CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 333

_id ijac201310105
id ijac201310105
authors Agkathidis, Asterios and Andre_ Brown
year 2013
title Tree-Structure Canopy:A Case Study in Design and Fabrication of Complex Steel Structures using Digital Tools
source International Journal of Architectural Computing vol. 11 - no. 1, 87-104
summary This paper describes and reflects on the design and manufacturing process of the Tree-Structure canopy for the WestendGate Tower in Frankfurt upon Main, completed early 2011.The project investigated fabrication and assembly principles of complex steel structures as well as the integration of contemporary computational design, engineering, optimization and simulation techniques in a collaborative design approach. This paper focuses on the notion of modular standardization as opposed to non standard customized components. It also engages with issues relating to digital production tools and their impact on construction cost, material performance and tolerances. In addition it examines the reconfiguration of liability during a planning and construction process, an aspect which can be strongly determined by fabrication companies rather than the architect or designer.This paper is written as a reflection on the complete building process when contemporary digital tools are used from design through to fabrication. It studies both the generation of the steel structure as well the ETFE cushion skin. It reports on a collaborative project, where the main author was responsible for the canopies design, parameterization, digitalization and fabrication, as well as for the dissemination of the outcomes and findings during the design and realization process.As such it represents an example of research through design in a contemporary and evolving field.The canopy received a design award by the Hellenic Architecture Association.
series journal
last changed 2019/05/24 09:55

_id acadia13_079
id acadia13_079
authors Jason Gerber, David; Eve Lin, Shih-Hsin; Amber Ma, Xinyue
year 2013
title Designing-In Performance: A Case Study of Applying Evolutionary Energy-Performance Feedback for Design (EEPFD)
doi https://doi.org/10.52842/conf.acadia.2013.079
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 79-86
summary This paper explores the application of a novel Multi-disciplinary Design Optimization (MDO) framework to the early stage design process, through a case study where the designer serves as the primary user and driver. MDO methods have drawn attention from the building design industry as a potential means of overcoming obstacles between design and building performance feedback to support design decision-making. However, precedents exploring MDOs in application to the building design have previously been limited to driving use by engineers or research teams,thereby leaving the incorporation of MDO into a design process by designers largely unexplored. In order to investigate whether MDO can enable the ability to design in a performance environment during the conceptual design stage, a MDO design framework entitled Evolutionary Energy-Performance Feedback for Design (EEPFD) was developed. This paper explores the designer as the primary user by conducting a case study where the application of EEPFD to a single family residential housing unit is incorporated. Through this case study EEPFD demonstrates an ability to assist the designer in identifying higher performing design options while meeting the designer’s aesthetic preferences. In addition the benefits, limitations, concerns and lessons learned in the application of EEPFD are also discussed.
keywords conceptual energy-performance feedback; design decision support; parametric design; multi-disciplinary design optimization; genetic algorithm
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:52

_id ecaade2013_114
id ecaade2013_114
authors Lin, Shih-Hsin Eve and Gerber, David
year 2013
title Evolutionary Energy Performance Feedback for Design (EEPFD)
doi https://doi.org/10.52842/conf.ecaade.2013.2.175
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 175-184
wos WOS:000340643600017
summary In order to understand the applicability of multidisciplinary design optimization (MDO) to the building design process, a MDO framework, titled Evolutionary Energy Performance Feedback for Design (EEPFD), along with the prototype tool, H.D.S. Beagle, were developed to support designers with the incorporation of partially automated performance feedback during the early stages of design. This paper presents 2 experimental case studies, one from the design profession and the other from a design studio, that evaluate the applicability and impact of EEPFD on the early stage design process. Through these two case studies two different interaction and automation approaches for applying EEPFD are explored as part of the framework validation. Observed benefits, challenges and suggestions of EEPFD’s implementation are then presented and discussed.
keywords Conceptual energy performance feedback; design decision support; performance-based design; multidisciplinary design optimization; genetic algorithm.
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia13_101
id acadia13_101
authors Rahmani Asl, Mohammad; Zarrinmehr, Saied; Yan, Wei
year 2013
title Towards BIM-based Parametric Building Energy Performance Optimization
doi https://doi.org/10.52842/conf.acadia.2013.101
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 101-108
summary The demand for sustainable buildings with minimal environmental impact and efficient energy use is increasing. The most effective design decisions for sustainable design can be made in the early design phases, but appropriate tools to explore design alternatives and understand their impacts on building energy performance are not available at this stage of the project. The integration of Building Information Modeling (BIM) and parametric modeling is the new trend of building modeling, which can greatly benefit sustainable building design. This research introduces an innovative tool to facilitate integrated parametric BIM and to enhance its applications towards creative, sustainable building design through simulation and optimization. The created tool, Revit2GBSOpt, integrates parametric BIM and building energy performance simulation and enables designers to generate alternative options in BIM to explore the energy performance simulation results automatically. Finding the optimized solution, the BIM model will be updated.
keywords Tools and Interface, Building Information Modeling (BIM), Parametric Simulation, Performance-based Design, Sustainable Design
series ACADIA
type normal paper
email
last changed 2022/06/07 08:00

