CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 604

_id sigradi2013_243
id sigradi2013_243
authors Andia, Alfredo
year 2013
title Automated Architecture: Why CAD, Parametrics and Fabrication are Really old News
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 83 - 87
summary Automation is transforming a significant number of industries today. This paper discusses how the Design and Construction industry is also entering into a new era of automation. In the paper I observe that designers are automating by using parametric tools (BIM, scripting, etc.) while contractors are moving into pre-fabrication and modularization. Both conceptualizations are incomplete. The paper presents how we are in the first steps of creating learning algorithms that develop specific intelligence in design synthesis and how the design field will became even more sophisticated as a second generation of multi-material 3D printing techniques produce new materials.
keywords Automation; Architectural design; Artificial intelligence; Learning algorithms; Multi-material printers
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2013_249
id ecaade2013_249
authors Araya, Sergio; Zolotovsky, Ekaterina; Veliz, Felipe; Song, Juha; Reichert, Steffen; Boyce, Mary and Ortiz, Christine
year 2013
title Bioinformed Performative Composite Structures
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 575-584
doi https://doi.org/10.52842/conf.ecaade.2013.1.575
wos WOS:000340635300060
summary This ongoing investigation aims to learn from nature novel material organizations and structural systems in order to develop innovative architectural system. We developed a multidisciplinary approach, using scientific analysis and design research and prototyping. We focus on the study of a “living fossil” fish, whose armor system is so efficient it has remained almost unchanged for millions of years. We investigate its morphological characteristics, its structural properties, the assembly mechanisms and the underlying material properties in order to derive new principles to design new enhanced structural systems. We use micro computerized tomography and scanning electron microscopy to observe microstructures, parametric design to reconstruct the data into digital models and then several 3D printing technologies to prototype systems with high flexibility and adaptive capabilities, proposing new gradual material interfaces and transitions to embed performative capabilities and multifunctional potentials.
keywords Bioinformed; multi-material; composite; parametrics; performative design.
series eCAADe
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2013_015
id caadria2013_015
authors Dritsas, Stylianos and Kang Shua Yeo
year 2013
title Undrawable Architecture – Digital Workflows for the Conservation of Heritage Buildings and the  Discovery of Digital Tectonic
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 833-842
doi https://doi.org/10.52842/conf.caadria.2013.833
wos WOS:000351496100086
summary This paper presents a datacentric perspective to historical building conservation using digital media. In particular we explore a workflow based on large volumes digital data acquired via 3D scanning technology, virtual restoration using 3D modelling and physical artefact reconstruction using 3D printing technology. We offer an alternative perspective in contrast to the prevalent approach of reverse engineering or geometric rationalization via parametric design technology; highlight the research and design opportunities as well as the challenges of the approach. 
keywords Digital conservation, 3D scanning, Rapid prototyping 
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2013_006
id ecaade2013_006
authors Junk, Stefan and Côté, Samantha
year 2013
title New Methods for the Rapid Prototyping of Architectural Models
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 397-403
doi https://doi.org/10.52842/conf.ecaade.2013.2.397
wos WOS:000340643600040
summary Various Rapid Prototyping methods have been available for the production of physical architectural models for a few years. This paper highlights in particular the advantages of 3D printing for the production of detailed architectural models. In addition, the current challenges for the creation and transfer of data are explained. Furthermore, new methods are being developed in order to improve both the technical and economic boundary conditions for the application of 3DP. This makes the production of models with very detailed interior rooms possible. The internal details are made visible by dividing the complex overall model into individual models connected by means of an innovative plug-in system. Finally, two case studies are shown in which the developed methods are applied in order to implement detailed architectural models. Additional information about manufacturing time and costs of the architectural models in the two case studies is given.
keywords Architectural model, CAAD, Rapid Prototyping, 3D printing, architectural detail.
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2013_251
id ecaade2013_251
authors Koltsova, Anastasia; Tunçer, Bige and Schmitt, Gerhard
year 2013
title Visibility Analysis for 3D Urban Environments
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 375-383
doi https://doi.org/10.52842/conf.ecaade.2013.2.375
wos WOS:000340643600038
summary This paper presents a visibility analysis tool for 3D urban environments and its possible applications for urban design practice. Literature exists for performing visibility analysis using various methods and techniques, however, tools that result from such research are generally not suitable for use by designers in practice. Our visibility analysis tool resides in Grasshopper, Rhino. It uses a ray casting method to analyze the visibility of façade surfaces from a given vantage point, and of a given urban setting, in particular, buildings and roads. The latter analysis provides information on the best visible buildings/building facades from segments of roads. We established a collaboration with a practicing architect to work on a design competition together, using this tool. The paper elaborates on the visibility analysis methods, presents the tool in detail, discusses the results of our joint work on the competition, and briefly reflects on the evaluation of the use of the tool by design practitioners.
keywords Visibility analysis; pedestrian design; urban space quality; design practice.
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2013_161
id caadria2013_161
authors Manferdini, Elena and Anna Maria Manferdini
year 2013
title Tempera
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 883-892
doi https://doi.org/10.52842/conf.caadria.2013.883
wos WOS:000351496100091
summary This paper explores the characteristics of painting developed during the Nineteenth century, and specifically updates the use of matter and brushing techniques invented by a group of painters called “Impressionists”. In that period, impressionist artists began to brush “tempera” on a canvas as a malleable matter able to emphasize an accurate depiction of light in its changing qualities.  Thick brush strokes left on the painted surface revealed the master’ gesture and completely changed the way to represent reality. Stimulated by the recent advancements in digital technologies, this paper looks for methodologies able to transfer impressionistic painterly innovation into a contemporary digital 3D environment and investigates how paint behaves when morphing from a photorealistic depiction of Nature to a disfigured one. In particular, reality-based 3D information, first frozen by a laser scanner into a digital geometry, slowly melts into liquid paint on a colour palette. While colours mix, the geometrical matter that constitutes the photorealistic scanned reality and its details disappear into primitive paint clog that are mixed and brushed into new colours and shapes able to create novel atmospheric and chromatic effects.  
keywords Tempera, Laser scanner, 3D painting effects, Design creativity 
series CAADRIA
email
last changed 2022/06/07 07:59

