CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 604

_id ecaade2013_056
id ecaade2013_056
authors Fioravanti, Antonio; Avincola, Eolo and Novembri, Gabriele
year 2013
title Even ‘Clouds’ Can Burn
doi https://doi.org/10.52842/conf.ecaade.2013.2.029
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 29-37
summary Architecture, nowadays, is an even more demanding activity in which complexity is the keyword: complex forms, complex functions and complex structures require sophisticated facilities and components, for example, ‘The Cloud’ of D. and M. Fuksas in Rome. These complexities can give rise to numerous risks, among which fire is frequently a central problem. The fire safety norms do not involve an approach integrated with other instruments or building model (BIM), but provide a list of information and constraints. These codes are now shifting away from a prescriptive-based towards a performance-based method due to recent progress in fire safety engineering. Following this approach, a case study simulation of a multi-purpose centre was carried out in Tivoli, near Rome. This simulation allowed greater freedom in architectural composition, a lower risk to people, a larger number of material and building components used and higher safety standards to be achieved. The model is based on the FDS (Fire Dynamics Simulator) language, a simulation code for low-speed flows, focused on smoke, particle and heat transport by fire.
wos WOS:000340643600002
keywords Architectural design; computational fluid-dynamics; fire propagation; fire safety; smoke propagation.
series eCAADe
email
last changed 2022/06/07 07:50

_id ascaad2022_099
id ascaad2022_099
authors Sencan, Inanc
year 2022
title Progeny: A Grasshopper Plug-in that Augments Cellular Automata Algorithms for 3D Form Explorations
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 377-391
summary Cellular automata (CA) is a well-known computation method introduced by John von Neumann and Stanislaw Ulam in the 1940s. Since then, it has been studied in various fields such as computer science, biology, physics, chemistry, and art. The Classic CA algorithm is a calculation of a grid of cells' binary states based on neighboring cells and a set of rules. With the variation of these parameters, the CA algorithm has evolved into alternative versions such as 3D CA, Multiple neighborhood CA, Multiple rules CA, and Stochastic CA (Url-1). As a rule-based generative algorithm, CA has been used as a bottom-up design approach in the architectural design process in the search for form (Frazer,1995; Dinçer et al., 2014), in simulating the displacement of individuals in space, and in revealing complex relations at the urban scale (Güzelci, 2013). There are implementations of CA tools in 3D design software for designers as additional scripts or plug-ins. However, these often have limited ability to create customized CA algorithms by the designer. This study aims to create a customizable framework for 3D CA algorithms to be used in 3D form explorations by designers. Grasshopper3D, which is a visual scripting environment in Rhinoceros 3D, is used to implement the framework. The main difference between this work and the current Grasshopper3D plug-ins for CA simulation is the customizability and the real-time control of the framework. The parameters that allow the CA algorithm to be customized are; the initial state of the 3D grid, neighborhood conditions, cell states and rules. CA algorithms are created for each customizable parameter using the framework. Those algorithms are evaluated based on the ability to generate form. A voxel-based approach is used to generate geometry from the points created by the 3D cellular automata. In future, forms generated using this framework can be used as a form generating tool for digital environments.
series ASCAAD
email
last changed 2024/02/16 13:38

_id acadia13_379
id acadia13_379
authors Tamke, Martin; Stasiuk, David; Ramsgard Thomsen, Mette
year 2013
title The Rise – Material Behaviour in Generative Design
doi https://doi.org/10.52842/conf.acadia.2013.379
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 379-388
summary The research-based installation, The Rise, is led by the concept of a growing architecture able to sense and dynamically adapt to its environment as it grows into form while continuously reacting to its own material performance and behavioural constraints. This process is enabled through the careful integration of digital simulation techniques with multi-hierarchical generative design approaches. Aggregations of variably sized bundles of rattan core multiply, bend, branch and recombine into a distributed assembly that manifests an alternative to traditional structural systems. The hybrid approach links a material system with simulation and the iterative generation of geometry through a process of calibration at different stages of design. The project leverages emerging computational strategies for growth in a model for an architectural practice that engages the complexity and interdependencies that characterise a contemporary design practice.
