CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 611

_id ecaade2013_184
id ecaade2013_184
authors Fraguada, Luis; Girot, Christophe and Melsom, James
year 2013
title Ambient Terrain
doi https://doi.org/10.52842/conf.ecaade.2013.1.433
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 433-438
summary ‘Ambient Terrain’ explores the application of large-scale, sensor-based site analysis. The research develops various techniques dealing with the logging, storage, retrieval, analysis, and representation of sensor and image-based data. These techniques could be utilized in concert with traditional site preparation and site information gathering processes, and could arguably serve to reevaluate the site preparation process altogether in a manner which not only focuses on terrestrial data, but also on metrics which are dynamic and multidimensional.The research proposes direct applications for urban space and the built environment, in the modes of site appraisal, design and the generation of new spatial strategies.
wos WOS:000340635300045
keywords Unmanned Aerial Vehicle; sensor data logging, ambient site analysis, UAV data collection; photogrammetry, stereophotogrammetry.
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2013_296
id ecaade2013_296
authors Vidmar, Jernej
year 2013
title Parametric Maps for Performance-Based Urban Design
doi https://doi.org/10.52842/conf.ecaade.2013.1.311
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 311-316
summary Urban design is a complex process which deals with multitude of aspects to shape quality urban space. On one hand, we have quantitative aspects such as land use, building heights or floor space index which are tackled on top-down approach. On the other hand, we need to take into consideration more subjective, qualitative aspects such as building shapes and space between them based on bottom-up principle.In order to connect both principles, a new, performance-based parametric urban design method is proposed. It is based on a concept of parametric maps, which represent spatial distribution of key building parameters (quantitative criteria, top-down) throughout the area and are preliminary loaded into the virtual urban development area. Once parametric maps are loaded, we begin designing a development by placing the buildings (qualitative criteria, bottom-up), which adapt their parameters while changing their locations. Parametric maps thus represent a link between a set of spatial parameters and the actual shape of each building in a way, which connects both, top-down and bottom-up principles of urban design into a single conceptual framework.In order to evaluate this new method, an interactive prototype application has been developed in Maya (3D modeling software) and the following results were obtained: 1.) a significant speedup is possible in the creation of different design alternatives in early stage of urban design process; 2.) use of parametric maps is most suitable for mid- to large-scale projects (+15 buildings), while they can be redundant for small-scale areas; 3.) possibility of inconsistency with site regulations is diminished.
wos WOS:000340635300032
keywords Parametric; map; performance-based; urban design; urbanism.
series eCAADe
type normal paper
email
last changed 2022/06/07 07:58