_id acadia13_109
id acadia13_109
authors Thün, Geoffrey; Velikov, Kathy
year 2013
title Adaptation as a Framework for Reconsidering High-Performance Residential Design: A Case Study
doi https://doi.org/10.52842/conf.acadia.2013.109
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 109-118
summary This paper outlines an approach to adaptive residential design explored through recent research and an executed prototype, the North House project (2007-2009), undertaken through an interdisciplinary collaboration of researchers and students from the University of Waterloo, Ryerson University and Simon Fraser University in concert with professional and industry partners. This project aimed to develop a framework for the delivery of adaptive detached residential buildings capable of net-zero energy performance in the temperate climate zone, or the near north. Within this project, the term “adaptive” is developed across several tracts of conceptualization and execution including site and climatically derived models for building material composition and envelope ratios, environmentally-responsive kinetic envelope components, intelligent HVAC controls and interactive interface design aimed at producing co-evolutionary behaviors between building systems and inhabitants. A provisional definition of adaptive architecture is outlined to address this range of considerations that calls into question the stable image of domestic architecture and its relationship to energy and contemporary assumptions regarding sustainable design. This paper also outlines computational approaches to design optimization, distributed building systems integration and the human-controls interfaces applicable to the home’s ecology of physical and information technologies.
keywords next generation technology, responsive buildings, high performance envelopes, sensing and feedback, passive and active systems, energy modeling, user interface
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:58

_id ecaade2013r_013
id ecaade2013r_013
authors Verma, Sushant; Devadass, Pradeep
year 2013
title Adaptive [skins]: Responsive building skin systems based on tensegrity principles
source FUTURE TRADITIONS [1st eCAADe Regional International Workshop Proceedings / ISBN 978-989-8527-03-5], University of Porto, Faculty of Architecture (Portugal), 4-5 April 2013, pp. 155-170
summary The project investigates responsive building skin systems that adapt to the dynamic environmental conditions to regulate the internal conditions in a habitable space over different periods of time by exhibiting a state of motion and dynamism. Heat and Light are the primary parameters for regulation, leading to energy efficiency and dynamic spatial effects. Passive and active skins using shape memory alloys and pneumatic actuators are developed through investigations of smart systems that integrate smart materials and smart geometries. The precedents in this domain have rarely dealt with individually controlled multiple parameters of heat and light in a single system, which is attempted in this project. Owing to the complexity of the multi-parametric system, genetic algorithms are developed for system optimization and calibrated with physical prototypes at varied scales. The developed systems are tested against two distinct climatic models- New Delhi and Barcelona, and evaluated for performance, based on heat and light, which are quantified as solar gain and illuminance as principles, and daylight factor for evaluation purpose. The use of genetic algorithms makes the problem solving faster and accurate. New tool-sets are developed in the process by combining various digital tools, to create a real-time feedback and memory loop system.
keywords Adaptive architecture, Building skins, Genetic algorithms, Tensegrity, Smart materials
email
last changed 2013/10/07 19:08

_id ecaade2013_087
id ecaade2013_087
authors Mostafavi, Sina; Morales Beltran, Mauricio and Biloria, Nimish
year 2013
title Performance Driven Design and Design Information Exchange
doi https://doi.org/10.52842/conf.ecaade.2013.2.117
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 117-126
wos WOS:000340643600011
summary This paper presents a performance driven computational design methodology through introducing a case on parametric structural design. The paper describes the process of design technology development and frames a design methodology through which engineering, -in this case structural- aspects of architectural design could become more understandable, traceable and implementable by designers for dynamic and valid performance measurements and estimations. The research further embeds and customizes the process of topology optimization for specific design problems, in this case applied to the design of truss structures, for testing how the discretized results of Finite Elements Analysis in topology optimization can become the inputs for designing optimal trussed beams or cantilevers alternatives. The procedures of design information exchange between generative, simulative and evaluative modules for approaching the abovementioned engineering and design deliverables are developed and discussed in this paper.
keywords Performance driven design; design information; design technology; topology optimization; parametric design.
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia13_367
id acadia13_367
authors Søndergaard, Asbjørn; Amir, Oded; Knauss, Michael
year 2013
title Topology optimization and digital assembly of advanced space-frame structures
doi https://doi.org/10.52842/conf.acadia.2013.367
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 367-378
summary This paper presents a novel method for the integrated design, optimization and fabrication of space-frame structures in an autonomous, digital process. Comparative numerical studies are presented, demonstrating achievable mass reduction by application of the method by comparison to equivalent to normative space truss designs and dimensions. As such, a principal digital fabrication and assembly scheme is developed, where an architectural design methodology relative to the described process is established, and the proposed process is demonstrated through scaled digital fabrication experiments.
keywords space-frame structures, topology optimization, robotic assembly, digital fabrication, steel
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:56