keywords complex systems, material behaviour, simulation, generative design, growth patterns, environmental aware design systems
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:56

_id caadria2013_202
id caadria2013_202
authors Dai, Qun and Marc Aurel Schnabel
year 2013
title Pedestrian Thermal Comfort in Relation to Street Zones with Different Orientations – A Pilot-Study of Rotterdam
doi https://doi.org/10.52842/conf.caadria.2013.219
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 219-228
summary This paper presents the impacts of different street orientations and street zones of a typical Dutch residential area on micro-scale human thermal comfort. The spatial and temporal variation of mean radiant temperature (T mrt ) of a typical summer day in Rotterdam, The Netherlands, is simulated by using an established long- and short-wave 3D radiation fluxes model (SOLWEIG). This model calculates human radiation load and expresses this as a T mrt . Hereby we simulate and analyse the T mrt variations for three zones of a street consisting of a centre area for cars and the adjacent pedestrian zones for pedestrians and bicycles. The streets are azimuth rotated. The simulation and analysis results show various T mrt patterns of the three zones in the different orientations at different periods during daytime. We show that the spatial distribution of T mrt at street level strongly depends on street orientation and street zone. This is crucial since optimizing street configuration will directly influence the human thermal comfort in relation to street orientation and street zone. Finally we present a time adjusted framework of thermal comfort and classify the various T mrt for each zone and orientation.  
wos WOS:000351496100022
keywords Thermal comfort, Street orientation, Street zone, Mean radiant temperature (T mrt ), Solweig  
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2013_327
id sigradi2013_327
authors Ho, Miriam
year 2013
title Fibre Configurations for Moisture Control: A Vernacular Framework
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 410 - 414
summary This research describes a theoretical framework for making water-sensitive architectural fabrics based on an examination of the subtle moisture controls in vernacular architecture. It explores a workflow for the articulation of environmental forces in material microstructure and how these can be amplified at an architectural scale. The interaction between moisture and material properties is modeled using physics simulations in Processing, offering a method to manipulate fibre configurations for new construction logics. The research is illustrated through parallel explorations in computationally generated fibre configurations and multi-scalar textile prototypes. The research aims to demonstrate the potentials of technology transfer from traditional knowledge to contemporary material manipulations.
keywords Vernacular architecture; Simulation; Environment; Textiles
series SIGRADI
email
last changed 2016/03/10 09:53

_id ijac201310204
id ijac201310204
authors Kontovourkis, Odysseas; Marios C. Phocas, George Tryfonos
year 2013
title Prototyping of an Adaptive Structure based on Physical Conditions
source International Journal of Architectural Computing vol. 11 - no. 2, 205-226
summary Latest advances in digital architectural design enable applications of computation and fabrication strategies for the development of adaptive mechanisms. Adaptive design processes, influenced by environmental and human related conditions, are only developed partially with regard to the design, fabrication, and multi-objective performance based context. The current paper proposes an adaptive design process that investigates the design of a kinetic structure emphasizing material behaviour, embedded technology and computation. In parallel, it allows design proposals to adapt or transform with regard to geometrical configuration and structural behaviour according to external and internal influences. An adaptive hybrid structure is developed at digital and physical prototype level, where its behaviour is examined in real time under the influence of physical conditions. The development is based on a holistic design approach driven by environmental and human activity related conditions, while focusing on the application of elastic materials and embedded technology.
series journal
last changed 2019/05/24 09:55

_id ecaade2013_169
id ecaade2013_169
authors Moya, Rafael; Salim, Flora; Williams, Mani and Sharaidin, Kamil
year 2013
title Flexing Wind
doi https://doi.org/10.52842/conf.ecaade.2013.2.069
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 69-78
summary The aims of the Flexing Wind project, investigated in an intensive cross-disciplinary course, were twofold. First was to learn about aerodynamic phenomena around buildings. Second was to explore ways to observe, measure, and control the negative effects of wind around specific pedestrian areas, tram stops, and public sites in Melbourne City. Using tools such as a weather station to collect data and CFD software to simulate aerodynamic phenomena students could study the wind conditions in one of the windiest areas in the Melbourne downtown. Various do-it-yourself tools such as mini wind tunnels, handheld probes and sensors were used to evaluate the performance of potential design options, which lead to prototyping full scale adaptive architectural windbreaks.
wos WOS:000340643600006
keywords Urban aerodynamics; windbreak; wind tunnel simulation; Computational Fluid Dynamics; architectural prototype.