_id caadria2013_004
id caadria2013_004
authors Rekittke, Joerg; Yazid Ninsalam and Philip Paar
year 2013
title Open to Ridicule – Deploying Plaything Technology for 3D Modelling of Urban Informal Settlements in Asia 
doi https://doi.org/10.52842/conf.caadria.2013.541
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 541-550
summary As technology affine urban landscape researchers,working in Asian mega cities, we roam through crowded and narrow, widely informal city layouts, where we apply digitalfieldwork equipment and conduct design work. We use low cost cameras and camera drones, tools that had been developed asgadgets for outdoor freaks or plaything for nerds. In this paper, we describe recent advances in the development of amethod of on-site data and image gathering, which allows the processing of concrete 3D models of informal city spaces. Thevisual quality of these models is still moderate, but the resulting three-dimensional spatial puzzlemakes a widelyinaccessible and undocumented piece of city terrain visible, understandable and designable. The software used is free.
wos WOS:000351496100053
keywords Fieldwork tools, Mapping, 3D modelling  
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2013_021
id caadria2013_021
authors Alhadidi, Suleiman
year 2013
title Generative Design Intervention: Creating a Computational Platform for Sensing Space
doi https://doi.org/10.52842/conf.caadria.2013.345
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 345-354
summary This paper outlines some investigations from a project which utilizes computing and scripting of specific site components, spatio-temporal movement and behavioural patterns to explore how designer might understand people activities and formulate design interventions within public spaces. This research looks at how generative tools can facilitate designers to integrate the large volume of information received by hybrid data collection, and conventional data analysis directly into the design process. Through an examination of sensing urban space, this research proposes a method to track and record people’s movement patterns in order to implement them via generative design tool. To facilitate this, a scripting method is specified; which uses sensors and motion tracking devices to capture the use of a specific public space. This project proposes a methodology for developing designed spaces and optimal pathways generated from real-time data and feedback captured by sensors.  
wos WOS:000351496100034
keywords Real-time computation, Generative design, Sensing space, Design simulation  
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia13_121
id acadia13_121
authors Beites, Steven
year 2013
title Morphological Behavior of Shape Memory Polymers Toward a Deployable, Adaptive Architecture
doi https://doi.org/10.52842/conf.acadia.2013.121
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 121-128
summary Shape-memory polymers (SMPs) are an emerging class of “smart materials” that have dual-shape capability. They are able to undergo significant deformation when exposed to an external stimulus such as heat or light. SMPs have been widely investigated within the biomedicine and aerospace industries; however, their potential has yet to be explored within an architectural framework. The research presented in this paper begins an investigation into the morphological behavior ofSMPs toward a deployable, adaptive architecture. The structure’s ease of assembly, compact storage, transportability and configurable properties offer promising applications in emergency and disaster relief shelters, lightweight recreational structures and a variety of other applications in the temporary construction and aerospace industry. This paper explores the use of SMPs through the development of a dynamic actuator that links a series of interconnected panels creating overall form to a self-standing structure. The shape-shifting behavior of the SMP allows the dynamic actuator to become flexible when storage and transportability are required. Alternatively, when exposed to the appropriate temperature range, the actuator is capable of returning to its memorized state for on-site deployment. Through a series ofprototypes, this paper will provide a fundamental understanding of the SMP’s thermo-mechanicalproperties toward deployable, adaptive architecture.
keywords next-generation technology, smart materials, shape-memory polymers, material analysis, smart assemblies, dynamic actuator, soft architecture
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id acadia13_061
id acadia13_061
authors Bruscia, Nicholas; Romano, Christopher
year 2013
title Material Parameters and Digitally Informed Fabrication of Textured Metals
doi https://doi.org/10.52842/conf.acadia.2013.061
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 61-68
summary The research represented in this paper proposes to reinvestigate the relationship between structure and appearance through a performative analysis of textured stainless steel, as verified through full-scale prototyping. The work takes a scientific design approach while incorporating a computational workflow that is informed by the material’s physical parameters, and draws a connection between the scales of molecular composition to large-scale geometric systems.Furthermore, the work attempts to provide evidence for thin-gauge textured metals as a high performance and adaptive material, by identifying structural rigidity and particular specular quality as inherent characteristics born from the texturing process. In addition, through close collaboration with the sponsoring manufacturer of textured stainless steel, we are able to gain access to material expertise and large-scale fabrication equipment not readily available to designers, thereby forging a mutually beneficial relationship surrounding the research.
keywords Next Generation Technology, Architecture and Manufacturing, Material Research, Material Science, Digital Fabrication, Rigidized Metal, Parametric Modeling
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id caadria2013_220
id caadria2013_220
authors Chaszar, André and José Nuno Beirão
year 2013
title Feature Recognition and Clustering for Urban Modelling – Exploration and Analysis in GIS and CAD
doi https://doi.org/10.52842/conf.caadria.2013.601
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 601-610
summary In urban planning exploration and analysis assist the generation, measurement, interpretation and management of the modelled urban environments. This frequently involves categorisation of model elements and identification of element types. Such designation of elements can be achieved through attribution (e.g. ‘tagging’ or ‘layering’) or direct selection by model users. However, for large, complex models the number and arrangement of elements makes these approaches impractical in terms of time/effort and accuracy. This is particularly true of models which include substantial numbers of elements representing existing urban fabric, rather than only newly generated elements (which might be automatically attributed during the generation process). We present methods for identification and categorisation of model elements in models of existing and proposed urban agglomerations. We also suggest how these methods can enable exploration of models, discovery of identities and relationships not otherwise obvious, and acquisition of insights to the models’ structure and contents which are not captured, and may even be obscured, by manual selection or automated pre-attribution.  
wos WOS:000351496100059
keywords City information modelling, Data mining, Feature recognition, Geometric-content-based-search, Urban typologies 
series CAADRIA
email
last changed 2022/06/07 07:55

