CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 11 of 11

_id acadia23_v3_77
id acadia23_v3_77
authors Zahiri, Nima
year 2023
title Heigh-active Wood: Elasticity, Anisotropicity, and Hygroscopicity in Timber High-Rises
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary The term ‘height-active’ coined by Heino Engel refers to “structure systems, of which the main task is to collect loads from horizontal planes . . . and to vertically transmit them to the base . . . or high-rises accordingly.” (Engel 2013, 14) The focus of this paper is on the characteristics of height-active wood structures due to their vertical extension and susceptibility to horizontal loading. We shall argue that “more innovation can be expected from the advanced understanding of material characteristics, which can be integrated and taken advantage of in the design process, rather than homogenized, approximated or ignored.” (Correa, Krieg and Meyboom 2019, 74) Conventional construction, insofar, has employed linear and planar wood elements in a hierarchical manner. There is an interest to take advantage of wood’s flexibility to innovate free-form high-rise wood structures. Digitized material application of wood has a wide range of technical and functional adaptation. This field notes essay highlights the importance of three main material characteristics of wood – elasticity, anisotropicity, hygroscopicity – for structural design typology of evolving high-rise endeavors.
series ACADIA
type field note
email
last changed 2024/04/17 13:59

_id acadia20_114p
id acadia20_114p
authors Zivkovic, Sasa; Havener, Brian; Battaglia, Christopher
year 2020
title Log Knot
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 114-119.
summary Log Knot, developed by the Robotic Construction Laboratory (RCL) at Cornell University, is a robotically fabricated architectural installation that establishes a method for variable compound timber curvature creation utilizing both regular and irregular roundwood geometries. Moreover, the project develops methods for minimal formwork assembly and moment force optimization of customized mortise and tenon joints. Following the logic of a figure-8 knot, the project consists of an infinite loop of roundwood, curving three-dimensionally along its length. There are a variety of techniques to generate single curvature in wood structures – such as steam bending (Wright et al., 2013) or glue lamination (Issa and Kmeid, 2005) – but only a few techniques to generate complex curvature from raw material within a single wooden structural element exist. To construct complex curvature, the research team developed a simple method that can easily be replicated. First, the log is compartmentalized, establishing a series of discrete parts. Second, the parts are reconfigured into a complex curvature “whole” by carefully manipulating the assembly angles and joints between the logs. Timber components reconfigured in such a manner can either follow planar curvature profiles or spatial compound curvature profiles. Based on knowledge gained from the initial joinery tests, the research team developed a custom tri-fold mortise and tenon joint, which is self-supportive during assembly and able to resist bending in multiple directions. Using the tri-fold mortise and tenon joint, a number of full-scale prototypes were created to test the structural capacity of the overall assembly. Various structural optimization protocols are deployed in the Log Knot project. While the global knot form is derived from spatial considerations – albeit within the structurally sound framework of a closed-loop knot structure – the project is structurally optimized at a local level, closely calibrating structural cross-sections, joinery details, and joint rotation in relation to prevailing load conditions.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id ecaade2014_009
id ecaade2014_009
authors Marie Davidova, Martin Šichman and Martin Gsandtner
year 2014
title Material Performance of Solid Wood:Paresite, The Environmental Summer Pavilion
doi https://doi.org/10.52842/conf.ecaade.2014.2.139
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 139-144
summary The Paresite - The Environmental Summer Pavilion designed for reSITE festival, is a möbius shaped structure, built from torsed pine wood planks in triangular grid with half cm thin pine wood triangular sheets that provide shadow and evaporate moisture in dry weather. The sheets, cut in a tangential section, interact with humidity by warping themselves, allowing air circulation for the evaporation in arid conditions. The design was accomplished in Grasshopper for Rhino in combination with Rhino and afterwards digitally fabricated. This interdisciplinary project involved students from the Architectural Institute in Prague (ARCHIP) and the students of the Faculty of Forestry and Wood Sciences at the Czech University of Life Sciences Prague (FLD CZU). The goal was to design and build a pavilion from a solid pine wood in order to analyse its material properties and reactions to the environment and to accommodate functions for reSITE festival. The design was prepared within half term studio course and completed in June 2013 on Karlovo Square in Prague where it hosted1600 visitors during festival weekend.
wos WOS:000361385100014
keywords Material performance; solid wood; wood - humidity interaction
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2013_036
id ecaade2013_036
authors Bernhard, Mathias
year 2013
title Frequency Analysis of Wood Textures
doi https://doi.org/10.52842/conf.ecaade.2013.1.597
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 597-603
summary “Frequency analysis of wood textures” presents the application of Fourier analysis to translate images of wood textures to the frequency domain. With this encoding, a lot more details can be captured by the same amount of data points than with other descriptions in the spatial domain. A small set of overlapping waves with different frequencies, magnitudes and phase angles allows to characterize the main features of the wood’s grain texture and to quantify and classify different samples. The sample’s color information is thereby enhanced with an array of direction vectors, describing the local orientation distribution.
wos WOS:000340635300062
keywords Wood; Fourier analysis; pattern recognition; information theory.
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia13_025
id acadia13_025
authors Cordero Maisonet, Sixto; Smith, Austin
year 2013
title Responsive Expansion
doi https://doi.org/10.52842/conf.acadia.2013.025
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 25-32
summary Although commonly considered problematic within the wider range of standardized isotropic construction materials, wood’s mechanical deficiencies are simultaneously an asset for the adventurous designer. These anisotropic and organic characteristics can be critically investigated, even exaggerated, with the possibility of productively yielding a complex and adaptive building material.Given wood’s fibrous make-up, as derived from its ecological function as an evaporative capillary system, wood as a material is predisposed to react to environmental and contextual fluctuations—moisture in particular. As a consequence of its cellular and chemical anatomy, wood—unlike other standard construction materials—will morphologically react to changes in moisture. This reactivity is derived from interactions such as rehydration and swelling at the cellular level which accumulate to induce formal transformations at the macro level. This responsiveness, when coupled with the affordances of industrial standardization, reframes wood within architecture as a reactive material capable of consistent transformation well-suited to parametric definition within computational modeling.
keywords Complex Systems: complex, adaptive, expansion, wood, material investigation, emergent and self-organizing systems
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:56

