CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 598

_id ecaadesigradi2019_449
id ecaadesigradi2019_449
authors Becerra Santacruz, Axel
year 2019
title The Architecture of ScarCity Game - The craft and the digital as an alternative design process
doi https://doi.org/10.52842/conf.ecaade.2019.3.045
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 45-52
summary The Architecture of ScarCity Game is a board game used as a pedagogical tool that challenges architecture students by involving them in a series of experimental design sessions to understand the design process of scarcity and the actual relation between the craft and the digital. This means "pragmatic delivery processes and material constraints, where the exchange between the artisan of handmade, representing local skills and technology of the digitally conceived is explored" (Huang 2013). The game focuses on understanding the different variables of the crafted design process of traditional communities under conditions of scarcity (Michel and Bevan 1992). This requires first analyzing the spatial environmental model of interaction, available human and natural resources, and the dynamic relationship of these variables in a digital era. In the first stage (Pre-Agency), the game set the concept of the craft by limiting students design exploration from a minimum possible perspective developing locally available resources and techniques. The key elements of the design process of traditional knowledge communities have to be identified (Preez 1984). In other words, this stage is driven by limited resources + chance + contingency. In the second stage (Post-Agency) students taking the architects´ role within this communities, have to speculate and explore the interface between the craft (local knowledge and low technological tools), and the digital represented by computation data, new technologies available and construction. This means the introduction of strategy + opportunity + chance as part of the design process. In this sense, the game has a life beyond its mechanics. This other life challenges the participants to exploit the possibilities of breaking the actual boundaries of design. The result is a tool to challenge conventional methods of teaching and leaning controlling a prescribed design process. It confronts the rules that professionals in this field take for granted. The game simulates a 'fake' reality by exploring in different ways with surveyed information. As a result, participants do not have anything 'real' to lose. Instead, they have all the freedom to innovate and be creative.
keywords Global south, scarcity, low tech, digital-craft, design process and innovation by challenge.
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id caadria2013_015
id caadria2013_015
authors Dritsas, Stylianos and Kang Shua Yeo
year 2013
title Undrawable Architecture – Digital Workflows for the Conservation of Heritage Buildings and the  Discovery of Digital Tectonic
doi https://doi.org/10.52842/conf.caadria.2013.833
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 833-842
summary This paper presents a datacentric perspective to historical building conservation using digital media. In particular we explore a workflow based on large volumes digital data acquired via 3D scanning technology, virtual restoration using 3D modelling and physical artefact reconstruction using 3D printing technology. We offer an alternative perspective in contrast to the prevalent approach of reverse engineering or geometric rationalization via parametric design technology; highlight the research and design opportunities as well as the challenges of the approach. 
wos WOS:000351496100086
keywords Digital conservation, 3D scanning, Rapid prototyping 
series CAADRIA
email
last changed 2022/06/07 07:55

_id acadia13_043
id acadia13_043
authors Michalatos, Panagiotis; Payne, Andrew O.
year 2013
title Working with Multi-scale Material Distributions
doi https://doi.org/10.52842/conf.acadia.2013.043
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 43-50
summary At present, computer aided design (CAD) software has proven ill equipped to manage the spatial variations in material properties. Most digital design packages employ a surface modeling paradigm where a solid object is that which is enclosed by a set of boundaries (known as boundary representations or “B-rep” for short). In surface models, material representations are often treated as homogenous and discrete. Yet, natural materials are capable of structures where the variability of material within a volume is defined at a multiplicity of scales and according to various functional criteria. With the advent of new 3D printing techniques, a new possibility emerges—allowing new multi-material composite objects to be fabricated in a single build volume with a high degree of dimensional accuracy and repeatability. However, a big limitation facing complex high resolution digital fabrication comes from the software’s inability to represent or handle material variability. This paper proposes a new digital interface for working with multi-material distributions at a variety of scales using a rasterization process. Beyond the immediate benefit of precise graduated control over the material distribution within a 3D printed volume, our interface opens new creative opportunities by enabling the use of existing image processing techniques (such as filtering, mapping, etc.) which can be applied to three-dimensional voxel fields. Examples are provided which explore the potential of multi-scale material distributions.
keywords next generation technology, multi-material 3D printing, digital interfaces, voxel fields, rasterization
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:58

