.52842/conf.ecaade.2012.2.447
wos WOS:000330320600047
summary This ongoing research study explores novel modes of design and fabrication by combining digital tools and technologies with living biological systems within controlled environments in order to induce specifi c biological functions and material production processes. The main objective is to design and implement a biological fabrication technique, using bacteria, to produce physical components for architecture and product design.
keywords Synthetic Biology; Architecture; Design; Biofabrication; Biomaterial
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2012_247
id ecaade2012_247
authors Balaban, Özgün; Kilimci, Elif Sezen Yagmur; Cagdas, Gülen
year 2012
title Automated Code Compliance Checking Model for Fire Egress Codes
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 117-125
doi https://doi.org/10.52842/conf.ecaade.2012.2.117
wos WOS:000330320600011
summary Architecture today has come to its most complex form. There are lots of criteria such as fi re safety, structure, sustainability etc… which must be controlled by the designers. To improve the performance and accessibility of buildings, governing bodies publish different codes for each of the different criteria. Buildings must comply with these codes to get a permit for construction. The checking of the buildings according the codes is done manually by code offi cials. This process is time consuming, high in cost and prone to errors. To remedy this problem by using the tools like BIM and AI, systems that can automatically check the code compliance of projects are being developed. In this paper we provide an overview of the structures and capabilities of these systems and present the automated code compliance checking system that we develop for checking building models against some parts of the Turkish Fire Codes.
keywords Automated Code Compliance Checking; Fire Codes; BIM
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2012_081
id caadria2012_081
authors Beorkrem, Christopher; Niki DesImini, Mitch McGregor and Igor Polakov
year 2012
title Sphere mapping: A method for a responsive surface design
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 527–536
doi https://doi.org/10.52842/conf.caadria.2012.527
summary The method proposed in this project addresses the parametric manipulation of a given pattern to respond directly to a pre-defined surface. Continuing the research of Kevin Rotheroe, Yale University and founder of FreeForm Design. Rotheroe has developed a series of studies in material and surface properties. By utilising a proven pattern, the proposed method sets parameters derived from the formal properties of the original pattern and produces a new pattern that is responsive to the curvature of a complex surface. The workflow developed in this research consists of a complex blending of tools in Grasshopper and Gehry Technologies Digital Project. The intent is to achieve the aesthetics and structure offered by Rotheroe’s original research and to add a responsive precision that provides an accurate adaptation of the pattern based on curvature of a specific computationally defined surface.
keywords Geometric systems; parametrics; material constraints
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia12_149
id acadia12_149
authors Besler, Erin
year 2012
title Low Fidelity
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 149-153
doi https://doi.org/10.52842/conf.acadia.2012.149
summary Low Fidelity engages in the translational discrepancies that occur through mediums of architectural representation, not as instances of dilemma but as opportunities to subdue tautology and augment the seductive latency of representation(1). Where some might contend the discrepant as unlawful, the methodology that this thesis argues for engages the digital and machinic, and explores the translational discrepancies that challenge and interrupt our interface with matters of materialization and excite material propensities. The discrepant becomes a dynamic catalyst through the engagement of tools and techniques that subvert the homogeneity of digital design. Low Fidelity engages the sphere of translation by reevaluating the role of architectural representation as generator and generated its originations and its limitations. In an attempt to negotiate the digital and physical, this thesis situates itself within the feedback loop between the mediums of translation through ideas their formal logics, material propensities and back again.
keywords Robotic Fabrication , Digital Machinic , Material Propensity , Technological Fidelity , Generative Representation , Translation through Mediums
series ACADIA
type panel paper
email
last changed 2022/06/07 07:52

_id ijac201210406
id ijac201210406
authors Biswas, Tajin; Ramesh Krishnamurti
year 2012
title Data Sharing for Sustainable Building Assessment
source International Journal of Architectural Computing vol. 10 - no. 4, 555-574
summary Sustainable design assessment requires information, which is aggregated from different phases of a building design, and evaluated according to criteria specified in a ‘sustainable building rating system.’ In the architecture engineering and construction (AEC) domain much of the necessary information is available through open source data standards such as Industry Foundation Classes (IFC). However, no single standard that provides support for sustainability assessment completely suffices as a data structure. This paper explores the augmentation of the Construction Operations Building information exchange (COBie) model, as an intermediary data structure, to bridge between requirements of the Leadership in Energy and Environmental Design (LEED) rating system and a building information model. Development of a general framework for data sharing and information management for LEED assessments is illustrated through an implementation of a prototype using functional databases.The prototype checks and augments available data as needed, which is used to populate LEED submission templates.
series journal
last changed 2019/05/24 09:55

_id caadria2012_115
id caadria2012_115
authors Biswas, Tajin; Tsung-Hsien Wang and Ramesh Krishnamurti
year 2012
title Data sharing for sustainable assessments: Using functional databases for interoperating multiple building information structures
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 193–202
doi https://doi.org/10.52842/conf.caadria.2012.193
summary This paper presents the development and implementation of an automatic sustainable assessment prototype using functional databases. For the practical purpose, we use Leadership in Energy and Environmental Design (LEED) as the exemplar standard to demonstrate the integrative process from building information aggregation to final evaluation. We start with a Building Information model, and use Construction Operations Building Information Exchange (COBie) as a bridge to integrate LEED requirements. At present, the process of sustainable building assessment requires information exchange from various building professionals. However, there is no procedure to manage, or use, information pertaining to sustainability. In our research, we translate rules from LEED into computable formulas and develop a prototype application to produce templates for LEED submission.
keywords Building information databases; sustainable assessment
series CAADRIA
email
last changed 2022/06/07 07:52

_id ijac201210303
id ijac201210303
authors Bohnenberger, Sascha; Chin Koi Khoo, Daniel Davis, et al.
year 2012
title Sensing Material Systems - Novel Design Strategies
source International Journal of Architectural Computing vol. 10 - no. 3, 361-375
summary The development of new building materials has decisively influenced the progression of architecture through the link between built form and available material systems. The new generation of engineered materials are no exception. However, to fully utilise these materials in the design process, there is a need for designers to understand how these new materials perform. In this paper we propose a method for sensing and representing the response of materials to external stimuli, at the early design stage, to help the designer establish a material awareness. We present a novel approach for embedding capacitive sensors into material models in order to improve material performance of designs. The method was applied and tested during two workshops, both discussed in this paper. The outcome is a method for anticipating engineered material behaviour.
series journal
last changed 2019/05/24 09:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_839682 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002