CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 584

_id ecaade2013_249
id ecaade2013_249
authors Araya, Sergio; Zolotovsky, Ekaterina; Veliz, Felipe; Song, Juha; Reichert, Steffen; Boyce, Mary and Ortiz, Christine
year 2013
title Bioinformed Performative Composite Structures
doi https://doi.org/10.52842/conf.ecaade.2013.1.575
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 575-584
summary This ongoing investigation aims to learn from nature novel material organizations and structural systems in order to develop innovative architectural system. We developed a multidisciplinary approach, using scientific analysis and design research and prototyping. We focus on the study of a “living fossil” fish, whose armor system is so efficient it has remained almost unchanged for millions of years. We investigate its morphological characteristics, its structural properties, the assembly mechanisms and the underlying material properties in order to derive new principles to design new enhanced structural systems. We use micro computerized tomography and scanning electron microscopy to observe microstructures, parametric design to reconstruct the data into digital models and then several 3D printing technologies to prototype systems with high flexibility and adaptive capabilities, proposing new gradual material interfaces and transitions to embed performative capabilities and multifunctional potentials.
wos WOS:000340635300060
keywords Bioinformed; multi-material; composite; parametrics; performative design.
series eCAADe
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2013_023
id ecaade2013_023
authors Biloria, Nimish and Chang, Jia-Rey
year 2013
title Hyper-Morphology
doi https://doi.org/10.52842/conf.ecaade.2013.1.529
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 529-537
summary Hyper-Morphology is an on-going research outlining a bottom-up evolutionary design process based on autonomous cellular building components. The research interfaces critical operational traits of the natural world (Evolutionary Development Biology, Embryology and Cellular Differentiation) with Evolutionary Computational techniques driven design methodologies. In the Hyper-Morphology research, genetic sequences are considered as sets of locally coded relational associations between multiple factors such as the amount of components, material based constraints, and geometric adaptation/degrees of freedom based adaptation abilities etc, which are embedded autonomously within each HyperCell component. Collective intelligence driven decision-making processes are intrinsic to the Hyper-Morphology logic for intelligently operating with autonomous componential systems (akin to swarm systems). This subsequently results in user and activity centric global morphology generation in real-time. Practically, the Hyper-Morphology research focuses on a 24/7 economy loop wherein real-time adaptive spatial usage interfaces with contemporary culture of flexible living within spatial constraints in a rapidly urbanizing world.
wos WOS:000340635300055
keywords Evo-devo; cellular differentiation; self-organization; evolutionary computation; adaptive architecture.
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2013_217
id caadria2013_217
authors Kolodziej, Przemyslaw and Jozef Rak
year 2013
title Responsive Building Envelope as a Material System of Autonomous Agents
doi https://doi.org/10.52842/conf.caadria.2013.945
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 945-954
summary The paper represents the concept of an abstract model of the Responsive Building Envelope (RBE), founded on pre-programmed material’s behaviour. The assumed model of the responsive building envelope is based on the idea of material autonomous agents that control default parameters of building’s energies like ventilation, humidity, light volume, radiation, temperature, etc., by materials’ geometry deformation. The agent is a material system, built with the Electroactive Polymers (EAPs) actuators which react to the environment’s fluctuations continuously and independently from other agents. The model of a responsive envelope is a cluster of self-reliant units which control the primary characteristic of the building environment in an analogous way to the homeostasis system of a living organism. By decentralization the system becomes more stable and reliable. The CFD simulation was created from the schematic model of the RBE’s performance to test the presented design concepts.  
wos WOS:000351496100097
keywords Responsive system, Autonomous agent, Electroactive Polymers (EAPs), Homeostatic cycle, CFD simulation 
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2013_072
id ecaade2013_072
authors Kos, Jose Ripper; Angeloni, Guilherme and Brito, Thiago Mello
year 2013
title Connecting Dwellers to Building Performance and Weather Data through Sustainable Automation Systems
doi https://doi.org/10.52842/conf.ecaade.2013.1.157
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 157-165
summary The paper presents a prototype for a Home Automation and Information Systems (HAIS) applied to an existing dwelling, the Florianopolis House, with the potential to address building performance and user behavior towards a more sustainable way of living. Home information and automation systems based on a great variety of sensors, associated with local weather stations and climate forecast databases can significantly impact the construction of more sustainable habits in home dwellers. Monitoring the weather variations, building’s performance and the impact each resident’s activity in energy and water consumption is a powerful tool for the dwellers’ awareness and can provide a significant impact on residents’ reconnection with the natural cycles. The development of the graphic interface is highlighted as a critical issue for the communication of building performance, weather data and actuators control.
wos WOS:000340635300015
keywords Home automation system; user behavior; weather data; graphic interface; building performance.
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia13_137
id acadia13_137
authors Kretzer, Manuel; In, Jessica; Letkemann, Joel; Jaskiewicz, Tomasz
year 2013
title Resinance: A (Smart) Material Ecology
doi https://doi.org/10.52842/conf.acadia.2013.137
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 137-146
summary What if we had materials that weren’t solid and static like traditional building materials are? What if these materials could dynamically change and adapt to varying environmental situations and stimulations and evolve and learn over time? What if they were autonomous, self-sufficient and independent but could communicate with each other and exchange information? What would this “living matter” mean for architecture and the way we perceive the built environment? This paper looks briefly at current concepts and investigations in regards to programmable matter that occupy various areas of architectural research. It then goes into detail in describing the most recent smart material installation “Resinance” that was supervised by Manuel Kretzer and Benjamin Dillenburger and realized by the 2012/13 Master of Advanced Studies class as part of the materiability research at the Chair for CAAD, ETH Zürich in March 2013. The highly speculative sculpture links approaches in generative design, digital fabrication, physical/ubiquitous computing, distributed networks, swarm behavior and agent-based communication with bioinspiration and organic simulation in a responsive entity that reacts to user input and adapts its behavior over time.
keywords Smart Materials; Distributed Networks; Digital Fabrication; Physical Computing; Responsive Environment
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:51