_id cf2013_149
id cf2013_149
authors McMeel, Dermott and Robert Amor
year 2013
title Fabricate It, Paint It – And Don’t Wait up: Separating Fact from Fiction in Digitally Sponsored Fabrication
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 149-158.
summary This paper offers perspectives on emerging trends in materiality and digital fabrication. It explores effects on communication practices and investigates how this changing materiality of data impacts collaboration and interoperability within design and making. Computer numerical controlled (CNC) routing and laser-cutting services are available in most major cities. Affordable kits for 3D printers, CNC routers and DIY KUKA robots are available across the Internet. A considerable part of the attraction of these tools is the ability to fabricate physical goods without detailed fabrication knowledge. We look at this phenomenon through two sets of examples, making furniture with a CNC router and making robots and tangibles with a 3D printer. In our examples it appears materiality remains an important factor throughout the process. We unpick these examples to shed light on how the technology impacts knowledge practices and ways of thinking during design and making.
keywords Design, digital media, fabrication, 3D printing, CNC routing, materiality
series CAAD Futures
email
last changed 2014/03/24 07:08

_id acadia13_043
id acadia13_043
authors Michalatos, Panagiotis; Payne, Andrew O.
year 2013
title Working with Multi-scale Material Distributions
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 43-50
doi https://doi.org/10.52842/conf.acadia.2013.043
summary At present, computer aided design (CAD) software has proven ill equipped to manage the spatial variations in material properties. Most digital design packages employ a surface modeling paradigm where a solid object is that which is enclosed by a set of boundaries (known as boundary representations or “B-rep” for short). In surface models, material representations are often treated as homogenous and discrete. Yet, natural materials are capable of structures where the variability of material within a volume is defined at a multiplicity of scales and according to various functional criteria. With the advent of new 3D printing techniques, a new possibility emerges—allowing new multi-material composite objects to be fabricated in a single build volume with a high degree of dimensional accuracy and repeatability. However, a big limitation facing complex high resolution digital fabrication comes from the software’s inability to represent or handle material variability. This paper proposes a new digital interface for working with multi-material distributions at a variety of scales using a rasterization process. Beyond the immediate benefit of precise graduated control over the material distribution within a 3D printed volume, our interface opens new creative opportunities by enabling the use of existing image processing techniques (such as filtering, mapping, etc.) which can be applied to three-dimensional voxel fields. Examples are provided which explore the potential of multi-scale material distributions.
keywords next generation technology, multi-material 3D printing, digital interfaces, voxel fields, rasterization
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:58