_id ecaade2013_096
id ecaade2013_096
authors Achten, Henri
year 2013
title Buildings with an Attitude
doi https://doi.org/10.52842/conf.ecaade.2013.1.477
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 477-485
wos WOS:000340635300050
summary In order to achieve interactive architecture it is necessary to consider more than the technological components of sensors, controllers, and actuators. The interaction can be focused to different interaction activities: instructing, conversing, manipulating, and exploring (we propose to call this the interaction view). Additionally, the purpose of the building may range from performing, sustaining, servicing, symbolising, to entertaining (we propose to call this the world view). Combined, the interaction view and world view establish 20 different attitudes, which are flavours of behaviour for the interactive building. Through attitudes interaction profiles can be established and criteria derived for the design of interactive buildings.
keywords Interactive architecture; design theory; Human-Computer Interaction; augmented reality; mixed reality.
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2014_042
id caadria2014_042
authors Alam, Jack and Jeremy J. Ham
year 2014
title Towards a BIM-Based Energy Rating System
doi https://doi.org/10.52842/conf.caadria.2014.285
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 285–294
summary Governments in Australia are faced with policy implementation that mandates higher energy efficient housing (Foran, Lenzen & Dey 2005). To this effect, the National Construction Code (NCC) 2013 stipulates the minimum energy performance for residential buildings as 114MJ/m2 per annum or 6 stars on an energy rating scale. Compliance with this minimum is mandatory but there are several methods through which residential buildings can be rated to comply with the deemed to satisfy provisions outlined in the NCC. FirstRate5 is by far the most commonly used simulation software used in Victoria, Australia. Meanwhile, Building Information Modelling (BIM), using software such as ArchiCAD has gained a foothold in the industry. The energy simulation software within ArchiCAD, EcoDesigner, enables the reporting on the energy performance based on BIM elements that contain thermal information. This research is founded on a comparative study between FirstRate5 and EcoDesigner. Three building types were analysed and compared. The comparison finds significant differences between simulations, being, measured areas, thermal loads and potentially serious shortcomings within FirstRate5, that are discussed along with the future potential of a fully BIM-integrated model for energy rating certification in Victoria.
keywords Building Information Modelling, energy rating, FirstRate 5, ArchiCAD EcoDesigner, Building Energy Model
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2013_207
id ecaade2013_207
authors Bielik, Martin; Schneider, Sven; Geddert, Florian and Donath, Dirk
year 2013
title Addis Building Configurator
doi https://doi.org/10.52842/conf.ecaade.2013.1.109
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 109-116
wos WOS:000340635300010
summary The paper presents ongoing applied research on the development of a computational design tool addressing planning deficiencies in the city of Addis Ababa, Ethiopia. Because of increasing population pressure and a lack of planning resources, Addis Ababa is clearly in need of new efficient planning solutions. The tool proposed utilizes and combines different generative design methods in order to increase the efficiency of planning and construction processes. The paper discusses design goals and the implementation strategy involved.
keywords Design tool; evolutionary optimization; generative system; developing countries.
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2013_137
id ecaade2013_137
authors Camporeale, Patricia
year 2013
title Genetic Algorithms Applied to Urban Growth Optimization
doi https://doi.org/10.52842/conf.ecaade.2013.2.227
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 227-236
wos WOS:000340643600022
summary This work is a research on the application of genetic algorithms (GA) to urban growth taking into account the optimization of solar envelope and sunlight in open spaces.It was considered a typical block of a Spanish grid, which is the most common subdivision of the urban land in towns situated in Argentina. Two models are compared, one in which the growth has no more limitations than building codes. The other one, in which the growth incorporates the solar radiation as a desirable parameter.This way of parameterizing configures a bottom-up method of urban growth. No top-down decisions intervenes in the growth process.This tool proves to be useful at early stages of urban planning when decisions—which will influence along the development of the city for a long time—are taken.
keywords Genetic algorithms; solar envelope.
series eCAADe
email
last changed 2022/06/07 07:54

