CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 408

_id ecaade2013_068
id ecaade2013_068
authors Attia, Shady and Andersen, Marilyne
year 2013
title Measuring the Usability, Efficiency and Effectiveness of CAAD Tools and Applications
doi https://doi.org/10.52842/conf.ecaade.2013.1.147
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 147-155
wos WOS:000340635300014
summary Computer Aided Architectural Design (CAAD) decisions and judgments have been at the heart of architectural design practice. Despite the increasing popularity of computer aided design applications, measuring the decision making of designers empirically remains elusive. Past research claiming usefulness of the CAD has relied largely on anecdotal or case studies that are vulnerable to bias. The study reviews results of prior investigations. The relatively few laboratory experiments report hardly any empirical results regarding the measurement of CAD decision making. The study provides an overview of the literature of existing measurement methods that have been used in psychology and neuroscience to assess individual variations in design making, and highlight these different measurement methods’ strengths and weaknesses. We conclude with a comparative evaluation of the different measures and provide suggestions regarding their constructive use in building realistic theories of designer’s decision making measurement.
keywords Measurement; usability; efficiency; effectiveness; CAAD.
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia13_121
id acadia13_121
authors Beites, Steven
year 2013
title Morphological Behavior of Shape Memory Polymers Toward a Deployable, Adaptive Architecture
doi https://doi.org/10.52842/conf.acadia.2013.121
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 121-128
summary Shape-memory polymers (SMPs) are an emerging class of “smart materials” that have dual-shape capability. They are able to undergo significant deformation when exposed to an external stimulus such as heat or light. SMPs have been widely investigated within the biomedicine and aerospace industries; however, their potential has yet to be explored within an architectural framework. The research presented in this paper begins an investigation into the morphological behavior ofSMPs toward a deployable, adaptive architecture. The structure’s ease of assembly, compact storage, transportability and configurable properties offer promising applications in emergency and disaster relief shelters, lightweight recreational structures and a variety of other applications in the temporary construction and aerospace industry. This paper explores the use of SMPs through the development of a dynamic actuator that links a series of interconnected panels creating overall form to a self-standing structure. The shape-shifting behavior of the SMP allows the dynamic actuator to become flexible when storage and transportability are required. Alternatively, when exposed to the appropriate temperature range, the actuator is capable of returning to its memorized state for on-site deployment. Through a series ofprototypes, this paper will provide a fundamental understanding of the SMP’s thermo-mechanicalproperties toward deployable, adaptive architecture.
keywords next-generation technology, smart materials, shape-memory polymers, material analysis, smart assemblies, dynamic actuator, soft architecture
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id ijac201310103
id ijac201310103
authors Bollmann, Dietrich and Alvaro Bonfiglio
year 2013
title Design Constraint Systems - A Generative Approach to Architecture
source International Journal of Architectural Computing vol. 11 - no. 1, 37-63
summary Generative Architectural Design permits the automatic (or semiautomatic) generation of architectural objects for a wide range of applications, from archaeological research and reconstruction to digital sketching. In this paper the authors introduce design constraint systems (DCS), their approach to the generation of architectural design with the help of a simple example: The development of the necessary formalisms to generate a family of architectural designs, i.e. simple houses and pagodas. After explaining the formal system the authors introduce an approach for the generation of complex form based on the application of transformations and distortions.Architecture is bound by the constraints of physical reality: Gravitation and the properties of the used materials define the limits in which architectural design is possible. With the recent development of new materials and construction methods however, the ways in which form and physics go together get more complicated. As a result, the shapes of architecture gain more liberty, and more and more complex shapes and structures become possible.While these advances allow for new ways of architectural expression, they also make the design process much more challenging. For this reason new tools are necessary for making this complexity manageable for the architect and enable her to play and experiment with the new possibilities of complex shapes and structures. Design constraint systems can be used as tool for experimentation with complex form. Therefore, the authors dedicate the final part of this paper to a concise delineation of an approach for the generation of complex and irregular shapes and structures. While the examples used are simple, they give an idea of the generality of design constraint systems: By using a two-component approach to the generation of designs (the first component describes the abstract structure of the modelled objects while the second component interprets the structure and generates the actual geometric forms) and allowing the user to adjust both components freely, it can be adapted to all kind of different architectural styles, from historical to contemporary architecture.
series journal
last changed 2019/05/24 09:55

