CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 3 of 3

_id caadria2021_412
id caadria2021_412
authors Estrina, Tatiana, Hui, Vincent and Ma, Lena
year 2021
title The Digital Design Build - Modes of Experiential Learning in the Pandemic Era
doi https://doi.org/10.52842/conf.caadria.2021.2.041
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 41-50
summary In recent years, academia has deviated from the lecture-based model to a hybridized system of instruction and experiential learning. Experiential learning aids students in understanding collaborative processes in architectural praxis and exposes them to engaging learning opportunities, a critical component of architectural studio education (Nijholt et al. 2013). During the COVID-19 outbreak, students are barred from accessing on-campus facilities. This causes a redevelopment of curricular delivery and disrupts experiential learning which heavily relies on in-person interaction. It is imperative for instructors to retain experiential learning in the transition to virtual instruction. This paper explores experiential learning within virtual platforms for instruction. Through outlining the implementation of technologies, capitalizing on connectivity, and maximizing opportunity for digital problem solving, the authors posit a framework that other educators may adopt. The paper concludes with a case study of a virtual design-build project, and the various techniques implemented in retaining experiential learning during the pandemic.
keywords Pedagogy; Experiential learning; Social connectivity; Resilience; Disrupted education
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia13_079
id acadia13_079
authors Jason Gerber, David; Eve Lin, Shih-Hsin; Amber Ma, Xinyue
year 2013
title Designing-In Performance: A Case Study of Applying Evolutionary Energy-Performance Feedback for Design (EEPFD)
doi https://doi.org/10.52842/conf.acadia.2013.079
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 79-86
summary This paper explores the application of a novel Multi-disciplinary Design Optimization (MDO) framework to the early stage design process, through a case study where the designer serves as the primary user and driver. MDO methods have drawn attention from the building design industry as a potential means of overcoming obstacles between design and building performance feedback to support design decision-making. However, precedents exploring MDOs in application to the building design have previously been limited to driving use by engineers or research teams,thereby leaving the incorporation of MDO into a design process by designers largely unexplored. In order to investigate whether MDO can enable the ability to design in a performance environment during the conceptual design stage, a MDO design framework entitled Evolutionary Energy-Performance Feedback for Design (EEPFD) was developed. This paper explores the designer as the primary user by conducting a case study where the application of EEPFD to a single family residential housing unit is incorporated. Through this case study EEPFD demonstrates an ability to assist the designer in identifying higher performing design options while meeting the designer’s aesthetic preferences. In addition the benefits, limitations, concerns and lessons learned in the application of EEPFD are also discussed.
keywords conceptual energy-performance feedback; design decision support; parametric design; multi-disciplinary design optimization; genetic algorithm
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:52

_id caadria2013_162
id caadria2013_162
authors Weng, Yueh-Sung; Jia-Yih Chen, Yu-Pin Ma, Cheng-An Pan and Tay-Sheng Jeng
year 2013
title Eco-Machine: A Green Robotic Ecosystem for Sustainable Environments
doi https://doi.org/10.52842/conf.caadria.2013.925
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 925-934
summary This paper focuses on developing a kinetic system with responsive solutions for sustainable environments. The emphasis of our work is to develop a zero-energy interactive ecosystem called an “eco-machine”. We setup a conceptual framework and investigate how to integrate sensors and actuators into green building tectonics to achieve a sustainable kinetic system. The operational scenario and prototype implementation are reported in this paper. 
wos WOS:000351496100095
keywords Eco-machine, Sustainable environment, Interactive architecture  
series CAADRIA
email
last changed 2022/06/07 07:57

No more hits.

HOMELOGIN (you are user _anon_994277 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002