CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 598

_id caadria2013_056
id caadria2013_056
authors Lim, Jason; Fabio Gramazio and Matthias Kohler
year 2013
title A Software Environment for Designing Through Robotic Fabrication – Developing a Graphical Programming Toolkit for the Digital Design and Scaled Robotic Fabrication of High Rises
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 45-54
doi https://doi.org/10.52842/conf.caadria.2013.045
wos WOS:000351496100005
summary The term “robot” was born from a play written almost a century ago. Today robotic fabrication has become an emerging topic in architectural research. As architects work with these technologies, they are challenged with writing a different kind of play: here robots are the actors and the physical materialization of a design is their performance. However current Computer Aided Design (CAD) packages do not provide native robot programming functionalities which architects require to plan and orchestrate these fabrication process. To address this limitation, a Python library for robot programming is written. It is referenced by a toolkit of custom components developed to extend a graphical programming environment commonly used for architectural design. The empirical development of these software tools takes place in the context of a design studio investigating the subject of the high rise. The tools are tested in a workflow that involves the digital design and scaled robotic fabrication of high-rise housing. This paper discusses the considerations underlying the toolkit’s design, the outcomes of its use in the studio, and its impact on the creative design process. 
keywords Robotic fabrication, Architectural model, Software tools, High rise design, Creative computational design 
series CAADRIA
email
last changed 2022/06/07 07:59

_id sigradi2013_205
id sigradi2013_205
authors Chiarella, Mauro; Luis Felipe González Böhme; Cristian Calvo Barentin
year 2013
title Robots: Automatización en Diseño y Construcción para la Enseñanza de Arquitectura [Robots: Automation in Design and Manufacturing for Teaching Architecture]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 439 - 443
summary Industrial robots controlled by parametric design software and visual programming environments are gaining popularity in the research and use of non-conventional construction processes in architecture. Process automation which can be personalized through variable components promises to become an industry standard with similar cost structures to current pre-fabrication industrial processes. In order to incorporate competencies from non-serial variable architectural modular design, an initial teaching initiative (Advanced Architectural Design Studio – USM) was developed in Latin América. The strategy employed is based on incorporating concepts and instruments of Construction & Design Automation for CAD/CAM processes with a Six Axis Robotic Arm (KUKA KR125/2).
keywords Robotic fabrication; Parametric modeling, Teaching architecture
series SIGRADI
email
last changed 2016/03/10 09:48

_id ecaade2014_159
id ecaade2014_159
authors Leyla Yunis, Ond_ej Kyjánek, Moritz Dörstelmann, Marshall Prado, Tobias Schwinn and Achim Menges
year 2014
title Bio-inspired and fabrication-informed design strategies for modular fibrous structures in architecture
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 423-432
doi https://doi.org/10.52842/conf.ecaade.2014.1.423
wos WOS:000361384700042
summary Research pavilions can serve as architectural scale demonstrations for the materialization of experimental forms and structures. Pavilions seek to prove and change methods of design and construction mechanisms in order to achieve desires such as material efficiency, novel spatial qualities and performative needs. The case of the ICD/ITKE Research Pavilion 2013-14 highlights the use of fiber composites in order to achieve a core-less filament winding modular system from bio-inspired lightweight structures through robotic fabrication. This paper describes the multi-disciplinary design and construction process of this pavilion that created a structure of out 36 unique components.
keywords Bio-inspired; fiber composites; multi-disciplinary design; robotic fabrication; modular system construction
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2013r_019
id ecaade2013r_019
authors Portugal, Vasco
year 2013
title Knowledge-based methodology for architectural robotics fabrication. Real time impact assessment through a process flow analysis software
source FUTURE TRADITIONS [1st eCAADe Regional International Workshop Proceedings / ISBN 978-989-8527-03-5], University of Porto, Faculty of Architecture (Portugal), 4-5 April 2013, pp. 229-236
summary The main goal of the project is to generate a framework for a knowledge-based-methodology (KBM) within a parametric software. This is accomplished through a combination of the design software and robot simulation with real-time assessment based on a process-flow-diagram (PFD) structure that compiles the main environmental parameters of the manufacture process. The intention is to create a methodology to directly report the impact of the manufacture of a specific design, from the materials embodied energy to the energy consumption of each step. This framework provides valuable information which may monitor the developer towards alterations to increase the CAD/CAM performance. In the context of this paper, this methodology was applied in the conceptual design and manufacture of a housing structural insulated panel prototype using parametric design software and robotic equipment. The purpose is to generate a quasi-automated design process linked with real-time analysis and assessment of the fabrication process, offering real time environmental and cost analysis of a panelized structure house manufacture logic. The suggested methodology outputs information to compare and optimize the manufacture outline, and supports the screening and assortment of appropriate tool paths or combination of fabrication tools based on environmental/cost data, user-specified requirements and context characteristics.
keywords CAD/CAM; Parametric design; Robotics in Architecture; Process flow diagrams
email
last changed 2013/10/07 19:08