_id sigradi2013_281
id sigradi2013_281
authors Braida Rodrigues de Paula, Frederico; Lara Scanapieco Barreto; Felipe Arlindo Silva; Fernando Lima; Vinícius Morais
year 2013
title Maquetes Híbridas: Diálogos Entre as Técnicas Tradicionais e as Tecnologias Digitais no Processo Projetual [Hybrid Models: Dialogues Between Traditional Techniques and Digital Technologies in the Design Process]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 49 - 53
summary This article is about hybrid models, as a kind of three-dimensional representation emerged from of the possibilities of combining traditional techniques with digital technologies. The purpose is to reflect on the possibilities of production and applications of these types of hybrid models, highlighting them as recurring elements of design practice after the rise of new technologies of information and communication, and prototyping and digital manufacturing. By adopting the model as an object of research, we propose to expand the field of reflection on the incorporation of several digital technologies in the design process, specifically aspects of three-dimensional and graphical representation.
keywords Hybrid models; Digital technologies; Architecture and Urbanism
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2013_061
id ecaade2013_061
authors Ciftcioglu, Ozer and Bittermann, Michael S.
year 2013
title Fusion of Perceptions in Architectural Design
doi https://doi.org/10.52842/conf.ecaade.2013.2.335
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 335-344
wos WOS:000340643600034
summary A method for fusion of perceptions is presented. It is based on probabilistic treatment of perception, where perception quantifies the chance an unbiased observer sees an environmental object, and the associated probability can be interpreted as degree of awareness for the object. The approach uniquely accounts for the fact that final realization or remembrance of a scene in the brain may be absent or elusive, so that it is subject to probabilistic considerations. For objects that are to be perceived from multiple viewpoints, such as a sculpture in a museum, or a building in its urban context, the probabilistic approach uniquely defines the fusion of perceptions. This is accomplished by carrying out the probabilistic union of events. The computation is presented together with its geometric implications, which become rather intricate for multiple observers, whereas the computation is straight forward. The method is exemplified for two applications in architectural design at different scales, namely interior and urban design, indicating the generic nature as well as the large application potential of the method.
keywords Perception; vision modeling; architectural design; evolutionary search.
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_405
id ecaadesigradi2019_405
authors da Cunha Teixeira, Luísa and Cury Paraizo, Rodrigo
year 2019
title Caronae - ridesharing and first steps into commuting opportunitie of academic exchange
doi https://doi.org/10.52842/conf.ecaade.2019.1.805
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 805-816
summary Location-based mobile applications have been a rising theme for academics in the field of urbanism and in urban and transportation, because of the potential of transformation they might bring to the urban landscape (De Souza e Silva, 2013). One of the possibilities we study here is to observe social encounters fostered by commuting rides. In this paper, we try to examine the practice from the broad perspective of estimating the environmental benefits, in a context where digital information technology is wielded to address problems old and new (Townsend, 2014). This paper aims to analyze the potential of transformations that new ICTs bring to urban mobility, using as case study the official ridesharing system of the Federal University of Rio de Janeiro, the Carona? project. The system was developed focusing on the reduction of the number of motorized trips to the University, as well as the amount of CO2 generated by them. Here we analyze the dynamics of ridesharing, using the system data, and also try to observe the role it may play towards the promotion of integration in the UFRJ community.
keywords mobile apps; urban mobility; ridesharing; caronae ufrj
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id acadia13_301
id acadia13_301
authors Dierichs, Karola; Menges, Achim
year 2013
title Aggregate Architecture: Simulation Models for Synthetic Non-convex Granulates
doi https://doi.org/10.52842/conf.acadia.2013.301
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 301-310
summary Aggregate Architectures challenge the common notion of architectural structures as being immutable, permanent and controllable. Aggregate Architectures are understood as material systems consisting of large masses of granules—designed or natural—interacting with each other only through loose, frictional contact. As a consequence, they take the realm of structural stability and architectural planning into entire re-configurability and into merely probable predictions of their prospective behavior. This renders them relevant within the paradigm of Adaptive Architecture.The challenge to the designer is to move away from thinking in terms of clearly defined local and global assembly systems and to acquire tools and modes of design that allow for observation and interaction with the evolving granular architectures. In this context, the focus of the presented researchproject is on the relevance of mathematically based simulations as tools of investigation and design.The paper introduces the field of Aggregate Architectures. Consequently experimental and simulation methods for granulates will be outlined and compared. Different modeling and collision-detection methods for non-convex particles are shown and applied in benchmarking simulations for a full-scale architectural prototype. The potential for micro-mechanical simulation analysis within architectural applications are demonstrated and further areas of research outlined.
keywords Tools and Interfaces; aggregate architecture, designed granular matter, discrete element modeling, non-convex particles
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:55