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2013_033
id caadria2013_033
authors Nguyen, Danny D. and M. Hank Haeusler
year 2013
title Assimilating Interactive Technology into Architectural Design – A Quest for developing an ‘Architectural Drawing’ for Urban Interaction Design as a Communication Platform Through Combining Physical Sensing Devices with Simulation Software
doi https://doi.org/10.52842/conf.caadria.2013.365
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 365-373
summary Assimilating Interactive Technology into Architectural Design – A Quest for developing an ‘Architectural Drawing’ for Urban Interaction Design as a Communication Platform Through Combining Physical Sensing Devices with Simulation Software The research presented in this paper investigates the need for an equivalent of architectural drawings for urban interaction design in an architectural scale in order to communicate interaction design intentions to design participants and clients through using state of the art computer, gaming and sensor technologies. The paper discusses two projects (a) Blur Building, as a large scale interaction design project executed through an experienced team and (b) presents as student design project coordinated by the researchers as a reference project. Both projects in this paper are discussed and evaluated from an Urban Interaction Design point of view. This   paper   emphasizes   the   significance   for   establishing ‘drawing’ equivalents for urban interaction design, discussing representation of ideas in architectural design; followed by outlining existing methods of interactive design representation, such as storyboards to then introduce current advancements in gaming environments. The following paper introduces a framework for future research projects that will design, deploy and evaluate of prototypes as a communication platform combining physical sensing devices in combination with gaming engines to enable a digital / physical hybrid. This would allow designers and clients to test, evaluate and improve urban interactions in a design phase prior to completing the project. 
wos WOS:000351496100036
keywords Spatial design, Human-computing interfacing, Interactive architecture, Smart environments, Sensor technology 
series CAADRIA
email
last changed 2022/06/07 07:58

_id ijac201310105
id ijac201310105
authors Agkathidis, Asterios and Andre_ Brown
year 2013
title Tree-Structure Canopy:A Case Study in Design and Fabrication of Complex Steel Structures using Digital Tools
source International Journal of Architectural Computing vol. 11 - no. 1, 87-104
summary This paper describes and reflects on the design and manufacturing process of the Tree-Structure canopy for the WestendGate Tower in Frankfurt upon Main, completed early 2011.The project investigated fabrication and assembly principles of complex steel structures as well as the integration of contemporary computational design, engineering, optimization and simulation techniques in a collaborative design approach. This paper focuses on the notion of modular standardization as opposed to non standard customized components. It also engages with issues relating to digital production tools and their impact on construction cost, material performance and tolerances. In addition it examines the reconfiguration of liability during a planning and construction process, an aspect which can be strongly determined by fabrication companies rather than the architect or designer.This paper is written as a reflection on the complete building process when contemporary digital tools are used from design through to fabrication. It studies both the generation of the steel structure as well the ETFE cushion skin. It reports on a collaborative project, where the main author was responsible for the canopies design, parameterization, digitalization and fabrication, as well as for the dissemination of the outcomes and findings during the design and realization process.As such it represents an example of research through design in a contemporary and evolving field.The canopy received a design award by the Hellenic Architecture Association.