_id ecaade2023_227
id ecaade2023_227
authors Moorhouse, Jon and Freeman, Tim
year 2023
title Towards a Genome for Zero Carbon Retrofit of UK Housing
doi https://doi.org/10.52842/conf.ecaade.2023.2.197
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 197–206
summary The United Kingdom has some of the worst insulated housing stock in Northern Europe. This is in part due to the age of housing in the UK, with over 90% being built before 1990 [McCrone 2017, Piddington 2020]. Moreover, 85% of current UK housing will still be in use in 2050 by which stage their Government are targeting Net Carbon Zero [Eyre 2019]. Domestic energy use accounts for around 25% of UK carbon emissions. The UK will need to retrofit 20 million dwellings in order to meet this target. If this delivery were evenly spread, it would equate to over 2,000 retrofit completions each day. Government-funded initiatives are stimulating the market, with upwards of 60,000 social housing retrofits planned for 2023, but it is clear that a system must be developed to enable the design and implementation of housing-stock improvement at a large scale.This paper charts the 20-year development of a digital approach to the design for low-carbon domestic retrofit by architects Constructive Thinking Studio Limited and thence documents the emergence of a collaborative approach to retrofit patterns on a National scale. The author has led the Research and Development stream of this practice, developing a Building Information Modelling methodology and integrated Energy Modelling techniques to optimise design for housing retrofit [Georgiadou 2019, Ben 2020], and then inform a growing palette of details and a database of validated solutions [Moorhouse 2013] that can grow and be used to predict options for future projects [D’Angelo 2022]. The data is augmented by monitoring energy and environmental performance, enabling a growing body of knowledge that can be aligned with existing big data to simulate the benefits of nationwide stock improvement. The paper outlines incremental case studies and collaborative methods pivotal in developing this work The proposed outcome of the work is a Retrofit Genome that is available at a national level.
keywords Retrofit, Housing, Zero-Carbon, BIM, Big Data, Design Genome
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaadesigradi2019_334
id ecaadesigradi2019_334
authors Dembski, Fabian, Wössner, Uwe and Letzgus, Mike
year 2019
title The Digital Twin - Tackling Urban Challenges with Models, Spatial Analysis and Numerical Simulations in Immersive Virtual Environments.
doi https://doi.org/10.52842/conf.ecaade.2019.1.795
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 795-804
summary For the built environment's transformation we are confronted with complex dynamics connected to economic, ecologic and demographic change (Czerkauer-Yamu et al., 2013; Yamu, 2014). In general, cities are complex systems being a "heterogeneous mosaic" of a variety of cultures and functions, characterised by diverging perceptions and interests (ibid). The juxtaposed perceptions and interests in relation to ongoing spatial processes of change create a particularly complex situation. Thus, for planning processes we are in need of approaches that are able to cope not only with the urban complexity but also allow for participatory processes to empower citizens. This paper presents the approach of using Digital Twins in virtual reality (VR) for civic engagement in urban planning, enriched with quantitative and qualitative empirical data as one promising approach to tackle not only the complexity of cities but also involve citizens in the planning process.
keywords Digital Twin; Collaborative Planning; Planning and Decision Support; Participation; Virtual Reality; Global System Science
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id ecaade2013_244
id ecaade2013_244
authors Fiorito, Stefano; Orsi, Francesco; Serdoura, Francisco Manuel and Ferreira, Victor
year 2013
title Data Extraction from Social Networks for Urban Analyses
doi https://doi.org/10.52842/conf.ecaade.2013.1.439
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 439-445
summary The present work constitutes the first stage of an ongoing research on the interaction between morphological characteristics of the urban fabric and the amount of social activity in such spaces. In order to analyze such correlation, the current research links together two different field of studies: Space Syntax on one side, for the morphological analysis of the spatial configuration of the urban fabric, and a remote sensing study about social activity in the analyzed urban context, on the other. Data extracted from location-based online Social Networks databases (e.g. Foursquare) are employed in order to perform such survey. The resulting methodology constitutes an early attempt to set a novel approach to the study of the relationships between the morphological and configurational characteristics of urban systems and actual human dynamics in urban contexts. 
wos WOS:000340635300046
keywords Space Syntax; urban morphology; remote sensing; social networks; urban dynamics.
series eCAADe
email
last changed 2022/06/07 07:50