_id ecaade2013_011
id ecaade2013_011
authors Dritsas, Stylianos; Kalvo, Raul and Sevtsuk, Andres
year 2013
title Packing Optimization for Digital Fabrication
doi https://doi.org/10.52842/conf.ecaade.2013.1.655
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 655-664
wos WOS:000340635300068
summary We present a design-computation method of design-to-production automation and optimization in digital fabrication; an algorithmic process minimizing material use, reducing fabrication time and improving production costs of complex architectural form. Our system compacts structural elements of variable dimensions within fixed-size sheets of stock material, revisiting a classical challenge known as the two-dimensional bin-packing problem. We demonstrate improvements in performance using our heuristic metric, an approach with potential for a wider range of architectural and engineering design-built digital fabrication applications, and discuss the challenges of constructing free-form design efficiently using operational research methodologies.
keywords Design computation; digital fabrication; automation; optimization.
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2013_184
id ecaade2013_184
authors Fraguada, Luis; Girot, Christophe and Melsom, James
year 2013
title Ambient Terrain
doi https://doi.org/10.52842/conf.ecaade.2013.1.433
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 433-438
wos WOS:000340635300045
summary ‘Ambient Terrain’ explores the application of large-scale, sensor-based site analysis. The research develops various techniques dealing with the logging, storage, retrieval, analysis, and representation of sensor and image-based data. These techniques could be utilized in concert with traditional site preparation and site information gathering processes, and could arguably serve to reevaluate the site preparation process altogether in a manner which not only focuses on terrestrial data, but also on metrics which are dynamic and multidimensional.The research proposes direct applications for urban space and the built environment, in the modes of site appraisal, design and the generation of new spatial strategies.
keywords Unmanned Aerial Vehicle; sensor data logging, ambient site analysis, UAV data collection; photogrammetry, stereophotogrammetry.
series eCAADe
email
last changed 2022/06/07 07:50

_id ijac201310106
id ijac201310106
authors Garg, Yogesh K. and Vinay M. Das
year 2013
title Generating 3 Dimensional Pavilions Described in Mayamatam; A Traditional Indian Architecture Treatise
source International Journal of Architectural Computing vol. 11 - no. 1, 105-134
summary The traditional or classical architecture of India is an interesting subject for exploration from different perspectives.Taking pavilions described in Mayamatam as a representative of the traditional or classical architecture of India and analyzing them from the viewpoint of pattern recognition and mathematics encouraging results are obtained.A pattern is seen in the development of the design of pavilions and has been coded alpha-numerically. Based on the system of development and employing computer applications software is created to design pavilions, which follow the principles of traditional architecture.This software has multiple benefits. It can be used as a teaching aid for the subject ‘history of Indian Architecture’. For architectural conservationists and heritage enthusiasts it offers itself as a tool to help in visualization and digital reconstruction. For architects it can be a means for making structures of recent times, which have the essence of traditional architecture.The aim of this paper is to highlight the methodology for preparing this software and demonstrating its output.
series journal
last changed 2019/05/24 09:55

_id acadia23_v2_340
id acadia23_v2_340
authors Huang, Lee-Su; Spaw, Gregory
year 2023
title Augmented Reality Assisted Robotic: Tube Bending
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 2: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-0-3]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 340-349.
summary The intent of this research is to study potential improvements and optimizations in the context of robotic fabrication paired with Augmented Reality (AR), leveraging the technology in the fabrication of the individual part, as well as guiding the larger assembly process. AR applications within the Architecture, Engineering, and Construction (AEC) industry have seen constant research and development as designers, fabricators, and contractors seek methods to reduce errors, minimize waste, and optimize efficiency to lower costs (Chi, Kang, and Wang 2013). Recent advancements have made the technology very accessible and feasible for use in the field, as demonstrated by seminal projects such as the Steampunk Pavilion in Tallinn, Estonia (Jahn, Newnham, and Berg 2022). These types of projects typically improve manual craft processes. They often provide projective guidelines, and make possible complex geometries that would otherwise be painstakingly slow to complete and require decades of artisanal experience (Jahn et al. 2019). Building upon a previously developed robotic tube bending workflow, our research implements a custom AR interface to streamline the bending process for multiple, large, complex parts with many bends, providing a pre-visualization of the expected fabrication process for safety and part-verification purposes. We demonstrate the utility of this AR overlay in the part fabrication setting and in an inadvertent, human-robot, collaborative process when parts push the fabrication method past its limits. The AR technology is also used to facilitate the assembly process of a spatial installation exploring a unique aesthetic with subtle bends, loops, knots, bundles, and weaves utilizing a rigid tube material.
series ACADIA
type paper
email
last changed 2024/12/20 09:12