_id caadria2013_211
id caadria2013_211
authors Marqueto, Priscilla and Marcelo Tramontano
year 2013
title Among Ways of Living – Looking at Diversity from Cultural Actions and Digital Media
doi https://doi.org/10.52842/conf.caadria.2013.281
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 281-290
summary This paper presents reflections stemmed from a research that seeks to cast a gaze toward the diversity of ways of living in communities, starting from the interaction in communicational processes structured by digital means. This paper introduces findings on the possibilities of similarities between people of different groups in a community in hybrid instances, starting from cultural activities. Further explorations about the potential and qualifications of the use of digital media for this purpose will also be presented. The trials that comprise the object of reflection in this article took place and were only achievable for being part of a larger public policy project, funded by an important Brazilian research funding agency. The project has been in development since March 2010 by the research group of a recognized leading university and involves post-doctoral, doctoral and master researchers. Additionally, the project has partnership with various third sector institutions such as NGOs and collectives, as well as music bands and European universities. 
wos WOS:000351496100028
keywords Diversity, Ways of living, Digital media, Communities, Communication 
series CAADRIA
email
last changed 2022/06/07 07:59

_id cf2013_286
id cf2013_286
authors Pang, Lei; Xiaodong Song, and Chengyu Sun
year 2013
title Computer Aided Simulation for Compact Residential Regulatory Plan
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 286-294.
summary Residential land development requires compact and intelligent growth in order to conserve land, especially in countries such as China with a large population but little usable land for built environment. This should not be done at the expense of public green space. Living density is an important issue that cannot be avoided in the urbanization process. This research uses Spatial Form Compact as the goal of trying to support the residential regulatory plan. A prototype site has been chosen to optimize the layout. Suppose the type of residential building had been decided and FAR is given as a premise. This method allows the arrangement of residential buildings to be compact and leads to more available space for concentrated green area, for example parks or other facilities. The BL-based method of genetic algorithm and VB program is used for the optimization and calculation of the prototype. The arrangement of residential buildings which is done by computer in this period is only used to explore the relationship between FAR and reasonable building layout. In order to guide the real construction of the building, the site plan should be done further elaborately under the guidance of regulatory plan by the developer and urban planner.
keywords Compact, Residential area, FAR, Concentrated Green Space
series CAAD Futures
email
last changed 2014/03/24 07:08