_id acadia13_301
id acadia13_301
authors Dierichs, Karola; Menges, Achim
year 2013
title Aggregate Architecture: Simulation Models for Synthetic Non-convex Granulates
doi https://doi.org/10.52842/conf.acadia.2013.301
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 301-310
summary Aggregate Architectures challenge the common notion of architectural structures as being immutable, permanent and controllable. Aggregate Architectures are understood as material systems consisting of large masses of granules—designed or natural—interacting with each other only through loose, frictional contact. As a consequence, they take the realm of structural stability and architectural planning into entire re-configurability and into merely probable predictions of their prospective behavior. This renders them relevant within the paradigm of Adaptive Architecture.The challenge to the designer is to move away from thinking in terms of clearly defined local and global assembly systems and to acquire tools and modes of design that allow for observation and interaction with the evolving granular architectures. In this context, the focus of the presented researchproject is on the relevance of mathematically based simulations as tools of investigation and design.The paper introduces the field of Aggregate Architectures. Consequently experimental and simulation methods for granulates will be outlined and compared. Different modeling and collision-detection methods for non-convex particles are shown and applied in benchmarking simulations for a full-scale architectural prototype. The potential for micro-mechanical simulation analysis within architectural applications are demonstrated and further areas of research outlined.
keywords Tools and Interfaces; aggregate architecture, designed granular matter, discrete element modeling, non-convex particles
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:55

_id ijac201311302
id ijac201311302
authors Meagher, Mark; David van der Maas, Christian Abegg, Jeffrey Huang
year 2013
title Dynamic ornament: An investigation of responsive thermochromic surfaces in architecture
source International Journal of Architectural Computing vol. 11 - no. 3, 301-318
summary This paper describes the use of environmental sensor data as a basis for the design of architectural ornament that takes on a distinctive appearance in response to the atmospheric conditions where it is located. Among the goals of the project were the identification of inexpensive fabrication methods that could be used to build responsive surfaces at the scale of a room, and the identification of material and tectonic strategies for integrating dynamic information displays in buildings. A series of prototypes were constructed to explore the benefits and limitations of thermochromic ink as a material for visualizing dynamic data, and a method is proposed for building thermochromic surfaces based on printed circuit boards (PCB's) that is cost-effective and allows the fabrication of large surfaces through tiling. The limitations of this method include high power consumption, a short lifespan and difficulties in controlling the surface temperature.
series journal
last changed 2019/05/24 09:55

_id ecaade2023_227
id ecaade2023_227
authors Moorhouse, Jon and Freeman, Tim
year 2023
title Towards a Genome for Zero Carbon Retrofit of UK Housing
doi https://doi.org/10.52842/conf.ecaade.2023.2.197
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 197–206
summary The United Kingdom has some of the worst insulated housing stock in Northern Europe. This is in part due to the age of housing in the UK, with over 90% being built before 1990 [McCrone 2017, Piddington 2020]. Moreover, 85% of current UK housing will still be in use in 2050 by which stage their Government are targeting Net Carbon Zero [Eyre 2019]. Domestic energy use accounts for around 25% of UK carbon emissions. The UK will need to retrofit 20 million dwellings in order to meet this target. If this delivery were evenly spread, it would equate to over 2,000 retrofit completions each day. Government-funded initiatives are stimulating the market, with upwards of 60,000 social housing retrofits planned for 2023, but it is clear that a system must be developed to enable the design and implementation of housing-stock improvement at a large scale.This paper charts the 20-year development of a digital approach to the design for low-carbon domestic retrofit by architects Constructive Thinking Studio Limited and thence documents the emergence of a collaborative approach to retrofit patterns on a National scale. The author has led the Research and Development stream of this practice, developing a Building Information Modelling methodology and integrated Energy Modelling techniques to optimise design for housing retrofit [Georgiadou 2019, Ben 2020], and then inform a growing palette of details and a database of validated solutions [Moorhouse 2013] that can grow and be used to predict options for future projects [D’Angelo 2022]. The data is augmented by monitoring energy and environmental performance, enabling a growing body of knowledge that can be aligned with existing big data to simulate the benefits of nationwide stock improvement. The paper outlines incremental case studies and collaborative methods pivotal in developing this work The proposed outcome of the work is a Retrofit Genome that is available at a national level.
keywords Retrofit, Housing, Zero-Carbon, BIM, Big Data, Design Genome
series eCAADe
email
last changed 2023/12/10 10:49