_id ecaade2013_251
id ecaade2013_251
authors Koltsova, Anastasia; Tunçer, Bige and Schmitt, Gerhard
year 2013
title Visibility Analysis for 3D Urban Environments
doi https://doi.org/10.52842/conf.ecaade.2013.2.375
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 375-383
wos WOS:000340643600038
summary This paper presents a visibility analysis tool for 3D urban environments and its possible applications for urban design practice. Literature exists for performing visibility analysis using various methods and techniques, however, tools that result from such research are generally not suitable for use by designers in practice. Our visibility analysis tool resides in Grasshopper, Rhino. It uses a ray casting method to analyze the visibility of façade surfaces from a given vantage point, and of a given urban setting, in particular, buildings and roads. The latter analysis provides information on the best visible buildings/building facades from segments of roads. We established a collaboration with a practicing architect to work on a design competition together, using this tool. The paper elaborates on the visibility analysis methods, presents the tool in detail, discusses the results of our joint work on the competition, and briefly reflects on the evaluation of the use of the tool by design practitioners.
keywords Visibility analysis; pedestrian design; urban space quality; design practice.
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2013_275
id ecaade2013_275
authors Massara, Bruno; Bosi, Felipe; Margotto, Mário and Malheiros, Victor
year 2013
title Critical Methods in Computer-Mediated Performance and Phenomenology-Based Systems
doi https://doi.org/10.52842/conf.ecaade.2013.1.383
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 383-389
wos WOS:000340635300040
summary The main goal of this article is to provide a critical reflection on what computing may contribute to an open understanding of performance in architecture. We propose a phenomenological approach to computing since it combines several concepts concerning the user’s experience of space. In order to study the human movement in space, we will present the results of a sequence of applications using open source software Processing, including time-lapse movies, frame differencing analysis and blending images tools. The research used the context of a existent building at the campus of Universidade Federal do Espírito Santo. A series of interviews with users were also conducted in order to validate the computing analysis.
keywords Performance; computing; phenomenology; programming.
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2013r_017
id ecaade2013r_017
authors Meghna, Saiqa I.; Chowdhury, Suvro S.
year 2013
title Contextual customization of design process. Design through the digital and the material
source FUTURE TRADITIONS [1st eCAADe Regional International Workshop Proceedings / ISBN 978-989-8527-03-5], University of Porto, Faculty of Architecture (Portugal), 4-5 April 2013, pp. 205-216
summary In contemporary world, digital technologies have initiated new architectural languages and have eased the way to communicate them directly from initial design phase to production facilities, allowing for the construction of complex geometries with the use of ever evolving techniques and tools. When the emergence of a substance depends on the material behavior, the design interest shifts towards the ‘formation’ instead of the ‘final form’. Regarding these the design procedures will be discussed from the premise where architecture will be perceived through an evolution process that deals with the coherent variables of elements and shifting parameters within a context. However, there are crucial questions about its application in the contexts which have lower access to contemporary technologies although digital technology has already influenced almost every aspects of the culture of the respective context. Besides, the huge production cost has limited its adaptability in many under developed and developing countries where the construction field relies mainly on traditional and low-tech methods. The paper is an effort to give attention on exploration of the new-found freedoms of material computation in close connection with the respective context by inventing new design processes, material applications and custom devices. It is the time to experiment with flexible, mobile and low-cost fabrication methods applicable to different scenarios while achieving the complexity of the contemporary architectural ge¬ometries. Thus an equal focus has to be given to speculate about projects that are site-specific, custom¬ized and adapted to local climatic conditions and technical know-how, in areas that traditionally have limited access to new technologies.
keywords Complex geometries, material behavior, custom devices, low-cost fabrication, design process
email
last changed 2013/10/07 19:08