_id caadria2016_497
id caadria2016_497
authors Ryu, Jungrim; Jaehong Jun, Seunghyeon Lee and Seungyeon Choo
year 2016
title A Study on Development of the IFC-based Indoor Spatial Information for Data Visualisation
doi https://doi.org/10.52842/conf.caadria.2016.497
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 497-506
summary MOLIT authorised Indoor Spatial Information as Basic spa- tial information in 2013. It became a legal evidence for constructing and managing Indoor Spatial Information. Although it has a little ad- vantage to utilise as service level that Indoor Spatial Information by laser scan or measurement, it has a lot of problems such as consuming many resources, requiring additional progresses for inputting Object Information. In conclusion, it is inefficient to utilise for the mainte- nance and domestic AEC/FM field. The purposes of this study is to output Indoor Spatial Information by operating IFC model which based on open BIM and to improve availability of Indoor Spatial In- formation with data visualisation. The open-sources of IFC Exporter, an inner program of Revit, is used to output Indoor Spatial Infor- mation. Directs 3D Library is also operated to visualise Indoor Spatial Information. It is possible to inter-operate between XML format and the objects of Indoor Spatial Information. It can be utilised in various field as well. For example COBie linkage in facility management, construction of geo-database using air-photogrammetry of UA V , the simulation of large-scale military operations and the simulation of large-scale evacuation. The method that is purposed in this study has outstanding advantages such as conformance with national spatial in- formation policy, high level of interoperability as indoor spatial in- formation objects based on IFC, convenience of editing information, light level of data and simplifying progress of producing information.
keywords Indoor spatial information, data visualisation, open BIM, IFC
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia23_v1_110
id acadia23_v1_110
authors Scelsa, Jonathan; Sheward, Gregory; Birkeland, Jennifer; Liu, Jemma; Lin, Yun Jou
year 2023
title Centripetal Clay Printing : Six-Axis Prints for Habitat Column
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 110-115.
summary Gottfried Semper, in his 1851 text The Four Elements of Architecture, famously classifies architecture into four elemental parts: the hearth, the roof, the enclosure, and the mound, describing the role of the last three to be the “defenders of the hearth’s flame against the three hostile elements of nature (Semper 2011).” Modernity has witnessed the role of enclosure evolve to that of a sealed envelope, or one which meticulously separates the ‘natural environment,’ from the internally regulated environment as part of modern comfort. The post-modern advent of the rain-screen has further separated the layer of exteriorized cultural expression from the structuring envelope, removing the ornamental aspect of Semper’s enclosure, from the enclosing layer. This habit of casting the natural processes out of our building envelopes has resulted in the rapid depletion of space for biodiversity within our cities. Joyce Hwang in her essay “Living Among Pests,” has suggested that the needed reconnection of biodiversity with our urban buildings will force a re-examination of “facade articulation to take on more responsibilities. Ornament will become performative” (Hwang 2013).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ecaade2013_151
id ecaade2013_151
authors Weigele, Jakob; Schloz, Manuel; Schwinn, Tobias; Reichert, Steffen; LaMagna, Riccardo; Waimer, Frédéric; Knippers, Jan and Menges, Achim
year 2013
title Fibrous Morphologies
doi https://doi.org/10.52842/conf.ecaade.2013.1.549
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 549-558
summary Living organisms have evolved effective structural solutions in response to the inherent constraints of their respective environments through a process of morphological adaptation. Given the fact that the majority of natural load bearing materials are fibrous composites, the authors suggest the analysis of appropriate biological role models as a promising strategy for informing the application of fibre reinforced polymers (FRP) in architecture. In this paper the authors present a biomimetic design methodology for seamless large-scale FRP structures involving the analysis of the exoskeletons of Arthropoda with regards to structural performance criteria, the development of a custom robotic filament winding process, and the translation of biological and fabricational principles into the architectural domain through physical prototyping and the development of custom digital tools. The resulting performative material system is evaluated in a full-scale research pavilion.
wos WOS:000340635300057
keywords Biomimetics; computational design; fibre-reinforced composites; prototyping; robotic fabrication.
series eCAADe
email
last changed 2022/06/07 07:58

_id sigradi2013_28
id sigradi2013_28
authors González Böhme, Luis Felipe; Cristián Calvo Barentin; Mauro Chiarella
year 2013
title Métodos Computacionales en Arquitectura: La Formación de Arquitectos con Competencia en CyT [Computational Methods in Architecture: The Education of Architects with Competence in S&T]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 524 - 528
summary Tomorrow’s architects will need to deal more confidently and skillfully with scientific and technological innovations in their field, e.g., parametric design, building physics, construction robotics, home automation, etc. Architecture students today must understand how things work and absorb some of the basic principles and techniques involved in their design, construction or operation. Now students need to build back some of that analytical, logical, critical, and analogical thinking that may have atrophied due to a traditional architectural education. Playing with toy construction kits for building automatic control and mobile robot models, does the job without losing the architect´s approach and attitude.
keywords Architectural education; Construction kits; Educational computing; Active learning; Learning styles
series SIGRADI
email
last changed 2016/03/10 09:52