series journal
last changed 2019/05/24 09:55

_id acadia13_281
id acadia13_281
authors Ahlquist, Sean; Menges, Achim
year 2013
title Frameworks for Computational Design of Textile Micro-Architectures and Material Behavior in Forming Complex Force-Active Structures
doi https://doi.org/10.52842/conf.acadia.2013.281
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 281-292
summary Material behavior can be defined as the confluence of associative rules, contextual pressures and constraints of materialization. In more general terms, it can be parameterized as topologies, forces and materiality. Forming behavior means resolving the intricate matrix of deterministic and indeterministic factors that comprise and interrelate each subset of these material- nherent conditions. This requires a concise design framework which accumulates the confluent behavior through successive and cyclical exchange of multiple design modes, rather than through a single design environment or set of prescribed procedures. This paper unfolds a sequencing of individual methods as part of a larger design framework, described through the development of a series of complex hybrid- structure material morphologies. The “hybrid” nature reflects the integration of multiple force-active structural concepts within a single continuous material system, devising both self-organized yet highly articulated spatial conditions. This leads primarily to the development of what is termed a “textile hybrid” system: an equilibrium state of tensile surfaces and bending-active meshes. The research described in this paper looks to expose the structure of the textile as an indeterministic design parameter, where its architecture can be manipulated as means for exploring and differentiating behavior. This is done through experimentation with weft-knitting technologies, in which the variability of individual knit logics is instrumentalized for simultaneously articulating and structuring form. Such relationships are shown through an installation constructed at the ggggallery in Copenhagen, Denmark.
keywords Material Behavior, Spring-based Simulation, CNC Knitting, Form- and Bending-Active, Textile Hybrid Structures.
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id caadria2014_042
id caadria2014_042
authors Alam, Jack and Jeremy J. Ham
year 2014
title Towards a BIM-Based Energy Rating System
doi https://doi.org/10.52842/conf.caadria.2014.285
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 285–294
summary Governments in Australia are faced with policy implementation that mandates higher energy efficient housing (Foran, Lenzen & Dey 2005). To this effect, the National Construction Code (NCC) 2013 stipulates the minimum energy performance for residential buildings as 114MJ/m2 per annum or 6 stars on an energy rating scale. Compliance with this minimum is mandatory but there are several methods through which residential buildings can be rated to comply with the deemed to satisfy provisions outlined in the NCC. FirstRate5 is by far the most commonly used simulation software used in Victoria, Australia. Meanwhile, Building Information Modelling (BIM), using software such as ArchiCAD has gained a foothold in the industry. The energy simulation software within ArchiCAD, EcoDesigner, enables the reporting on the energy performance based on BIM elements that contain thermal information. This research is founded on a comparative study between FirstRate5 and EcoDesigner. Three building types were analysed and compared. The comparison finds significant differences between simulations, being, measured areas, thermal loads and potentially serious shortcomings within FirstRate5, that are discussed along with the future potential of a fully BIM-integrated model for energy rating certification in Victoria.
keywords Building Information Modelling, energy rating, FirstRate 5, ArchiCAD EcoDesigner, Building Energy Model
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2013_021
id caadria2013_021
authors Alhadidi, Suleiman
year 2013
title Generative Design Intervention: Creating a Computational Platform for Sensing Space
doi https://doi.org/10.52842/conf.caadria.2013.345
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 345-354
summary This paper outlines some investigations from a project which utilizes computing and scripting of specific site components, spatio-temporal movement and behavioural patterns to explore how designer might understand people activities and formulate design interventions within public spaces. This research looks at how generative tools can facilitate designers to integrate the large volume of information received by hybrid data collection, and conventional data analysis directly into the design process. Through an examination of sensing urban space, this research proposes a method to track and record people’s movement patterns in order to implement them via generative design tool. To facilitate this, a scripting method is specified; which uses sensors and motion tracking devices to capture the use of a specific public space. This project proposes a methodology for developing designed spaces and optimal pathways generated from real-time data and feedback captured by sensors.  