_id ecaade2013r_006
id ecaade2013r_006
authors Neto, Pedro L.; Vieira, Andrea P.; Moreira, Bruno; Ribeiro, Lígia
year 2013
title A blended-learning approach in CAAD. Enhancing an architectural design studio experience by using collaborative web applications.
source FUTURE TRADITIONS [1st eCAADe Regional International Workshop Proceedings / ISBN 978-989-8527-03-5], University of Porto, Faculty of Architecture (Portugal), 4-5 April 2013, pp. 83-94
summary This paper is the result of a research project started in 2007 in our architecture school which aimed to adopt a Blended-Learning approach in teaching CAAD to 3rd year architecture students, while integrating the knowledge produced by our R&D Unit on architectural representation and communication techniques and web applications. We present our main conclusions regarding this strategy’s results and the web applications involved to understand if they acted like catalysts for engaging students with their learning process and for promoting a better communication between them and their teachers. The article shows how this strategy created new forms of interaction making communication between teachers and students easier and giving the latter an active role in the learning process. We start with an introduction to CAAD’s pedagogical strategy; we then describe the strategy and model applied to several case studies and the materials and learning tools used. Finally, we’ll discuss the most significant results and draw the main conclusions. The results highlight how the learning process coming from the Blended-Learning strategy and the use of complementary web applications strengthens the student’s and teacher’s capacity to work in a close relationship while maintaining the student’s active role in the learning process.
keywords Blended-learning; education in architecture; communication and representation; collaborative teaching and learning; design studio environment
email
last changed 2013/10/07 19:08

_id acadia13_101
id acadia13_101
authors Rahmani Asl, Mohammad; Zarrinmehr, Saied; Yan, Wei
year 2013
title Towards BIM-based Parametric Building Energy Performance Optimization
doi https://doi.org/10.52842/conf.acadia.2013.101
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 101-108
summary The demand for sustainable buildings with minimal environmental impact and efficient energy use is increasing. The most effective design decisions for sustainable design can be made in the early design phases, but appropriate tools to explore design alternatives and understand their impacts on building energy performance are not available at this stage of the project. The integration of Building Information Modeling (BIM) and parametric modeling is the new trend of building modeling, which can greatly benefit sustainable building design. This research introduces an innovative tool to facilitate integrated parametric BIM and to enhance its applications towards creative, sustainable building design through simulation and optimization. The created tool, Revit2GBSOpt, integrates parametric BIM and building energy performance simulation and enables designers to generate alternative options in BIM to explore the energy performance simulation results automatically. Finding the optimized solution, the BIM model will be updated.
keywords Tools and Interface, Building Information Modeling (BIM), Parametric Simulation, Performance-based Design, Sustainable Design
series ACADIA
type normal paper
email
last changed 2022/06/07 08:00

_id acadia13_327
id acadia13_327
authors Raspall, Felix; Imbern, Matías; Choi, William
year 2013
title Adaptive Tectonic Systems: Parametric Modeling and Digital Fabrication of Precast Roofing Assemblies Toward Site-Specific Design Response
doi https://doi.org/10.52842/conf.acadia.2013.327
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 327-336
summary In order to design adaptable systems, the requirements include flexible models to generate a range of alternative configurations, analytical engines to evaluate performance, and well-defined selection criteria to identify suitable options. In most cases, design processes driven by performance concentrate on environmental or structural parameters; fabrication often remains disconnected from the generative process. Nonetheless, as design-to-fabrication methods become more robust, it is possible to extend the digital process to introduce fabrication variables to the definition of the project. The main focus of the research presented in this paper is the development of a digital and material workflow that connects design, structural and climate-specific topics (such as sun lighting and water drainage) toward producing a range of efficient structural and spatial assemblies.A case study serves as the main support for this investigation. Miguel Fisac’s “bones” is a light-weight roof system developed during the 1960’s, which had a very well-calibrated structural, natural-lighting, drainage and construction performance, as well as a highly refined spatial output. The system, despite its intelligence, lacked the flexibility possible today: using digital technologies, it can adapt to a significantly wider range of applications. Using “bones” as a starting point, this research develops a design-to-fabrication workflow that attempts to move forward tools, material systems and processes to enable an adaptable tectonic system.This paper describes the background research, concept, form-finding, construction process, methodology, results and conclusions of the investigation.
keywords complex systems, parametric design, integrated design and fabrication, mass customization, Miguel Fisac bones, adaptive material system
series ACADIA
type Normal Paper
email
last changed 2022/06/07 08:00