_id acadia13_179
id acadia13_179
authors Geiger, Jordan
year 2013
title An Adaptive Architecture for Refugee Urbanism: Sensing, Play, and Immigration Policy
doi https://doi.org/10.52842/conf.acadia.2013.179
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 179-182
summary Now more than ever, architecture’s entanglement with human-computer interaction (HCI) is conditioned by a host of global forces: telecommunications networks and their infrastructures in satellites and subsea fiber-optic cables, but also international legal and financial mechanisms, climate events and other forces that amalgamate rapidly and recast the ways that the built environment responds. These affect the architecture and HCI of air travel, of agriculture, of high-speed trading and more. Further, they place the formation and experience of architecture in between scales; between the handheld device and the satellite. An adaptive architecture in this context is one that deploys familiar HCI protocols and technologies but reasserts the subjective figure and its space. The project currently in progress, Beau-Fleuve, is an attempt at such an adaptive architecture.Addressing the novel phenomenon that is “refugee urbanism”, this mobile play structure hosts immigrant and refugee youth, revisits some of the tracking that attended their global migration and mines wireless transcriptions of their recorded input. Data from those recordings subsequently build an online map to which participants can return and discover some of the invisible legal mechanisms that enabled their movements. The structure’s responsiveness is therefore conditioned socially and physically, but also legally.
keywords TOOLS and INTERFACES: human-computer interfaces
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:51

_id ecaade2013_006
id ecaade2013_006
authors Junk, Stefan and Côté, Samantha
year 2013
title New Methods for the Rapid Prototyping of Architectural Models
doi https://doi.org/10.52842/conf.ecaade.2013.2.397
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 397-403
summary Various Rapid Prototyping methods have been available for the production of physical architectural models for a few years. This paper highlights in particular the advantages of 3D printing for the production of detailed architectural models. In addition, the current challenges for the creation and transfer of data are explained. Furthermore, new methods are being developed in order to improve both the technical and economic boundary conditions for the application of 3DP. This makes the production of models with very detailed interior rooms possible. The internal details are made visible by dividing the complex overall model into individual models connected by means of an innovative plug-in system. Finally, two case studies are shown in which the developed methods are applied in order to implement detailed architectural models. Additional information about manufacturing time and costs of the architectural models in the two case studies is given.
wos WOS:000340643600040
keywords Architectural model, CAAD, Rapid Prototyping, 3D printing, architectural detail.
series eCAADe
email
last changed 2022/06/07 07:52

_id cf2013_267
id cf2013_267
authors Kim, Kyoung-Hee and Seung-Hoon Han
year 2013
title Integrated Design Process: Sustainable Fa¸cade Fabrication
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 267-273.
summary Interoperability and integration between design, analysis and fabrication in architectural practice allow building façade systems to be increasingly complex and non-standard. As customized building façade systems increase in contemporary buildings, it is important to adopt the integrated design process that aids problem solving and design-making in façade design. The primary goal of this study is to explore the integrated design process that incorporates building information modeling and parametric performance analysis tools in order to understand sustainability opportunities in sustainable façade fabrication. The integration of building information modeling (BIM) and parametric performance analysis tools poses a unique design process whose resolution has the potential to improve sustainability in built environment and façade fabrication efficiency. This paper uses an academic design research project, the Reading Pavilion located in the UNC Charlotte campus, as a case study to investigate the integrated design process of a building façade system, which was supported by quantitative data using BIM, parametric performance analysis, and rapid prototyping tools.
keywords Integrated design process, building information modeling, parametric performance analysis, high performance façade.
series CAAD Futures
email
last changed 2014/03/24 07:08