wos WOS:000351496100034
keywords Real-time computation, Generative design, Sensing space, Design simulation  
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2013_249
id ecaade2013_249
authors Araya, Sergio; Zolotovsky, Ekaterina; Veliz, Felipe; Song, Juha; Reichert, Steffen; Boyce, Mary and Ortiz, Christine
year 2013
title Bioinformed Performative Composite Structures
doi https://doi.org/10.52842/conf.ecaade.2013.1.575
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 575-584
summary This ongoing investigation aims to learn from nature novel material organizations and structural systems in order to develop innovative architectural system. We developed a multidisciplinary approach, using scientific analysis and design research and prototyping. We focus on the study of a “living fossil” fish, whose armor system is so efficient it has remained almost unchanged for millions of years. We investigate its morphological characteristics, its structural properties, the assembly mechanisms and the underlying material properties in order to derive new principles to design new enhanced structural systems. We use micro computerized tomography and scanning electron microscopy to observe microstructures, parametric design to reconstruct the data into digital models and then several 3D printing technologies to prototype systems with high flexibility and adaptive capabilities, proposing new gradual material interfaces and transitions to embed performative capabilities and multifunctional potentials.
wos WOS:000340635300060
keywords Bioinformed; multi-material; composite; parametrics; performative design.
series eCAADe
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2013_003
id ecaade2013_003
authors Attia, Shady
year 2013
title Achieving Informed Decision-Making using Building Performance Simulation
doi https://doi.org/10.52842/conf.ecaade.2013.1.021
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 21-30
summary Building performance simulation (BPS) is the basis for informed decision-making of Net Zero Energy Buildings (NZEBs) design. This paper aims to investigate the use of building performance simulation tools as a method of informing the design decision of NZEBs. The aim of this study is to evaluate the effect of a simulation-based decision aid, ZEBO, on informed decision-making using sensitivity analysis. The objective is to assess the effect of ZEBO and other building performance simulation (BPS) tools on three specific outcomes: (i) knowledge and satisfaction when using simulation for NZEB design; (ii) users’ decision-making attitudes and patterns, and (iii) performance robustness based on an energy analysis. The paper utilizes three design case studies comprising a framework to test the use of BPS tools. The paper provides results that shed light on the effectiveness of sensitivity analysis as an approach for informing the design decisions of NZEBs.
wos WOS:000340635300001
keywords Decision support; early stage; design; simulation; architects
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2013_390
id sigradi2013_390
authors Banda, Pablo; Juan Eduardo Subercaseaux
year 2013
title Meta-patrones Morfogenéticos: Propuesta de Framework para Arquitecturas Generativas Basadas en Desempeño [Morphogenetic Meta-Patterns: A framework proposal for Performance-Generated Architectures]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 253 - 257
summary Architecture and Technology’s relationship nowadays has arrived to multi-disciplinary practices; they are growing exponentially while keeping away from to architectural discourse, are remarkable for its expressive power and the ability to solve complex problems. This opens the possibility for the generation of the organic, a path discarded by the Modern Movement in the past.Our approach explores three active premises called Morphogenetic Meta-Patterns: discrete processes (systemic guidelines) for the development of performance-based generative systems. These processes arise from Generative Design and their associated paradigms in the creation of a Framework between architecture and related disciplines.
keywords Design of parametric systems; Part-to-whole debate; Generative design
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2013_189
id sigradi2013_189
authors Bruscato, Underléa; Clariana Fischer Brendler; Felipe Schneider Viaro; Fábio Gonçalves Teixeira; Régio Pierre da Silva
year 2013
title Uso da Fabricação Digital e Prototipagem no Desenvolvimento do Projeto de Produto: Análises do Produto através de Simulações Digitais [Digital Manufacture and Rapid Prototyping in Product Design Development: Product Analysis through Digital Simulation]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 459 - 463
summary The aim of this paper is to design a public facilitie using both digital manufacture and rapid prototyping design methods. These new technologies have been used in product design development by some ways: helping in the comprehension of complex geometries; used as tools for analyzing the design process, thus avoiding errors in the project. The analysis were carried out using virtual simulation tests and physical prototype in reduced scale. The prototype was manufactured using the 3D printer V-Flash in the Virtual Design Laboratory – UFRGS, where positive and negatives aspects were identified and described.