_id caadria2013_076
id caadria2013_076
authors Raspall, Felix; Matias Imbern and William Choi
year 2013
title Fisac Variations: An Integrated Design and Fabrication Strategy for Adaptable Building Systems
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 55-64
doi https://doi.org/10.52842/conf.caadria.2013.055
wos WOS:000351496100006
summary The promise of robotic fabrication as an enabler for mass-customization in Architecture has been hindered by the intricate workflow required to go from parametric modelling to CNC fabrication. The lack of integration between highly-specialized proprietary software, normally required to operate the machines, and most of the design tools constitutes a major limitation. One way to tackle this constraint is by developing simple tools that directly link parametric modelling to robotic coding. Accordingly, “Fisac Variations” develops an uninterrupted digital workflow from form-generation to robotic fabrication. This innovative approach to Computer Aided Design and Manufacturing was tested by studying and reengineering a specific historic construction system -Miguel Fisac’s Bones System was used as a case study- and by enabling it to address problems of contemporary architectural agenda such as flexibility, variability and mass-customization. The proposed workflow threads form-finding, structural analysis, geometric definition, CNC code generation and digital fabrication within the same open-source computational environment. In this way, this innovative procedure aims to increase design freedom while ensuring fabrication feasibility. This paper describes background research, concept, form-finding, construction process, methodology, results and conclusions.  
keywords Parametric design, Digital fabrication and construction, Integrated design and fabrication, Mass-customization, Miguel fisac bones system 
series CAADRIA
email
last changed 2022/06/07 08:00

_id cf2013_167
id cf2013_167
authors Carlow, Jason F. and Kristof Crolla
year 2013
title Shipping Complexity: Parametric Design for Remote Communities
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 167-175.
summary This paper presents a system for design and construction of a parametrically designed, structural shell for remote communities. It explains how, through the use of various digital software platforms, a single-layer, structural shell is designed and optimized and subsequently how a series of customized joints can be output for direct digital fabrication. As the customization is focused primary in the joints of the structure, standard dimension, locally sourced structural members can be used. By embedding assembly information onto the physical joints, the system has the capacity to simplify the construction of complex shell structures by workers with basic construction skills. Flat-packed joints can be shipped to remote sites without heavy structural members thereby reducing transportation costs and the overall embodied energy. By lowering cost and simplifying construction of large span structures, the project is intended to extend the benefits of digitally driven design to rural, remote or under-privileged communities.
keywords Parametric design, structural shell, remote communities, embedded intelligence, digital fabrication.
series CAAD Futures
email
last changed 2014/03/24 07:08