_id cf2013_286
id cf2013_286
authors Pang, Lei; Xiaodong Song, and Chengyu Sun
year 2013
title Computer Aided Simulation for Compact Residential Regulatory Plan
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 286-294.
summary Residential land development requires compact and intelligent growth in order to conserve land, especially in countries such as China with a large population but little usable land for built environment. This should not be done at the expense of public green space. Living density is an important issue that cannot be avoided in the urbanization process. This research uses Spatial Form Compact as the goal of trying to support the residential regulatory plan. A prototype site has been chosen to optimize the layout. Suppose the type of residential building had been decided and FAR is given as a premise. This method allows the arrangement of residential buildings to be compact and leads to more available space for concentrated green area, for example parks or other facilities. The BL-based method of genetic algorithm and VB program is used for the optimization and calculation of the prototype. The arrangement of residential buildings which is done by computer in this period is only used to explore the relationship between FAR and reasonable building layout. In order to guide the real construction of the building, the site plan should be done further elaborately under the guidance of regulatory plan by the developer and urban planner.
keywords Compact, Residential area, FAR, Concentrated Green Space
series CAAD Futures
email
last changed 2014/03/24 07:08

_id caadria2013_140
id caadria2013_140
authors Park, Juhong and Takehiko Nagakura
year 2013
title A Thousand BIM – A Rapid Value-Simulation Approach to Developing a BIM Tool for Supporting Collaboration During Schematic Design
doi https://doi.org/10.52842/conf.caadria.2013.023
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 23-32
summary A typical architectural design project proceeds as collaboration among professionals who have different expertise, values and priorities. The collaboration is needed to make designs both rich yet feasible, but the professionally different ways of thinking can also be a block on the way of design development. This paper takes the example of the relationship between developers and architects, who tend to have different evaluation criteria, methods, and processes. A BIM-based tool, A Thousand BIM, is introduced as a means to quickly generate possible building typologies on a given project site, with computation of expected total values expressed in simple financial terms. Its aim is to help a group of heterogeneous professionals to communicate in the same language, articulate criteria and priorities in multiple perspectives, and share rapidly simulated evaluations of schematic design variations. The implemented evaluation process considers construction cost per square foot, land value, and sustainability as well as other soft design values such as views and accessibility. It can take various market data as inputs to cost calculation, and the weight to each of the design values is dynamically adjustable. A professional can explicitly set them, and share the criteria, priorities, and results of value simulations with others in an enhanced collaborative process.  
wos WOS:000351496100003
keywords BIM, Pro-forma, Design collaboration, Value simulation 
series CAADRIA
email
last changed 2022/06/07 08:00

_id acadia13_433
id acadia13_433
authors Peters, Brian
year 2013
title Building Bytes: 3D-Printed Bricks
doi https://doi.org/10.52842/conf.acadia.2013.433
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 433-434
summary Combining a traditional building material (ceramics) with a new fabrication technique (3D printing) to rethink an ancient building component (bricks), Building Bytes demonstrates how 3D printers will become portable, inexpensive brick factories for large-scale construction.
keywords Next Generation Technology, 3D printing, bricks, ceramics, Grasshopper, parametric design
series ACADIA
type Research Poster
last changed 2022/06/07 08:00