_id acadia13_033
id acadia13_033
authors Correa, David; David Krieg, Oliver; Menges, Achim; Reichert, Steffen; Rinderspacher, Katja
year 2013
title HygroSkin: A prototype project for the development of a constructional and climate responsive architectural system based on the elastic and hygroscopic properties of wood
doi https://doi.org/10.52842/conf.acadia.2013.033
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 33-42
summary This paper focuses on the implementation of a computational design and robotic fabrication method that integrates the elastic and hygroscopic behavior of wood as active drivers in the design process, using the material’s differentiated characteristics as its main capacity. The project builds on previous work by the authors, furthering their research on the formal and performative transfer of such behaviors into informed architectural systems. Wood’s fibrous structure, relatively low stiffness and high structural capacity are instrumentalized into self-forming mechanisms through conical elastic deformation, while the same organic makeup and corresponding hygroscopic properties have also been programmed, formally articulated and integrated into a climate responsive architectural system. This research will be presented alongside a full-scale architectural project (Figure 1, Figure 2).
keywords computational design; robotic fabrication; wood construction; elastic bending; hygroscopic actuation
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:56

_id acadia13_253
id acadia13_253
authors Krieg, Oliver David; Menges, Achim
year 2013
title HygroSkin: A climate-responsive prototype project based on the elastic and hygroscopic properties of wood
doi https://doi.org/10.52842/conf.acadia.2013.023
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 23-260
summary The paper presents current research into architectural potentials of robotic fabrication in wood construction based on elastically bent timber sheets with robotically fabricated finger joints. Current developments in computational design and digital fabrication propose an integrative design approach contrary to classical, hierarchical architectural design processes. Architecture related fields, such as material science, engineering and fabrication have been seen as separate disciplines in a linear design process since the Industrialization era. However, current research in computational design reveals the potentials of their integration and interconnection for the development of material-oriented and performance-based architectural design.In the first part, the paper discusses the potentials of robotic fabrication based on its extended design space. The robot’s high degree of kinematic freedom opens up the possibility of developing complex and highly performative mono-material connections for wood plate structures. In the second part, the integration of material behavior is presented. Through the development of robotically fabricated, curved finger joints, that interlock elastically bent plywood sheets, a bending-active construction system is being developed (Figure 1,Figure 2). In the third part, the system’s architectural application and related constructional performance is discussed.
keywords Robotic Fabrication; Finger Joints; Material Computation; Wood Construction; Computational Design
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:51