_id acadia23_v2_340
id acadia23_v2_340
authors Huang, Lee-Su; Spaw, Gregory
year 2023
title Augmented Reality Assisted Robotic: Tube Bending
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 2: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-0-3]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 340-349.
summary The intent of this research is to study potential improvements and optimizations in the context of robotic fabrication paired with Augmented Reality (AR), leveraging the technology in the fabrication of the individual part, as well as guiding the larger assembly process. AR applications within the Architecture, Engineering, and Construction (AEC) industry have seen constant research and development as designers, fabricators, and contractors seek methods to reduce errors, minimize waste, and optimize efficiency to lower costs (Chi, Kang, and Wang 2013). Recent advancements have made the technology very accessible and feasible for use in the field, as demonstrated by seminal projects such as the Steampunk Pavilion in Tallinn, Estonia (Jahn, Newnham, and Berg 2022). These types of projects typically improve manual craft processes. They often provide projective guidelines, and make possible complex geometries that would otherwise be painstakingly slow to complete and require decades of artisanal experience (Jahn et al. 2019). Building upon a previously developed robotic tube bending workflow, our research implements a custom AR interface to streamline the bending process for multiple, large, complex parts with many bends, providing a pre-visualization of the expected fabrication process for safety and part-verification purposes. We demonstrate the utility of this AR overlay in the part fabrication setting and in an inadvertent, human-robot, collaborative process when parts push the fabrication method past its limits. The AR technology is also used to facilitate the assembly process of a spatial installation exploring a unique aesthetic with subtle bends, loops, knots, bundles, and weaves utilizing a rigid tube material.
series ACADIA
type paper
email
last changed 2024/12/20 09:12

_id acadia13_253
id acadia13_253
authors Krieg, Oliver David; Menges, Achim
year 2013
title HygroSkin: A climate-responsive prototype project based on the elastic and hygroscopic properties of wood
doi https://doi.org/10.52842/conf.acadia.2013.023
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 23-260
summary The paper presents current research into architectural potentials of robotic fabrication in wood construction based on elastically bent timber sheets with robotically fabricated finger joints. Current developments in computational design and digital fabrication propose an integrative design approach contrary to classical, hierarchical architectural design processes. Architecture related fields, such as material science, engineering and fabrication have been seen as separate disciplines in a linear design process since the Industrialization era. However, current research in computational design reveals the potentials of their integration and interconnection for the development of material-oriented and performance-based architectural design.In the first part, the paper discusses the potentials of robotic fabrication based on its extended design space. The robot’s high degree of kinematic freedom opens up the possibility of developing complex and highly performative mono-material connections for wood plate structures. In the second part, the integration of material behavior is presented. Through the development of robotically fabricated, curved finger joints, that interlock elastically bent plywood sheets, a bending-active construction system is being developed (Figure 1,Figure 2). In the third part, the system’s architectural application and related constructional performance is discussed.
keywords Robotic Fabrication; Finger Joints; Material Computation; Wood Construction; Computational Design
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:51