_id caadria2016_497
id caadria2016_497
authors Ryu, Jungrim; Jaehong Jun, Seunghyeon Lee and Seungyeon Choo
year 2016
title A Study on Development of the IFC-based Indoor Spatial Information for Data Visualisation
doi https://doi.org/10.52842/conf.caadria.2016.497
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 497-506
summary MOLIT authorised Indoor Spatial Information as Basic spa- tial information in 2013. It became a legal evidence for constructing and managing Indoor Spatial Information. Although it has a little ad- vantage to utilise as service level that Indoor Spatial Information by laser scan or measurement, it has a lot of problems such as consuming many resources, requiring additional progresses for inputting Object Information. In conclusion, it is inefficient to utilise for the mainte- nance and domestic AEC/FM field. The purposes of this study is to output Indoor Spatial Information by operating IFC model which based on open BIM and to improve availability of Indoor Spatial In- formation with data visualisation. The open-sources of IFC Exporter, an inner program of Revit, is used to output Indoor Spatial Infor- mation. Directs 3D Library is also operated to visualise Indoor Spatial Information. It is possible to inter-operate between XML format and the objects of Indoor Spatial Information. It can be utilised in various field as well. For example COBie linkage in facility management, construction of geo-database using air-photogrammetry of UA V , the simulation of large-scale military operations and the simulation of large-scale evacuation. The method that is purposed in this study has outstanding advantages such as conformance with national spatial in- formation policy, high level of interoperability as indoor spatial in- formation objects based on IFC, convenience of editing information, light level of data and simplifying progress of producing information.
keywords Indoor spatial information, data visualisation, open BIM, IFC
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia13_347
id acadia13_347
authors Sabin, Jenny E.
year 2013
title myThread Pavilion: Generative Fabrication in Knitting Processes
doi https://doi.org/10.52842/conf.acadia.2013.347
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 347-354
summary Advancements in weaving, knitting and braiding technologies have brought to surface high-tech and high- performance composite fabrics. These products have historically infiltrated the aerospace, automobile, sports and marine industries, but architecture has not yet fully benefitted from these lightweight freeform surface structures. myThread, a commission from the Nike FlyKnit Collective, features knitted textile structures at the scale of a pavilion. The evolution of digital tools in architecture has prompted new techniques of fabrication alongside new understandings in the organization of material through its properties and potential for assemblage. No longer privileging column, beam and arch, our definition of architectural tectonics has broadened alongside advancements made in computational design. Internal geometries inherent to natural forms, whose complexity could not be computed with the human mind alone, may now be explored synthetically through mathematics and generative systems. Textiles offer architecture a robust design process whereby computational techniques, pattern manipulation, material production and fabrication are explored as an interconnected loop that may feed back upon itself in no particular linear fashion. The myThread Pavilion integrates emerging technologies in design through the materialization of dynamic data sets generated by the human body engaged in sport and movement activities in the city.
keywords next generation technology, textiles, responsive material, knitting, data visualization, generative design, bio-data
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:59

_id acadia13_161
id acadia13_161
authors Akbarzadeh; Masoud
year 2013
title Performative Surfaces: Generating complex geometries using planar flow patterns
doi https://doi.org/10.52842/conf.acadia.2013.161
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 161-172
summary This research explains the development process of a design tool that can construct complex surface geometries using only two-dimensional plan drawings. The intention behind this tool is to address certain complex behavior of surface geometries such as hydrological characteristics. This paper briefly explains the historic and mathematic description of surface data structures, according to Cayley, Maxwell and Morse. This is followed by a brief introduction of the surface network/critical graph extraction technique in GIS. Additionally, the algorithm of contour extraction from asimple critical graph to reconstruct a surface is explained. In the final section the lessons learnedfrom the previous sections are used to develop algorithms for a tool which uses only plan drawings to construct complex surfaces. Three algorithms are explained in the final section among which the third one is considered to be the most complete and promising approach. Therefore,some design examples are presented to show the flexibility of the tool. At the end, this paper provides suggestions and discussions to reflect further ideas in order to improve the tool in future.
keywords Tools and Interfaces, complex surface, drainage patterns, discrete flow diagram, surface networks, critical graph, and surface generation
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id ijac201310103
id ijac201310103
authors Bollmann, Dietrich and Alvaro Bonfiglio
year 2013
title Design Constraint Systems - A Generative Approach to Architecture
source International Journal of Architectural Computing vol. 11 - no. 1, 37-63
summary Generative Architectural Design permits the automatic (or semiautomatic) generation of architectural objects for a wide range of applications, from archaeological research and reconstruction to digital sketching. In this paper the authors introduce design constraint systems (DCS), their approach to the generation of architectural design with the help of a simple example: The development of the necessary formalisms to generate a family of architectural designs, i.e. simple houses and pagodas. After explaining the formal system the authors introduce an approach for the generation of complex form based on the application of transformations and distortions.Architecture is bound by the constraints of physical reality: Gravitation and the properties of the used materials define the limits in which architectural design is possible. With the recent development of new materials and construction methods however, the ways in which form and physics go together get more complicated. As a result, the shapes of architecture gain more liberty, and more and more complex shapes and structures become possible.While these advances allow for new ways of architectural expression, they also make the design process much more challenging. For this reason new tools are necessary for making this complexity manageable for the architect and enable her to play and experiment with the new possibilities of complex shapes and structures. Design constraint systems can be used as tool for experimentation with complex form. Therefore, the authors dedicate the final part of this paper to a concise delineation of an approach for the generation of complex and irregular shapes and structures. While the examples used are simple, they give an idea of the generality of design constraint systems: By using a two-component approach to the generation of designs (the first component describes the abstract structure of the modelled objects while the second component interprets the structure and generates the actual geometric forms) and allowing the user to adjust both components freely, it can be adapted to all kind of different architectural styles, from historical to contemporary architecture.
series journal
last changed 2019/05/24 09:55