keywords Digital manufacture; Rapid prototyping; Virtual simulation; Product design; Urban facilities
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia13_061
id acadia13_061
authors Bruscia, Nicholas; Romano, Christopher
year 2013
title Material Parameters and Digitally Informed Fabrication of Textured Metals
doi https://doi.org/10.52842/conf.acadia.2013.061
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 61-68
summary The research represented in this paper proposes to reinvestigate the relationship between structure and appearance through a performative analysis of textured stainless steel, as verified through full-scale prototyping. The work takes a scientific design approach while incorporating a computational workflow that is informed by the material’s physical parameters, and draws a connection between the scales of molecular composition to large-scale geometric systems.Furthermore, the work attempts to provide evidence for thin-gauge textured metals as a high performance and adaptive material, by identifying structural rigidity and particular specular quality as inherent characteristics born from the texturing process. In addition, through close collaboration with the sponsoring manufacturer of textured stainless steel, we are able to gain access to material expertise and large-scale fabrication equipment not readily available to designers, thereby forging a mutually beneficial relationship surrounding the research.
keywords Next Generation Technology, Architecture and Manufacturing, Material Research, Material Science, Digital Fabrication, Rigidized Metal, Parametric Modeling
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id sigradi2013_201
id sigradi2013_201
authors Bustamante Oleart, Carlos; Paulo K. Ogino Altamirano; Ester Higueras García
year 2013
title Estrategia Metodológica para la Visualización Digital de Patrones Aerodinámicos Presentes en la Morfología Urbana y su Incidencia en el Uso Estancial de los Espacios Públicos [Methodological Strategy for the Visualization of Aerodynamic Patterns in the Urban Morphology and their Impact on the Use of Public Spaces ]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 108 - 111
summary In relation to cities, wind is one of the less studied meteorological parameter. Constant vertical rate variations from meso scale to micro scale, altogether with strenght, direction, velocity of the urban canyon, makes the wind a complex subject of study. To achieve this, a methodological strategy that addresses the wind's multi dimensionality was raised. It was aplied to Punta Arenas, the southernmost city in the world, where most of the time winds come 90% from the same direction with speeds reaching 128 km/h. Wind's constant directional behavior allows the recognition of areodynamic phenomena produced, in the first instance, for the wind profiles influenced by the urban rugosity and then, at morphologycal level, the aerodynamic behavior of the layered fluids over the building bodies, generating a regular pattern between solids and fluids. The strong winds in cities with cold climate influence the use of public spaces, which, not being designed under this conditions, do not develop proper levels of thermal comfort.
keywords Aerodynamics; Urban morphology; Public space; Information visualization
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2013_345
id sigradi2013_345
authors Calixto, Victor; Charles C. Vincent
year 2013
title Arquitetura Algorítmica: Processos e Ferramentas [ Algorithmic Architecture: Processes and Tools]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 362 - 365
summary This paper presents the results of an academic research in the field of parametric-generative design and through projective tests and processes using parametric tools and computational logic. Thus, five experiments for the region of the Terminal Bandeira Flag Square were set forth. From the urban guidelines and an object in common, it was a distinct possibility, where it was possible to analyze the advances and setbacks in the process of project development. The approach taken is an exploration of design processes that involve computational logic for formulating, exploring and creating architectural themes and its interfaces with other fields of knowledge: algorithmic architecture.
keywords Performance-based design; Parametric modeling; Simulation
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2013_393
id sigradi2013_393
authors Cavieres, Andres; Joseph Goodman
year 2013
title The Role of Functional Knowledge in Multidisciplinary Design: The Case of Solar Energy Integration in Buildings
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 333 - 337
summary The paper presents a model-based methodology to support multidisciplinary collaboration for the application of photovoltaic systems to buildings. It focuses on the representation of domain specific knowledge necessary for the design of novel PV racking and mounting structures, based on principles of multi-functionality and functional integration. The proposed representation is based on a language for modeling functional requirements in terms of causal behaviors. These behavioral models provide common ground not only for multidisciplinary design, but also for the elaboration of performance metrics and verification procedures for evaluation of design alternatives. The paper concludes with a discussion on the potential of Model-based approach to support innovation in Design.
keywords Knowledge representation; Functional requirement; Model-based systems Integration; Multidisciplinary design; Solar energy
series SIGRADI
email
last changed 2016/03/10 09:48

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_414833 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002