_id acadia13_033
id acadia13_033
authors Correa, David; David Krieg, Oliver; Menges, Achim; Reichert, Steffen; Rinderspacher, Katja
year 2013
title HygroSkin: A prototype project for the development of a constructional and climate responsive architectural system based on the elastic and hygroscopic properties of wood
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 33-42
doi https://doi.org/10.52842/conf.acadia.2013.033
summary This paper focuses on the implementation of a computational design and robotic fabrication method that integrates the elastic and hygroscopic behavior of wood as active drivers in the design process, using the material’s differentiated characteristics as its main capacity. The project builds on previous work by the authors, furthering their research on the formal and performative transfer of such behaviors into informed architectural systems. Wood’s fibrous structure, relatively low stiffness and high structural capacity are instrumentalized into self-forming mechanisms through conical elastic deformation, while the same organic makeup and corresponding hygroscopic properties have also been programmed, formally articulated and integrated into a climate responsive architectural system. This research will be presented alongside a full-scale architectural project (Figure 1, Figure 2).
keywords computational design; robotic fabrication; wood construction; elastic bending; hygroscopic actuation
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:56

_id acadia14projects_11
id acadia14projects_11
authors Gheorghe, Andrei
year 2014
title Robotic Infiltrations
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 11-14
doi https://doi.org/10.52842/conf.acadia.2014.011
summary This research describes the outcome of the Angewandte Architecture Challenge 2013 “Robotic Infiltrations” experimental workshop in Digital Design and Fabrication Strategies. The workshop is a collaboration between the University of Innsbruck’s REX|LAB and the Institute of Architecture at the University of Applied Arts Vienna, and represents a continuation of research that explores the potential of additive digital production through the use of robotically controlled placement of phase-change polymers in the production of full scale structures.
keywords Digital fabrication and construction, Digital architectural design, Digital design education, Digital design and production, Full scale digital fabrication, Digital fabrication research, Robotic fabrication
series ACADIA
type Research Projects
email
last changed 2022/06/07 07:51

_id acadia13_079
id acadia13_079
authors Jason Gerber, David; Eve Lin, Shih-Hsin; Amber Ma, Xinyue
year 2013
title Designing-In Performance: A Case Study of Applying Evolutionary Energy-Performance Feedback for Design (EEPFD)
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 79-86
doi https://doi.org/10.52842/conf.acadia.2013.079
summary This paper explores the application of a novel Multi-disciplinary Design Optimization (MDO) framework to the early stage design process, through a case study where the designer serves as the primary user and driver. MDO methods have drawn attention from the building design industry as a potential means of overcoming obstacles between design and building performance feedback to support design decision-making. However, precedents exploring MDOs in application to the building design have previously been limited to driving use by engineers or research teams,thereby leaving the incorporation of MDO into a design process by designers largely unexplored. In order to investigate whether MDO can enable the ability to design in a performance environment during the conceptual design stage, a MDO design framework entitled Evolutionary Energy-Performance Feedback for Design (EEPFD) was developed. This paper explores the designer as the primary user by conducting a case study where the application of EEPFD to a single family residential housing unit is incorporated. Through this case study EEPFD demonstrates an ability to assist the designer in identifying higher performing design options while meeting the designer’s aesthetic preferences. In addition the benefits, limitations, concerns and lessons learned in the application of EEPFD are also discussed.
keywords conceptual energy-performance feedback; design decision support; parametric design; multi-disciplinary design optimization; genetic algorithm
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:52

_id acadia13_253
id acadia13_253
authors Krieg, Oliver David; Menges, Achim
year 2013
title HygroSkin: A climate-responsive prototype project based on the elastic and hygroscopic properties of wood
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 23-260
doi https://doi.org/10.52842/conf.acadia.2013.023
summary The paper presents current research into architectural potentials of robotic fabrication in wood construction based on elastically bent timber sheets with robotically fabricated finger joints. Current developments in computational design and digital fabrication propose an integrative design approach contrary to classical, hierarchical architectural design processes. Architecture related fields, such as material science, engineering and fabrication have been seen as separate disciplines in a linear design process since the Industrialization era. However, current research in computational design reveals the potentials of their integration and interconnection for the development of material-oriented and performance-based architectural design.In the first part, the paper discusses the potentials of robotic fabrication based on its extended design space. The robot’s high degree of kinematic freedom opens up the possibility of developing complex and highly performative mono-material connections for wood plate structures. In the second part, the integration of material behavior is presented. Through the development of robotically fabricated, curved finger joints, that interlock elastically bent plywood sheets, a bending-active construction system is being developed (Figure 1,Figure 2). In the third part, the system’s architectural application and related constructional performance is discussed.
keywords Robotic Fabrication; Finger Joints; Material Computation; Wood Construction; Computational Design
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:51