_id acadia13_337
id acadia13_337
authors Rippmann, Matthias; Block, Philippe
year 2013
title Funicular Shell Design Exploration
doi https://doi.org/10.52842/conf.acadia.2013.337
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 337-346
summary This paper discusses the design exploration of funicular shell structures based on Thrust Network Analysis (TNA) The presented graphical form finding approach and its interactive, digital-tool implementation target to foster the understanding of the relation between form and force in compression curved surface structures in an intuitive and playful way. Based on this understanding, the designer can fully take advantage of the presented method and digital tools to adapt the efficient structural system to the specific needs of different architectural applications. The paper focuses on simple examples to visualize the graphical concept of various modification techniques used for this form finding approach. Key operations and modifications have been identified and demonstrate the surprisingly flexible and manifold design space of funicular form. This variety of shapes and spatial articulation of funicular form is further investigated by discussing several built prototypes.
keywords funicular design; structural form finding; thrust network analysis; real-time structural design tools; interactive; compression shells
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:56

_id ecaade2013_043
id ecaade2013_043
authors Rua, Helena; Falcão, Ana Paula and Roxo, Ana Filipa
year 2013
title Digital Models – Proposal for the Interactive Representation of Urban Centres
doi https://doi.org/10.52842/conf.ecaade.2013.1.265
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 265-273
wos WOS:000340635300027
summary The idea of ‘city’ has now surpassed its physical concept. The emergence of the Internet and the growing development of information and communication technologies (ICT) have changed the behaviour of our society in the past decade and revolutionised the traditional ways of representing space. The classic 2D (floor plans, sections and elevations) and 3D representations have been gradually replaced by 3D digital models that can reproduce buildings and places in a virtual environment.3D digital models are tools that enable a wide range of applications in urban planning and management, especially in architectural and data documentation where they allow the analysis of theoretical scenarios such as: 1) representation of the past, considering the procedures needed to restore the heritage; 2) visualisation of the present, to enable dissemination and communication of the city as it is; and, 3) simulation of the future, with the model being used to visualise and experiment with architectural objects, even those at a design stage. The main contribution of this work is to present an urban application developed into a GeoBIM tool, ESRI City Engine Software (CE), that integrates GIS (Geographic Information Systems) and BIM (Building Information Modelling) concepts. Finally, to enhance its potential, three spatial analyses were conducted.
keywords 3D model; GIS – Geographic Information System; BIM – Building Information Modelling; shape grammars; spatial analysis.
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2013_000
id caadria2013_000
authors Stouffs, Rudi; Patrick Janssen, Stanislav Roudavski and Bige Tunçer (eds.)
year 2013
title Open Systems
doi https://doi.org/10.52842/conf.caadria.2013
source Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2012, 977 p.
summary Contemporary challenges require inclusively integrated approaches to designing. Constrained by established modes of practice, such integration is impossible without a radical commitment to openness. In response to this need, the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) brought together contributions that engage with open systems in all aspects of architectural and urban design: open with respect to the scale of the design objectives and the context, from a building component within a building system to a neighbourhood or city within its urban and rural context; open with respect to the domains being considered, from planning to sustainable performance of a building or city; open with respect to the collaboration of disciplines and participants, from ad-hoc brainstorming to a rigorous process of consultation and feedback; open with respect to design methods and techniques, from physical modelling to digital prototyping; open with respect to design models and representations being adopted, from a parametric exploration to an ontological delineation considering Building Information Modelling, Built Environment Modelling or City Information Modelling; open with respect to the tools and applications being adopted, despite interoperability issues, from modelling to simulation and assessment; open with respect to the learning approach being adopted, from informal interaction and sharing to formal design education; open with respect to the open source approach being adopted in research and development, in order to gather community involvement and use. The conference was held 15-18 May 2013 at the Department of Architecture, School of Design and Environment, at National University of Singapore.By focusing on the theme of Open Systems, CAADRIA 2013 aimed to explore all these aspects and more, and raise awareness to the need of breaching disciplinary boundaries and reaching creative communities at all levels of expertise, by pooling resources, knowledge and practices, and integrating them through the adoption of open systems.
series CAADRIA
email
last changed 2022/06/07 07:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 20HOMELOGIN (you are user _anon_806836 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002