_id ecaade2013_061
id ecaade2013_061
authors Ciftcioglu, Ozer and Bittermann, Michael S.
year 2013
title Fusion of Perceptions in Architectural Design
doi https://doi.org/10.52842/conf.ecaade.2013.2.335
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 335-344
summary A method for fusion of perceptions is presented. It is based on probabilistic treatment of perception, where perception quantifies the chance an unbiased observer sees an environmental object, and the associated probability can be interpreted as degree of awareness for the object. The approach uniquely accounts for the fact that final realization or remembrance of a scene in the brain may be absent or elusive, so that it is subject to probabilistic considerations. For objects that are to be perceived from multiple viewpoints, such as a sculpture in a museum, or a building in its urban context, the probabilistic approach uniquely defines the fusion of perceptions. This is accomplished by carrying out the probabilistic union of events. The computation is presented together with its geometric implications, which become rather intricate for multiple observers, whereas the computation is straight forward. The method is exemplified for two applications in architectural design at different scales, namely interior and urban design, indicating the generic nature as well as the large application potential of the method.
wos WOS:000340643600034
keywords Perception; vision modeling; architectural design; evolutionary search.
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2013_015
id caadria2013_015
authors Dritsas, Stylianos and Kang Shua Yeo
year 2013
title Undrawable Architecture – Digital Workflows for the Conservation of Heritage Buildings and the  Discovery of Digital Tectonic
doi https://doi.org/10.52842/conf.caadria.2013.833
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 833-842
summary This paper presents a datacentric perspective to historical building conservation using digital media. In particular we explore a workflow based on large volumes digital data acquired via 3D scanning technology, virtual restoration using 3D modelling and physical artefact reconstruction using 3D printing technology. We offer an alternative perspective in contrast to the prevalent approach of reverse engineering or geometric rationalization via parametric design technology; highlight the research and design opportunities as well as the challenges of the approach. 
wos WOS:000351496100086
keywords Digital conservation, 3D scanning, Rapid prototyping 
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2013_240
id caadria2013_240
authors Fok, Wendy W.
year 2013
title 3 Scales of Repurposed Disposability – Diversion of Construction, Renovation and Demolition (CRD)
doi https://doi.org/10.52842/conf.caadria.2013.811
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 811-820
summary Project managers and construction contractors have long recognized the importance of reducing waste and salvaging high value construction and demolition materials such as copper and other metals. Contractors are usually careful about the quantity of materials ordered, how materials are used and how to carefully deconstruct valuable materials. In most cases however, materials that are more difficult to separate and that are worth less per unit weight are still going to landfill, even when they are present in large quantities. This represents an inefficient use of natural resources and uses up landfill capacity unnecessarily. Unfortunately, some contractors do not realize that there are new opportunities for waste minimization, while others are reluctant to implement environmental practices because they believe these practices will increase their project costs. Most contractors are concerned about the cost of the labour that is needed to deconstruct materials for reuse or recycling. However, it has been shown that effective waste management during CRD projects not only helps protect the environment, but can also generate significant economic savings. Various projects from within our practice and within our academic curriculum will be brought into the attention of this paper. Specifics of modularity, form/fit/analysis, fabrication, and off-site production, will be demonstrated within the larger discussion through the focus onto three case studies.  
wos WOS:000351496100074
keywords Construction alternatives, Waste management, Offsite production, Fabrication, Form/Fit/Analysis, Modularity 
series CAADRIA
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_9863 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002