_id acadia13_311
id acadia13_311
authors Maxwell, Iain; Pigram, David; McGee, Wes
year 2013
title The Novel Stones of Venice: The Marching Cube Algorithm as a Strategy for Managing Mass-customisation
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 311-318
doi https://doi.org/10.52842/conf.acadia.2013.311
summary The Marching Cube (MC) algorithm is a simple procedural routine for the surface representation of three- dimensional scalar fields. While much has been written of the algorithm’s efficiencies and adaptive nature within the domain of computer graphics and imaging, little has been explored within the context of architectural geometry and fabrication. This paper posits a novel implementation of the MC algorithm coupled with robotic fabrication (RF) techniques, to realise an open-ended design method that approaches mass-customisation as the unique geometric distortion of a finite set of topologically consistent families of tectonic elements.The disciplinary consequences of this and similar methods that intimately couple algorithmic design techniques with robotic fabrication are discussed. These include the re-affirmation or expansion of the role of the architect as master builder that is enabled by challenging Leon Battista Alberti’s 15th Century division between design concept and building.The method and its disciplinary potentials are illustrated through the description of an installation built by the authors for the Australian Pavilion at the Venice Biennale. Clouds of Venice serves as a case study for a new integrated mode of production, one that increases the quality and number of feedback relations between design, matter and making.
keywords tools and interfaces, mass-customisation, robotic fabrication, algorithmic architecture, marching cube, digital fabrication
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:58