_id ascaad2022_099
id ascaad2022_099
authors Sencan, Inanc
year 2022
title Progeny: A Grasshopper Plug-in that Augments Cellular Automata Algorithms for 3D Form Explorations
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 377-391
summary Cellular automata (CA) is a well-known computation method introduced by John von Neumann and Stanislaw Ulam in the 1940s. Since then, it has been studied in various fields such as computer science, biology, physics, chemistry, and art. The Classic CA algorithm is a calculation of a grid of cells' binary states based on neighboring cells and a set of rules. With the variation of these parameters, the CA algorithm has evolved into alternative versions such as 3D CA, Multiple neighborhood CA, Multiple rules CA, and Stochastic CA (Url-1). As a rule-based generative algorithm, CA has been used as a bottom-up design approach in the architectural design process in the search for form (Frazer,1995; Dinçer et al., 2014), in simulating the displacement of individuals in space, and in revealing complex relations at the urban scale (Güzelci, 2013). There are implementations of CA tools in 3D design software for designers as additional scripts or plug-ins. However, these often have limited ability to create customized CA algorithms by the designer. This study aims to create a customizable framework for 3D CA algorithms to be used in 3D form explorations by designers. Grasshopper3D, which is a visual scripting environment in Rhinoceros 3D, is used to implement the framework. The main difference between this work and the current Grasshopper3D plug-ins for CA simulation is the customizability and the real-time control of the framework. The parameters that allow the CA algorithm to be customized are; the initial state of the 3D grid, neighborhood conditions, cell states and rules. CA algorithms are created for each customizable parameter using the framework. Those algorithms are evaluated based on the ability to generate form. A voxel-based approach is used to generate geometry from the points created by the 3D cellular automata. In future, forms generated using this framework can be used as a form generating tool for digital environments.
series ASCAAD
email
last changed 2024/02/16 13:38

_id acadia13_355
id acadia13_355
authors Sheil, Bob
year 2013
title PerFORM/The Scan: Experimental studies in 3D Scanning and Theatrical Performance
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 355-360
doi https://doi.org/10.52842/conf.acadia.2013.355
summary PerFORM/The Scan (2013) develops 1:1 collaborative and site specific acts between designers and performers through 3D scanning, bespoke instrumentation, robotics, rehearsal and live performance. With a particular emphasis on how 3D scanning may be manipulated in situ, the work seeks to mediate between live performance and digital representation, and thus explores a new relationship between the performance and audience through time and location. The work is defined by two acts, the first taking place in April 2013 (Act 1), and the second in September 2013 (Act 2), at the Royal Central School of Speech and Drama, London.
keywords Tools and Interfaces: Design, Scenography, Prototyping, Performance, Scanning, Modelling, Mediation
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:56

_id sigradi2013_143
id sigradi2013_143
authors Veiga, Monica; Adriane Borda; Francisca Michelon; Tatiana Lebedeff
year 2013
title Atribuição de Acessibilidade à Fotografia através da Restituição e Desconstrução da Tridimensionalidade [Attribution of accessibility to photography through the restitution and deconstruction of three-dimensionality]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 449 - 453
summary This paper describes the experiments that are being developed to support an inclusive or accessible exposition of photographs. Physical three dimensional models are being developed using 3D printing technologies to allow tactile experience. The method being structured for this production is registered. It includes the use of the concept of games seeking to work with the purpose of decomposition of information which is recommended by the inclusive communication literature.
keywords Tactile mock-up; Accessibility; Visual Impairment; Museum; Assistive technology
series SIGRADI
email
last changed 2016/03/10 10:02