_id caadria2013_173
id caadria2013_173
authors Mueller, Volker; Drury B. Crawley and Xun Zhou
year 2013
title Prototype Implementation of a Loosely Coupled Design Performance Optimisation Framework
doi https://doi.org/10.52842/conf.caadria.2013.675
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 675-684
summary Integration of analyses into early design phases poses several challenges. An experimental implementation of an analysis framework in conjunction with an optimization framework ties authoring and analysis tools together under one umbrella. As a prototype it served intensive use-testing in the context of the SmartGeometry 2012 workshop in Troy, NY. In this prototype the data flow uses a mix of proprietary and publicised file formats, exchanged through publicly accessible interfaces. The analysis framework brokers between the parametric authoring tool and the analysis tools. The optimization framework controls the processes between the authoring tool and parametric engine on one side and the optimization algorithm on the other. In addition to some user-implemented analyses inside the parametric design model the prototype makes energy analysis and structural analysis available. The prototype allows testing assumptions about work flow, implementation, usability and general feasibility of the pursued approach.  
wos WOS:000351496100066
keywords Design-analysis integration, Design refinement, Optimization  
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2022_000
id ecaade2022_000
authors Pak, Burak, Wurzer, Gabriel and Stouffs, Rudi
year 2022
title eCAADe 2022 Co-creating the Future: Inclusion in and through Design - Volume 1
doi https://doi.org/10.52842/conf.ecaade.2022.1
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, 672 p.
summary Spatial design is becoming an increasingly social, participatory and inclusive practice. In the last decade, ordinary people all around the world have started to claim a shaping power over the processes of urbanization; over the ways in which our cities are made and remade (Harvey, 2013). There has been a resurgence in the number of do-it-yourself cooperatives initiated by non-designer citizens, activists, artists and designers. In parallel to these developments, a plethora of social technologies, tools and platforms have been developed to include a variety of stakeholders in the architectural design, urban design, planning and decision-making processes. Crowdsourcing and crowdfunding applications started to be widely used to tap into the wisdom of the crowd. Novel developments in parametric design and digital fabrication created possibilities for user participation in the making of customized and highly diversified products. With the combination of artificial intelligence and the Internet of Things, smart buildings, autonomous devices, robots and software started to transform into agents and active participants. The attempts to harness collective human and artificial intelligence opened up new avenues for combining practice, research and education. On the other hand, there is a growing concern over the possible negative impact of the digital devices, tools, platforms and agents integrated in the making of our buildings and cities, public, private and collective spaces. Examples of those are the potential exclusion of vulnerable and disadvantaged citizens, transfer of citizen power to the corporations, privatization of personal life and data, as well as spatial exclusion through increased technological control and surveillance.
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_001
id ecaade2022_001
authors Pak, Burak, Wurzer, Gabriel and Stouffs, Rudi
year 2022
title eCAADe 2022 Co-creating the Future: Inclusion in and through Design- Volume 2
doi https://doi.org/10.52842/conf.ecaade.2022.2
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, 646 p.
summary Spatial design is becoming an increasingly social, participatory and inclusive practice. In the last decade, ordinary people all around the world have started to claim a shaping power over the processes of urbanization; over the ways in which our cities are made and remade (Harvey, 2013). There has been a resurgence in the number of do-it-yourself cooperatives initiated by non-designer citizens, activists, artists and designers. In parallel to these developments, a plethora of social technologies, tools and platforms have been developed to include a variety of stakeholders in the architectural design, urban design, planning and decision-making processes. Crowdsourcing and crowdfunding applications started to be widely used to tap into the wisdom of the crowd. Novel developments in parametric design and digital fabrication created possibilities for user participation in the making of customized and highly diversified products. With the combination of artificial intelligence and the Internet of Things, smart buildings, autonomous devices, robots and software started to transform into agents and active participants. The attempts to harness collective human and artificial intelligence opened up new avenues for combining practice, research and education. On the other hand, there is a growing concern over the possible negative impact of the digital devices, tools, platforms and agents integrated in the making of our buildings and cities, public, private and collective spaces. Examples of those are the potential exclusion of vulnerable and disadvantaged citizens, transfer of citizen power to the corporations, privatization of personal life and data, as well as spatial exclusion through increased technological control and surveillance.
keywords Proceedings, Front Matter
series eCAADe
email
last changed 2024/04/22 07:10

_id sigradi2013_315
id sigradi2013_315
authors Rodriguez, Awilda; Paolo Sanza
year 2013
title Visualizing the (in)Visible: Mapping Culture and the Forces that Shape the Urban Experience
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 95 - 98
summary Digital technologies not only have made information accessible but also have exponentially generated new data. The continue growth of urban GIS and pervasive computing is helping us analyze human interactions in unprecedented ways. Yet, when researching urban sites, the students’ task is conventionally limited to the analysis of aggregate spatial data that does not reveal the invisible forces acting upon the site. The limitation of this approach is further evident if students cannot visit the site. This paper explores the role of information visualization to uncover uncommon site forces and to supplement students’ lack of embodiment with far distanced sites. 
keywords Information visualization; Mapping, Urban environments
series SIGRADI
email
last changed 2016/03/10 09:59