_id ecaade2014_144
id ecaade2014_144
authors Michail Georgiou, Odysseas Georgiou and Theresa Kwok
year 2014
title Affordable Complexity - 'God's Eye' - Sukkahville 2013
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 169-177
doi https://doi.org/10.52842/conf.ecaade.2014.2.169
wos WOS:000361385100018
summary The paper presents a novel approach on the design of complex forms by re-formulating the relationships between form, structure, material, fabrication and construction. It is proposed that current design models are supplemented by feedback-enabled frameworks, integrating material properties, fabrication constraints and construction logistics. As such, a series of input parameters based on industry standards, filtered through physical testing and digital simulations, feed a central computational model. The outcome is weighed against a set of objectives towards an optimum design solution which embodies construction logic while ultimately opposing costly inflated ad-hoc solutions. Within the above framework and as part of a broader research conducted at [ARC], this paper illustrates a design methodology implemented at the case study of 'God's Eye', winning entry of Sukkahville 2013 International Design Competition. It is further supported that a high tech, interdisciplinary design process based on efficient material assemblies allows for a complex, yet efficient end result, through low tech affordable construction.
keywords Material-based design; design process; construction logistics; interdisciplinary design; computational design
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2013_118
id ecaade2013_118
authors Narahara, Taro
year 2013
title A Generative Approach to Robotic Fabrication
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 673-681
doi https://doi.org/10.52842/conf.ecaade.2013.1.673
wos WOS:000340635300070
summary This paper studies computational methods for adaptive growth seen in human design processes through a relatively simple yet explicit example in the context of robotic fabrication. The proposed experiment uses an industrial robot arm to produce structures by stacking unit bricks without hard-coded instructions (“blueprints”) from the outset. The paper further explores how such implementations can be applied to architectural design and speculates as to the possibilities of open frameworks for design using computational methods.
keywords Adaptable growth; robotic fabrication; generative design.
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2013_207
id caadria2013_207
authors Narahara, Taro
year 2013
title Adaptive Growth Using Robotic Fabrication
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 65-74
doi https://doi.org/10.52842/conf.caadria.2013.065
wos WOS:000351496100007
summary This paper studies computational methods for adaptive growth seen in human design processes, such as development of spontaneous settlements, by highlighting the contrast with conventional plan execution approaches. The paper speculates as to the possibilities of open frameworks for design using computational methods through a relatively simple yet explicit example in the context of robotic fabrication. The proposed experiment uses an industrial robot arm to pro-duce structures by stacking unit bricks without hard-coded instructions (“blueprints”) from the outset. The paper further speculates about how such implementations can be applied to architectural design.  
keywords Generative design, Robotic fabrication, Adaptable design 
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia20_574
id acadia20_574
authors Nguyen, John; Peters, Brady
year 2020
title Computational Fluid Dynamics in Building Design Practice
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 574-583.
doi https://doi.org/10.52842/conf.acadia.2020.1.574
summary This paper provides a state-of-the-art of computational fluid dynamics (CFD) in the building industry. Two methods were used to find this new knowledge: a series of interviews with leading architecture, engineering, and software professionals; and a series of tests in which CFD software was evaluated using comparable criteria. The paper reports findings in technology, workflows, projects, current unmet needs, and future directions. In buildings, airflow is fundamental for heating and cooling, as well as occupant comfort and productivity. Despite its importance, the design of airflow systems is outside the realm of much of architectural design practice; but with advances in digital tools, it is now possible for architects to integrate air flow into their building design workflows (Peters and Peters 2018). As Chen (2009) states, “In order to regulate the indoor air parameters, it is essential to have suitable tools to predict ventilation performance in buildings.” By enabling scientific data to be conveyed in a visual process that provides useful analytical information to designers (Hartog and Koutamanis 2000), computer performance simulations have opened up new territories for design “by introducing environments in which we can manipulate and observe” (Kaijima et al. 2013). Beyond comfort and productivity, in recent months it has emerged that air flow may also be a matter of life and death. With the current global pandemic of SARS-CoV-2, it is indoor environments where infections most often happen (Qian et al. 2020). To design architecture in a post-COVID-19 environment will require an in-depth understanding of how air flows through space.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2022_001
id ecaade2022_001
authors Pak, Burak, Wurzer, Gabriel and Stouffs, Rudi
year 2022
title eCAADe 2022 Co-creating the Future: Inclusion in and through Design- Volume 2
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, 646 p.
doi https://doi.org/10.52842/conf.ecaade.2022.2
summary Spatial design is becoming an increasingly social, participatory and inclusive practice. In the last decade, ordinary people all around the world have started to claim a shaping power over the processes of urbanization; over the ways in which our cities are made and remade (Harvey, 2013). There has been a resurgence in the number of do-it-yourself cooperatives initiated by non-designer citizens, activists, artists and designers. In parallel to these developments, a plethora of social technologies, tools and platforms have been developed to include a variety of stakeholders in the architectural design, urban design, planning and decision-making processes. Crowdsourcing and crowdfunding applications started to be widely used to tap into the wisdom of the crowd. Novel developments in parametric design and digital fabrication created possibilities for user participation in the making of customized and highly diversified products. With the combination of artificial intelligence and the Internet of Things, smart buildings, autonomous devices, robots and software started to transform into agents and active participants. The attempts to harness collective human and artificial intelligence opened up new avenues for combining practice, research and education. On the other hand, there is a growing concern over the possible negative impact of the digital devices, tools, platforms and agents integrated in the making of our buildings and cities, public, private and collective spaces. Examples of those are the potential exclusion of vulnerable and disadvantaged citizens, transfer of citizen power to the corporations, privatization of personal life and data, as well as spatial exclusion through increased technological control and surveillance.
keywords Proceedings, Front Matter
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_000
id ecaade2022_000
authors Pak, Burak, Wurzer, Gabriel and Stouffs, Rudi
year 2022
title eCAADe 2022 Co-creating the Future: Inclusion in and through Design - Volume 1
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, 672 p.
doi https://doi.org/10.52842/conf.ecaade.2022.1
summary Spatial design is becoming an increasingly social, participatory and inclusive practice. In the last decade, ordinary people all around the world have started to claim a shaping power over the processes of urbanization; over the ways in which our cities are made and remade (Harvey, 2013). There has been a resurgence in the number of do-it-yourself cooperatives initiated by non-designer citizens, activists, artists and designers. In parallel to these developments, a plethora of social technologies, tools and platforms have been developed to include a variety of stakeholders in the architectural design, urban design, planning and decision-making processes. Crowdsourcing and crowdfunding applications started to be widely used to tap into the wisdom of the crowd. Novel developments in parametric design and digital fabrication created possibilities for user participation in the making of customized and highly diversified products. With the combination of artificial intelligence and the Internet of Things, smart buildings, autonomous devices, robots and software started to transform into agents and active participants. The attempts to harness collective human and artificial intelligence opened up new avenues for combining practice, research and education. On the other hand, there is a growing concern over the possible negative impact of the digital devices, tools, platforms and agents integrated in the making of our buildings and cities, public, private and collective spaces. Examples of those are the potential exclusion of vulnerable and disadvantaged citizens, transfer of citizen power to the corporations, privatization of personal life and data, as well as spatial exclusion through increased technological control and surveillance.
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2013_188
id caadria2013_188
authors Peña De León, Alexander; Jane Burry, Daniel Davis, Nick Williams, Mark Burry and Michael Wilson
year 2013
title A Flexible Automated Digital Design for Production Workflow
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 643-652
doi https://doi.org/10.52842/conf.caadria.2013.643
wos WOS:000351496100063
summary This paper documents the flexible automated digital design for production workflow utilized for the materialization of the FabPod Project, together with the use of an integrated practice methodology and highly collaborative process. The research seeks to narrow the divide between the acts of designing and the acts of making, by integrating through the act of automating computer assisted designs with computer assisted manufacturing.  
keywords utomated design to fabrication workflow, Integrated practice, CAD/CAM, Parametric modelling, Flexible modelling 
series CAADRIA
email
last changed 2022/06/07 08:00