_id caadria2013_056
id caadria2013_056
authors Lim, Jason; Fabio Gramazio and Matthias Kohler
year 2013
title A Software Environment for Designing Through Robotic Fabrication – Developing a Graphical Programming Toolkit for the Digital Design and Scaled Robotic Fabrication of High Rises
doi https://doi.org/10.52842/conf.caadria.2013.045
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 45-54
summary The term “robot” was born from a play written almost a century ago. Today robotic fabrication has become an emerging topic in architectural research. As architects work with these technologies, they are challenged with writing a different kind of play: here robots are the actors and the physical materialization of a design is their performance. However current Computer Aided Design (CAD) packages do not provide native robot programming functionalities which architects require to plan and orchestrate these fabrication process. To address this limitation, a Python library for robot programming is written. It is referenced by a toolkit of custom components developed to extend a graphical programming environment commonly used for architectural design. The empirical development of these software tools takes place in the context of a design studio investigating the subject of the high rise. The tools are tested in a workflow that involves the digital design and scaled robotic fabrication of high-rise housing. This paper discusses the considerations underlying the toolkit’s design, the outcomes of its use in the studio, and its impact on the creative design process. 
wos WOS:000351496100005
keywords Robotic fabrication, Architectural model, Software tools, High rise design, Creative computational design 
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia13_147
id acadia13_147
authors Miller, Ian; Rossbach, Matt
year 2013
title Robot Cowboy: Reviving Tundra Grassland through Robotic Herding
doi https://doi.org/10.52842/conf.acadia.2013.147
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 147-150
summary The primary issue in northeastern Siberia is the continuing recession of permafrost due to the degraded condition of the grassland ecology, which will amplify global warming. The release of ancient gas stored in the permafrost will accelerate the greenhouse effect and catastrophically affect the health of the planet. The restoration of Pleistocene-like conditions can actively combat this potential danger through gas sequestration in the roots of grasses and a stable layer of permafrost. Once reintroduced to the region, large herd animals will play an integral role in maintaining their own ecosystem. The use of digital sensing and robotics surpasses human capability to create a relationship between these large herding herbivores and the grassland tundra landscape in order to help stabilize and reestablish the Siberian permafrost. Robotic herding rovers tirelessly traverse the vast territory of Siberia equipped with instruments and satellite communication to continuously read and adjust to ground conditions, fostering an emergent ecology. These cooperative technologies aid in the reconstruction of a grassland ecosystem with the ability to prevent permafrost from thawing and potentially mitigate negative consequences of global warming.
keywords next generation technology, synthetic ecology
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:58

_id caadria2013_207
id caadria2013_207
authors Narahara, Taro
year 2013
title Adaptive Growth Using Robotic Fabrication
doi https://doi.org/10.52842/conf.caadria.2013.065
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 65-74
summary This paper studies computational methods for adaptive growth seen in human design processes, such as development of spontaneous settlements, by highlighting the contrast with conventional plan execution approaches. The paper speculates as to the possibilities of open frameworks for design using computational methods through a relatively simple yet explicit example in the context of robotic fabrication. The proposed experiment uses an industrial robot arm to pro-duce structures by stacking unit bricks without hard-coded instructions (“blueprints”) from the outset. The paper further speculates about how such implementations can be applied to architectural design.  
wos WOS:000351496100007
keywords Generative design, Robotic fabrication, Adaptable design 
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2013r_019
id ecaade2013r_019
authors Portugal, Vasco
year 2013
title Knowledge-based methodology for architectural robotics fabrication. Real time impact assessment through a process flow analysis software
source FUTURE TRADITIONS [1st eCAADe Regional International Workshop Proceedings / ISBN 978-989-8527-03-5], University of Porto, Faculty of Architecture (Portugal), 4-5 April 2013, pp. 229-236
summary The main goal of the project is to generate a framework for a knowledge-based-methodology (KBM) within a parametric software. This is accomplished through a combination of the design software and robot simulation with real-time assessment based on a process-flow-diagram (PFD) structure that compiles the main environmental parameters of the manufacture process. The intention is to create a methodology to directly report the impact of the manufacture of a specific design, from the materials embodied energy to the energy consumption of each step. This framework provides valuable information which may monitor the developer towards alterations to increase the CAD/CAM performance. In the context of this paper, this methodology was applied in the conceptual design and manufacture of a housing structural insulated panel prototype using parametric design software and robotic equipment. The purpose is to generate a quasi-automated design process linked with real-time analysis and assessment of the fabrication process, offering real time environmental and cost analysis of a panelized structure house manufacture logic. The suggested methodology outputs information to compare and optimize the manufacture outline, and supports the screening and assortment of appropriate tool paths or combination of fabrication tools based on environmental/cost data, user-specified requirements and context characteristics.
keywords CAD/CAM; Parametric design; Robotics in Architecture; Process flow diagrams
email
last changed 2013/10/07 19:08