_id ecaade2023_317
id ecaade2023_317
authors Zamani, Alireza, Mohseni, Alale and Bertug Çapunaman, Özgüç
year 2023
title Reconfigurable Formwork System for Vision-Informed Conformal Robotic 3D Printing
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 387–396
doi https://doi.org/10.52842/conf.ecaade.2023.1.387
summary Robotic additive manufacturing has garnered significant research and development interest due to its transformative potential in architecture, engineering, and construction as a cost-effective, material-efficient, and energy-saving fabrication method. However, despite its potential, conventional approaches heavily depend on meticulously optimized work environments, as robotic arms possess limited information regarding their immediate surroundings (Bechthold, 2010; Bechthold & King, 2013). Furthermore, such approaches are often restricted to planar build surfaces and slicing algorithms due to computational and physical practicality, which consequently limits the feasibility of robotic solutions in scenarios involving complex geometries and materials. Building on previous work (Çapunaman et al., 2022), this research investigates conformal 3D printing of clay using a 6 degrees-of-freedom robot arm and a vision-based sensing framework on parametrically reconfigurable tensile hyperbolic paraboloid (hypar) formwork. In this paper, we present the implementation details of the formwork system, share findings from preliminary testing of the proposed workflow, and demonstrate application feasibility through a design exercise that aims to fabricate unique components for a poly-hypar surface structure. The formwork system also offers parametric control over generating complex, non-planar tensile surfaces to be printed on. Within the scope of this workflow, the vision-based sensing framework is employed to generate a digital twin informing iterative tuning of the formwork geometry and conformal toolpath planning on scanned geometries. Additionally, we utilized the augmented fabrication framework to observe and analyze deformations in the printed clay body that occurs during air drying. The proposed workflow, in conjunction with the vision-based sensing framework and the reconfigurable formwork, aims to minimize time and material waste in custom formwork fabrication and printing support materials for complex geometric panels and shell structures.
keywords Robotic Fabrication, Conformal 3D Printing, Additive Manufacturing, Computer-Vision, Reconfigurable Formwork
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2022_001
id ecaade2022_001
authors Pak, Burak, Wurzer, Gabriel and Stouffs, Rudi
year 2022
title eCAADe 2022 Co-creating the Future: Inclusion in and through Design- Volume 2
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, 646 p.
doi https://doi.org/10.52842/conf.ecaade.2022.2
summary Spatial design is becoming an increasingly social, participatory and inclusive practice. In the last decade, ordinary people all around the world have started to claim a shaping power over the processes of urbanization; over the ways in which our cities are made and remade (Harvey, 2013). There has been a resurgence in the number of do-it-yourself cooperatives initiated by non-designer citizens, activists, artists and designers. In parallel to these developments, a plethora of social technologies, tools and platforms have been developed to include a variety of stakeholders in the architectural design, urban design, planning and decision-making processes. Crowdsourcing and crowdfunding applications started to be widely used to tap into the wisdom of the crowd. Novel developments in parametric design and digital fabrication created possibilities for user participation in the making of customized and highly diversified products. With the combination of artificial intelligence and the Internet of Things, smart buildings, autonomous devices, robots and software started to transform into agents and active participants. The attempts to harness collective human and artificial intelligence opened up new avenues for combining practice, research and education. On the other hand, there is a growing concern over the possible negative impact of the digital devices, tools, platforms and agents integrated in the making of our buildings and cities, public, private and collective spaces. Examples of those are the potential exclusion of vulnerable and disadvantaged citizens, transfer of citizen power to the corporations, privatization of personal life and data, as well as spatial exclusion through increased technological control and surveillance.
keywords Proceedings, Front Matter
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_000
id ecaade2022_000
authors Pak, Burak, Wurzer, Gabriel and Stouffs, Rudi
year 2022
title eCAADe 2022 Co-creating the Future: Inclusion in and through Design - Volume 1
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, 672 p.
doi https://doi.org/10.52842/conf.ecaade.2022.1
summary Spatial design is becoming an increasingly social, participatory and inclusive practice. In the last decade, ordinary people all around the world have started to claim a shaping power over the processes of urbanization; over the ways in which our cities are made and remade (Harvey, 2013). There has been a resurgence in the number of do-it-yourself cooperatives initiated by non-designer citizens, activists, artists and designers. In parallel to these developments, a plethora of social technologies, tools and platforms have been developed to include a variety of stakeholders in the architectural design, urban design, planning and decision-making processes. Crowdsourcing and crowdfunding applications started to be widely used to tap into the wisdom of the crowd. Novel developments in parametric design and digital fabrication created possibilities for user participation in the making of customized and highly diversified products. With the combination of artificial intelligence and the Internet of Things, smart buildings, autonomous devices, robots and software started to transform into agents and active participants. The attempts to harness collective human and artificial intelligence opened up new avenues for combining practice, research and education. On the other hand, there is a growing concern over the possible negative impact of the digital devices, tools, platforms and agents integrated in the making of our buildings and cities, public, private and collective spaces. Examples of those are the potential exclusion of vulnerable and disadvantaged citizens, transfer of citizen power to the corporations, privatization of personal life and data, as well as spatial exclusion through increased technological control and surveillance.
series eCAADe
email
last changed 2024/04/22 07:10

_id sigradi2013_215
id sigradi2013_215
authors Abdelmohsen, Sherif M.
year 2013
title Reconfiguring Architectural Space using Generative Design and Digital Fabrication: A Project Based Course
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 391 - 395
summary This paper discusses a course that addresses the integration between generative design and digital fabrication in the context of reconfiguring architectural space. The objective of the course, offered for 3rd year architecture students at the Department of Architecture, Ain Shams University, Egypt, was to design and fabricate interior design elements to be installed within the department lobby. Students worked in digital and physical environments to develop 8 group projects that featured concepts of shape grammars, L-systems, fractals and cellular automata. The potential of the realized projects is discussed in terms of 3D development of systems, contextual generative design, and pedagogical objectives.
keywords Contextual generative design; Rule-based systems; Self-organizing systems; Digital fabrication
series SIGRADI
email
last changed 2016/03/10 09:47