_id acadia13_361
id acadia13_361
authors Scott, Jane
year 2013
title Hierarchy in Knitted Forms: Environmentally Responsive Textiles for Architecture
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 361-366
doi https://doi.org/10.52842/conf.acadia.2013.361
summary This paper describes the theoretical framework behind the development of a series of knitted prototypes inspired by the biomimetic model of the hygromorph. Three moisture responsive pieces are described which use the inherent properties of wood veneer as an actuator incorporated into complex knitted forms constructed from linen and wool. These textile/veneer assemblies are environmentally responsive, transformable and constructed from natural, sustainable materials. This represents a new interpretation of shape changing textiles for architecture. The work illustrates the potential of designing hierarchically organised structures where functionalities are incorporated at different levels of material fabrication. The paper argues that the implementation of textile materials and processes offers the potential for the development of environmentally responsive architecture through the development of shape changing textile/veneer assemblies.
keywords complex systems; knit assemblies; biomimicry; responsive systems; hierarchical structures; natural materials
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:56

_id acadia13_217
id acadia13_217
authors Steinfeld, Kyle; Levitt, Brendon
year 2013
title Dhour:A bioclimatic information design prototyping toolkit
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 217-226
doi https://doi.org/10.52842/conf.acadia.2013.217
summary The qualification of predicted building performance through quantitative methods is as challenging as it is crucial to the meeting of the mandate to design buildings better adapted to their bioclimatic conditions. Methods for the visualization of building performance data that have found success in the past struggle in the contemporary context of large computational data sets. While application of building performance simulation to architectural design is highly context-sensitive, existing approaches to the visualization of simulation results are generalized and provide the designer with a preconfigured battery of visualizations that are, by definition, not calibrated to specific questions or contexts. This paper presents a new prototyping visualization toolkit, developed for the Grasshopper (Rutten 2013) visual programming environment, which enables the situational development of information graphics. By enabling more nuanced and customizable views of complex data, the software described here offers designers an exploratory framework in contrast to the highly directed tools currently available. Two case studies of the application of this toolkit are then presented, the results of which suggest that a more open framework for the production of visualization graphics can more effectively assist in the design of buildings responsive to their bioclimatic environments.
keywords tools and interfaces, energy and performance, modeling and analysis, simulation tools, data visualization, information design
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_271796 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002