_id acadia13_347
id acadia13_347
authors Sabin, Jenny E.
year 2013
title myThread Pavilion: Generative Fabrication in Knitting Processes
doi https://doi.org/10.52842/conf.acadia.2013.347
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 347-354
summary Advancements in weaving, knitting and braiding technologies have brought to surface high-tech and high- performance composite fabrics. These products have historically infiltrated the aerospace, automobile, sports and marine industries, but architecture has not yet fully benefitted from these lightweight freeform surface structures. myThread, a commission from the Nike FlyKnit Collective, features knitted textile structures at the scale of a pavilion. The evolution of digital tools in architecture has prompted new techniques of fabrication alongside new understandings in the organization of material through its properties and potential for assemblage. No longer privileging column, beam and arch, our definition of architectural tectonics has broadened alongside advancements made in computational design. Internal geometries inherent to natural forms, whose complexity could not be computed with the human mind alone, may now be explored synthetically through mathematics and generative systems. Textiles offer architecture a robust design process whereby computational techniques, pattern manipulation, material production and fabrication are explored as an interconnected loop that may feed back upon itself in no particular linear fashion. The myThread Pavilion integrates emerging technologies in design through the materialization of dynamic data sets generated by the human body engaged in sport and movement activities in the city.
keywords next generation technology, textiles, responsive material, knitting, data visualization, generative design, bio-data
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:59

_id cf2013_274
id cf2013_274
authors Sun, Chengyu; Bauke de Vries, Wenfeng Bai, and Tuo Hu
year 2013
title A Comparative Study on Choice Modeling Framework for Evacuation Simulation
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 274-285.
summary A choice modeling framework for evacuation simulation is needed for a better understanding of the human choice behavior. Facing with the debate between bounded and full rationality, this study builds upon different frameworks and tests them on a same set of choice data collected through virtual evacuation experiment. After comparisons, it is found that there is no significant performance difference between the two kinds of rationality. Additionally, an algorithm comparing pairs of alternatives in choice process performs much better than an algorithm evaluating individual alternatives. An improved utility maximizing model framework and an overall performance decline similar as the forgeting curve are proposed. Finally, it is concluded that the proposed choice model comparing pairs with its great robustness under varying number of alternatives is a proper choice for evacuation simulation.
keywords bounded rationality, utility maximizing model, performance comparison, number of alternatives
series CAAD Futures
email
last changed 2014/03/24 07:08

_id cf2013_222
id cf2013_222
authors Traunmueller Martin and Ava Fatah gen. Schieck
year 2013
title Following the Voice of the Crowd: Exploring Opportunities for Using Global Voting Data to Enrich Local Urban Context
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 222-232.
summary With the introduction of the internet to the public and the rise of digital technologies we experience a shift in our understanding of space. Mobile devices and ubiquitous computing in urban landscape make the physicality of distance disappear – the modern citizen is digitally connected to everybody at anytime and anywhere. The result of this network is a highly globalized world which effects economy same as personal interests and decisions of its inhabitants. The introduction of web 3.0 with its methods of comment, recommender and voting systems offers a broad platform for people all over the world to share experiences and exchange opinions about an unlimited variety of topics. Global opinions meet local interests. In this paper we explore the possibilities of using global voting data to enrich locally the modern citizen’s urban walking experience. We describe a new approach to wayfinding by implementing methods of digital recommender systems into the physical world. We investigate Facebook voting data to generate an alternative to the shortest route, as suggested by common route finder systems, in order to maximize the pleasure of an urban stroll. The testing of the system in a real world context together with collected feedback stimulate the discussions.
keywords Wayfinding, Urban Pedestrian Navigation, Social Networks, Voting data, Mobile Devices, Recommendation Systems
series CAAD Futures
email
last changed 2014/03/24 07:08

_id acadia13_000
id acadia13_000
authors Beesley, Philip; Omar Khan, Michael Stacey
year 2013
title ACADIA 13: Adaptive Architecture
doi https://doi.org/10.52842/conf.acadia.2013
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), 472 p.
summary ACADIA 2013 Adaptive Architecture, the 33rd International Conference of the Association for Computer-Aided Design in Architecture, focuses on the computational design of environmen- tally responsive, intelligent, interactive, and reconfigurable archi- tecture. Organising this conference we perceive new intellectual territories opening, arising both from technology and from our native inventiveness. In 2013, humankind benefits from millennia of cultural continuity while it faces profound challenges and opportunities. Fuelled by potent new research tools and techniques the discipline of architecture is ripe with potential. New modes of practice offer mod- els where research, design and development are seen as one, and where knowledge passes with extraordinary fluidity, as if by osmosis, from practice to academia, from teacher to pupil and from the future architect to the architect-academic. The future is now.
series ACADIA
last changed 2022/06/07 07:49