_id acadia13_361
id acadia13_361
authors Scott, Jane
year 2013
title Hierarchy in Knitted Forms: Environmentally Responsive Textiles for Architecture
doi https://doi.org/10.52842/conf.acadia.2013.361
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 361-366
summary This paper describes the theoretical framework behind the development of a series of knitted prototypes inspired by the biomimetic model of the hygromorph. Three moisture responsive pieces are described which use the inherent properties of wood veneer as an actuator incorporated into complex knitted forms constructed from linen and wool. These textile/veneer assemblies are environmentally responsive, transformable and constructed from natural, sustainable materials. This represents a new interpretation of shape changing textiles for architecture. The work illustrates the potential of designing hierarchically organised structures where functionalities are incorporated at different levels of material fabrication. The paper argues that the implementation of textile materials and processes offers the potential for the development of environmentally responsive architecture through the development of shape changing textile/veneer assemblies.
keywords complex systems; knit assemblies; biomimicry; responsive systems; hierarchical structures; natural materials
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:56

_id ecaade2013_247
id ecaade2013_247
authors Kanasaki, Kenji and Tanaka, Hiroya
year 2013
title Traditional Wood Joint System in Digital Fabrication
doi https://doi.org/10.52842/conf.ecaade.2013.1.711
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 711-717
summary Tugite and Shiguchi are traditional architectural techniques of Japan, which connect materials without the use of nails or adhesives. Tugite is a technique to connect materials to augment the lack of length of available materials. Shiguchi is a technique to connect materials at an angle. With a firm basis in this tradition and the craftsmanship involved, we are aiming to apply these traditional joining techniques in digital fabrication. We expect that the application of Tugite and Shiguchi will refine digital fabrication methods and that the value of Tugite and Shiguchi will be rediscovered in the era of digital fabrication. This research was conducted in three steps. The first step was to research all patterns of Tugite and Shiguchi to define its foundation and typology. The second step was to modify Tugite and Shiguchi shapes to allow application in a digital fabrication environment, and also to add functionality. The third step was to create Lego-sized blocks with Tugite and Shiguchi to verify their applicability outside of the field of architecture.
wos WOS:000340635300074
keywords Traditional wood joint system; digital fabrication; joint without metal.
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2013_041
id ecaade2013_041
authors Schindler, Christoph; Tamke, Martin; Tabatabai, Ali and Bereuter, Martin
year 2013
title Serial Branches
doi https://doi.org/10.52842/conf.ecaade.2013.1.605
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 605-613
summary The question whether contemporary information technology with its potential for individual fabrication allows for a new approach to the uniqueness that is offered to us by nature was discussed within a 8-day workshop. 19 students of KADK explored the performative potential of naturally angled and forked wood – a desired material until 19th century, but swept away by industrialization and its standardization of processes and materials.
wos WOS:000340635300063
keywords Wood construction; material performance; shape recognition; furniture; digital fabrication and construction.
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia13_441
id acadia13_441
authors Scorcia, Bennett Vito; Lin, Susin
year 2013
title Involute: A method for the integration of multi-axis fabrication with a helical system of variable wood bending
doi https://doi.org/10.52842/conf.acadia.2013.441
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 441-442
summary “Involute” is an ongoing research trajectory leveraging internal material capacities of wood. It is a system of variable components without the need for complex, custom molds, yielding a 3D structural matrix of natural timber.
keywords robotic fabrication; file to factory; material capacities; computational design;
series ACADIA
type Research Poster
email
last changed 2022/06/07 07:56

No more hits.

HOMELOGIN (you are user _anon_668016 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002