_id caadria2013_160
id caadria2013_160
authors Brennan, AnnMarie; Suleiman Alhadidi and Geoff Kimm
year 2013
title Quokka: Programming for Real Time Digital Design Platform
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 261-270
doi https://doi.org/10.52842/conf.caadria.2013.261
wos WOS:000351496100026
summary This paper introduces an interactive 3D scanning tool (Quokka) that generates real time point clouds and surfaces in a design program (Rhinoceros). It explains the use of this tool through a detailed experiment, suggesting a new mode of design using a dynamic, three-dimensional grid.  
keywords Real time design, Real time feedback, Interface, Quokka, Re-constructing surfaces, Dynamic point cloud 
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2013_189
id sigradi2013_189
authors Bruscato, Underléa; Clariana Fischer Brendler; Felipe Schneider Viaro; Fábio Gonçalves Teixeira; Régio Pierre da Silva
year 2013
title Uso da Fabricação Digital e Prototipagem no Desenvolvimento do Projeto de Produto: Análises do Produto através de Simulações Digitais [Digital Manufacture and Rapid Prototyping in Product Design Development: Product Analysis through Digital Simulation]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 459 - 463
summary The aim of this paper is to design a public facilitie using both digital manufacture and rapid prototyping design methods. These new technologies have been used in product design development by some ways: helping in the comprehension of complex geometries; used as tools for analyzing the design process, thus avoiding errors in the project. The analysis were carried out using virtual simulation tests and physical prototype in reduced scale. The prototype was manufactured using the 3D printer V-Flash in the Virtual Design Laboratory – UFRGS, where positive and negatives aspects were identified and described.
keywords Digital manufacture; Rapid prototyping; Virtual simulation; Product design; Urban facilities
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2013_285
id sigradi2013_285
authors Caldera, Sebastián; Gonzalo Silva; Mauricio Loyola
year 2013
title Uso de Herramientas Paramétricas de Optimización Evolutiva y Simulación Energética en el Diseño Basado en Performance [Using Evolutionary Optimization and Energy Simulation Tools in Performance-based Design]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 343 - 347
summary This article describes three cases of integration of technologies of evolutionary optimization and energy simulation in performance-based design. The aim is to share the details of the process of creation, validation and use of the various techniques and tools, with an emphasis on the mistakes and successes obtained, so that experiences can be useful for non-specialist users interested in working with these methodologies.
keywords Parametric design; Grasshopper 3D; Ecotect; GECO; Galápagos
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2013_64
id sigradi2013_64
authors Cardoso, Eduardo; Sérgio Leandro dos Santos; Fábio Pinto da Silva; Fábio Gonçalves Teixeira; Tânia Luísa Koltermnann da Silva
year 2013
title Tecnologias Tridimensionais para Acessibilidade em Museus [Three-dimensional Technologies for Accessibility in Museums]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 444 - 448
summary New technologies for 3D scanning and digital fabrication have greatly contributed to the research and production of artifacts and accessibility services to artistic fruition in museums. Thus, this article presents the results of research conducted in the discipline of 3D Technologies of the Design Graduate Program at the Federal University of Rio Grande do Sul. The work consisted in the research, selection and employment of scanning technologies for 3D scanning of artifacts from the Museum's collection Joaquim José Felizardo - Porto Alegre - RS, for subsequent production of tactile replicates, as an example and validation of these applications in this context.
keywords Accessibility, Museums, Three-dimensional scanning, Digital fabrication
series SIGRADI
email
last changed 2016/03/10 09:48

_id cf2013_159
id cf2013_159
authors Celani, Gabriela; Vilson Zattera, Marcelo Fernandes de Oliveira, and Jorge Vicente Lopes da Silva
year 2013
title “Seeing” with the Hands: Teaching Architecture for the Visually-Impaired with Digitally-Fabricated Scale Models
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 159-166.
summary Accessibility of information for the visually-impaired has greatly benefited from information and communication technologies (ICT’s) in the past decades. However, the interpretation of images by the blind still represents a challenge. Bidimensional representations can be understood by those who have seen at least sometime in their lives but they are too abstract for those with congenital blindness, for whom three-dimensional representations are more effective, especially during the conceptualization phase, when children are still forming mental images of the world. Ideally, educators who work with the visually-impaired should be able to produce custom 3D models as they are needed for the explanation of concepts. This paper presents an undergoing project that aims at developing a protocol for making 3D technologies technically and economically available to them.
keywords Tactile models, rapid prototyping, architectural concepts
series CAAD Futures
email
last changed 2014/03/24 07:08

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_525425 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002