_id acadia13_269
id acadia13_269
authors Swackhamer, Marc; Satterfield, Blair
year 2013
title Breaking the Mold: Variable Vacuum Forming
doi https://doi.org/10.52842/conf.acadia.2013.269
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 269-278
summary Our research explores the growth of surface complexity through careful attention to program and performance criteria. As this complexity emerges, however, we are repeatedly confronted with the realization that its cost compromises any of its performance gains. While the aggregation of repeatable units with variation from one unit to the next is achievable at a low cost through subtractive fabrication technologies (CNC milling, laser cutting, waterjet cutting), it is more difficult to achieve through casting or forming technologies (concrete casting, injection molding, vacuum forming). This is because formwork is not adaptable. Once you produce a mold, typically at a high cost, that mold makes one component only. If you want variation, a new mold must be produced for each new component. With the projects Hexwall and VarVac Wall we put forward a simple question: can an intelligent, adaptable vacuum-forming mold be developed that allows for difference from one component to another without the necessity for multiple molds? The research positions our design efforts strategically at the front end of the fabrication process. Our goal is to develop a malleable tool that allows for endless variation in a fabrication process where variation is typically impractical.
keywords tools and interfaces; vacuum forming, variable, plastic, fabrication, surface, custom tools
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:56

_id ecaade2013_128
id ecaade2013_128
authors Symeonidou, Ioanna; Hirschberg, Urs and Kaftan, Martin
year 2013
title Designing the Negative
doi https://doi.org/10.52842/conf.ecaade.2013.1.683
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 683-691
summary Designing the Negative was the title of a Master Studio that took place at the Institute of Architecture and Media of Graz University of Technology during the summer semester of 2012. Students designed and fabricated prototypes of customized concrete formwork as part of their studio assignment. The studio theme forced students to think about digital fabrication with parametric tools in a hands-on fashion. Using robotic technology and hot-wire cutting, students worked with the robot’s constraints (size of the robot’s arm, robot’s axis and tool’s restrictions) to design complex curved elements that could serve as formwork (the negative) for cast concrete elements (the positive). The students were asked to design a production strategy for their cast concrete elements as well as the application of said elements in an architectural scheme. The student projects confirmed the value of a pedagogy that takes on research-relevant questions in an interdisciplinary studio setting and engages students in a process that is best described as digital crafting: it simultaneously addressed the conceptual and technical as well as the material and tactile aspects of digital fabrication and design.
wos WOS:000340635300071
keywords Digital fabrication; customization; concrete; hot-wire cutting; parametric design.
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2023_317
id ecaade2023_317
authors Zamani, Alireza, Mohseni, Alale and Bertug Çapunaman, Özgüç
year 2023
title Reconfigurable Formwork System for Vision-Informed Conformal Robotic 3D Printing
doi https://doi.org/10.52842/conf.ecaade.2023.1.387
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 387–396
summary Robotic additive manufacturing has garnered significant research and development interest due to its transformative potential in architecture, engineering, and construction as a cost-effective, material-efficient, and energy-saving fabrication method. However, despite its potential, conventional approaches heavily depend on meticulously optimized work environments, as robotic arms possess limited information regarding their immediate surroundings (Bechthold, 2010; Bechthold & King, 2013). Furthermore, such approaches are often restricted to planar build surfaces and slicing algorithms due to computational and physical practicality, which consequently limits the feasibility of robotic solutions in scenarios involving complex geometries and materials. Building on previous work (Çapunaman et al., 2022), this research investigates conformal 3D printing of clay using a 6 degrees-of-freedom robot arm and a vision-based sensing framework on parametrically reconfigurable tensile hyperbolic paraboloid (hypar) formwork. In this paper, we present the implementation details of the formwork system, share findings from preliminary testing of the proposed workflow, and demonstrate application feasibility through a design exercise that aims to fabricate unique components for a poly-hypar surface structure. The formwork system also offers parametric control over generating complex, non-planar tensile surfaces to be printed on. Within the scope of this workflow, the vision-based sensing framework is employed to generate a digital twin informing iterative tuning of the formwork geometry and conformal toolpath planning on scanned geometries. Additionally, we utilized the augmented fabrication framework to observe and analyze deformations in the printed clay body that occurs during air drying. The proposed workflow, in conjunction with the vision-based sensing framework and the reconfigurable formwork, aims to minimize time and material waste in custom formwork fabrication and printing support materials for complex geometric panels and shell structures.
keywords Robotic Fabrication, Conformal 3D Printing, Additive Manufacturing, Computer-Vision, Reconfigurable Formwork
series eCAADe
email
last changed 2023/12/10 10:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_920489 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002