CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 2 of 2

_id caadria2013_033
id caadria2013_033
authors Nguyen, Danny D. and M. Hank Haeusler
year 2013
title Assimilating Interactive Technology into Architectural Design – A Quest for developing an ‘Architectural Drawing’ for Urban Interaction Design as a Communication Platform Through Combining Physical Sensing Devices with Simulation Software
doi https://doi.org/10.52842/conf.caadria.2013.365
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 365-373
summary Assimilating Interactive Technology into Architectural Design – A Quest for developing an ‘Architectural Drawing’ for Urban Interaction Design as a Communication Platform Through Combining Physical Sensing Devices with Simulation Software The research presented in this paper investigates the need for an equivalent of architectural drawings for urban interaction design in an architectural scale in order to communicate interaction design intentions to design participants and clients through using state of the art computer, gaming and sensor technologies. The paper discusses two projects (a) Blur Building, as a large scale interaction design project executed through an experienced team and (b) presents as student design project coordinated by the researchers as a reference project. Both projects in this paper are discussed and evaluated from an Urban Interaction Design point of view. This   paper   emphasizes   the   significance   for   establishing ‘drawing’ equivalents for urban interaction design, discussing representation of ideas in architectural design; followed by outlining existing methods of interactive design representation, such as storyboards to then introduce current advancements in gaming environments. The following paper introduces a framework for future research projects that will design, deploy and evaluate of prototypes as a communication platform combining physical sensing devices in combination with gaming engines to enable a digital / physical hybrid. This would allow designers and clients to test, evaluate and improve urban interactions in a design phase prior to completing the project. 
wos WOS:000351496100036
keywords Spatial design, Human-computing interfacing, Interactive architecture, Smart environments, Sensor technology 
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia20_574
id acadia20_574
authors Nguyen, John; Peters, Brady
year 2020
title Computational Fluid Dynamics in Building Design Practice
doi https://doi.org/10.52842/conf.acadia.2020.1.574
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 574-583.
summary This paper provides a state-of-the-art of computational fluid dynamics (CFD) in the building industry. Two methods were used to find this new knowledge: a series of interviews with leading architecture, engineering, and software professionals; and a series of tests in which CFD software was evaluated using comparable criteria. The paper reports findings in technology, workflows, projects, current unmet needs, and future directions. In buildings, airflow is fundamental for heating and cooling, as well as occupant comfort and productivity. Despite its importance, the design of airflow systems is outside the realm of much of architectural design practice; but with advances in digital tools, it is now possible for architects to integrate air flow into their building design workflows (Peters and Peters 2018). As Chen (2009) states, “In order to regulate the indoor air parameters, it is essential to have suitable tools to predict ventilation performance in buildings.” By enabling scientific data to be conveyed in a visual process that provides useful analytical information to designers (Hartog and Koutamanis 2000), computer performance simulations have opened up new territories for design “by introducing environments in which we can manipulate and observe” (Kaijima et al. 2013). Beyond comfort and productivity, in recent months it has emerged that air flow may also be a matter of life and death. With the current global pandemic of SARS-CoV-2, it is indoor environments where infections most often happen (Qian et al. 2020). To design architecture in a post-COVID-19 environment will require an in-depth understanding of how air flows through space.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

No more hits.

HOMELOGIN (you are user _anon_973498 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002