_id cf2013_347
id cf2013_347
authors Dillenburger, Benjamin and Michael Hansmeyer
year 2013
title The Resolution of Architecture in the Digital Age
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 347-357.
summary The resolution of architecture is a measure of the spatial density of information inherent in a building. This paper demonstrates how the confluence of advances in computational design and additive manufacturing has recently led to a paradigm shift in potential architectural resolution. Buildings can now be designed and fabricated with elements at the threshold of human perception. This resolution can be used to replicate existing architectural styles ever more efficiently and accurately. Yet as with the introduction of other new technologies, architects must now explore the latent potentials and determine what kind of new architectures become conceivable. Specifically, what architectures can adequately express this enormous resolution and the unlimited geometric complexity within reach? With the project Digital Grotesque, we present the first human-scale, enclosed structure that truly exploits these opportunities. Algorithms are used to articulate and orchestrate the geometry from the macro scale down to 1mm small details. The structure is enriched with local information at a previously unseen resolution. A unique language of form is developed that transcends rationality and celebrates spatial expression: a digital exuberance.
keywords high resolution, additive manufacturing, 3d printing, digital fabrication, computational design, subdivision, mesh
series CAAD Futures
email
last changed 2014/03/24 07:08

_id ecaade2013_164
id ecaade2013_164
authors Nicknam, Mahsa; Bernal, Marcelo and Haymaker, John
year 2013
title A Case Study in Teaching Construction of Building Design Spaces
doi https://doi.org/10.52842/conf.ecaade.2013.2.595
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 595-604
summary Until recently, design teams were constrained by tools and schedule to only be able to generate a few alternatives, and analyze these from just a few perspectives. The rapid emergence of performance-based design, analysis, and optimization tools gives design teams the ability to construct and analyze far larger design spaces more quickly. This creates new opportunities and challenges in the ways we teach and design. Students and professionals now need to learn to formulate and execute design spaces in efficient and effective ways. This paper describes curriculum that was taught in a course “8803 Multidisciplinary Analysis and Optimization” taught by the authors at Schools of Architecture and Building Construction at Georgia Tech in spring 2013. We approach design as a multidisciplinary design space formulation and search process that seeks maximum value. To explore design spaces, student designers need to execute several iterative processes of problem formulation, generate alternative, analyze them, visualize trade space, and address decision-making. The paper first describes students design space exploration experiences, and concludes with our observations of the current challenges and opportunities.
wos WOS:000340643600061
keywords Design space exploration; teaching; multidisciplinary; optimization; analysis.
series eCAADe
email
last changed 2022/06/07 07:58

_id sigradi2022_51
id sigradi2022_51
authors Varsami, Constantina; Tsamis, Alexandros; Logan, Timothy
year 2022
title Gaming Engine as a Tool for Designing Smart, Interactive, Light-Sculpting Systems
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 617–628
summary Even though interactive (Offermans et.al., 2013), adaptive (Viani et.al., 2017), and self-optimizable (Sun et.al., 2020) lighting systems are becoming readily available, designing system automations, and evaluating their impact on user experience significantly challenges designers. In this paper we demonstrate the use of a gaming engine as a platform for designing, simulating, and evaluating autonomous smart lighting behaviors. We establish the Human - Lighting System Interaction Framework, a computational framework for developing a Light Sculpting Engine and for designing occupant-system interactions. Our results include a. a method for combining in real-time lighting IES profiles into a single ‘combined’ profile - b. algorithms that optimize in real-time, lighting configurations - c. direct glare elimination algorithms, and d. system energy use optimization algorithms. Overall, the evolution from designing static building components to designing interactive systems necessitates the reconsideration of methods and tools that allow user experience and system performance to be tuned by design.
keywords User Experience, Human-Building Interaction, Smart Lighting, Lighting Simulation, Gaming Engine
series SIGraDi
email
last changed 2023/05/16 16:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_859829 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002