_id cf2013_315
id cf2013_315
authors Chang, Darren
year 2013
title Aerodynamic Performance Driven Form-Generation for Skyscraper Design
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 315-326.
summary I have conducted a study to explore aerodynamic performance as a driver for skyscraper design, utilizing up-to-date parametric design and computational fluid dynamics (CFD) technologies readily available to architects. Previous scientific research has suggested strategies in modifying the form of skyscrapers for the purpose of improving their aerodynamic performance. I have incorporated six of such strategies into parametric design tool to produce a matrix of 60 prototypes. These prototypes are subjected to qualitative and quantitatively evaluation iterations to yield the most optimized design, with considerations given primarily to aerodynamic performance, and secondarily to structural robustness, program potential, and image attractiveness. The selected design option is further developed into a skyscraper concept. A multi-staged aerodynamic performance-driven design process is the most important result of the study. In addition, two valuable insights have been obtained: first, to inject a new inspiration into the design of skyscrapers, I have implemented the MultiDisciplinary Optimization (MDO) methodology from the aerospace industry. Second, I am able to support form-generation parametric design by quantitative evaluation process.
keywords performative architecture, performance-driven form-generation, skyscraper design, multi-disciplinary optimization, tall building aerodynamics
series CAAD Futures
email
last changed 2014/03/24 07:08

_id sigradi2013_350
id sigradi2013_350
authors de Freitas Pires, Janice; Carolina Machado Alves; Luisa dalla Vecchia; Adriane Borda Almeida da Silva; Ana Paula Dametto
year 2013
title Padrões de Simetrias e Recursão em Ladrilhos Hidráulicos e Bandeiras: Exercícios Didáticos e Construção de Conhecimento Sobre Patrimônio Histórico [Symmetry and Recursion Patterns in Hydraulic Tiles and Fanlights: Didactic Exercises and Building Knowledge about Historic Heritage]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 595 - 599
summary This paper describes activities of analysis and composition of patterns based on architectural elements of buildings of historic heritage. During two separate workshops, which used a method previously established, the rules of symmetry and recursion were recognized in the geometry of these architectural elements and new patters were created through dynamic processes of digital representation. Such activities can stimulate the students´ capacity of recognizing design actions, contributing to their perception of the design problems and, thus, to the knowledge for design practice.
keywords Symmetry and recursion patterns; Historic heritage; Architectural elements; Digital graphic representation
series SIGRADI
email
last changed 2016/03/10 09:50

_id sigradi2013_184
id sigradi2013_184
authors de Sousa Checcucci, Érica; Ana Paula Carvalho Pereira; Arivaldo Leão de Amorim
year 2013
title Modelagem da Informação da Construção (BIM) no Ensino de Arquitetura [Building Information Modeling (BIM) on Architecture Teaching]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 307 - 311
summary This paper discusses the experience of the initial phase of introduction of the BIM paradigm in the undergraduate program in Architecture and Urbanism (evening course) of FAUFBA. We started from the premise that BIM should be adopted gradually and integrated with the various subjects of the course, and should be initiated through the disciplines of graphic representation. The proposal for this course is presented and practices are discussed, as they were experienced in the discipline of Computing and Design II, which deals with this paradigm. It was observed that BIM process requires significant changes, as it encountered some initial resistance from the students. However, this approach increases the understanding of building and facilitates the project documentation. Furthermore, the understanding of the scope of the paradigm was crucial to the effective use of the adopted tool.
keywords Architectural education; Building Information Modeling (BIM); TIC; Design teaching
series SIGRADI
email
last changed 2016/03/10 09:50

_id caadria2013_001
id caadria2013_001
authors Doelling, Max C. and Ben Jastram
year 2013
title Daylight Prototypes: From Simulation Data to Four-Dimensional Artefact-Physical Metrics  Models in Sustainable Design Education
doi https://doi.org/10.52842/conf.caadria.2013.159
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 159-168
wos WOS:000351496100016
summary The increasing use of building performance simulation in architectural design enriches digital models and derived prototyping geometries with performance data that makes them analytically powerful artefacts serving sustainable design. In our class “Parametric Design”, students perform concurrent thermal and daylight optimization during the architectural ideation process, employing digital simulation tools, and also utilize rapid prototyping techniques to produce process artefacts and whole-building analysis models with climate-based day-light metrics physically embedded. Simulation metrics are merged with prototyping geometries to be output on a colour-capable Zprinter; the resultant hybrid artefacts simultaneously allow three-dimensional formal as well as whole-year daylight performance evaluation, rendering analysis scope four-dimensional. They embody a specific epistemological type that we compare to other model instances and posit to be an example of multivalent representation, a formal class that aids knowledge accretion in  workflows and allows designers to gain a physically reframed understanding of geometry-performance relationships.
keywords Rapid prototyping, Building performance modelling, Daylight simulation, Physical data models, Design representation 
series CAADRIA
email
last changed 2022/06/07 07:55

_id cf2013_368
id cf2013_368
authors Dounas, Theodoros
year 2013
title Some Notes on the Incompleteness Theorem and Shape Grammars
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 368-376.
summary The paper presents a critique of the Shape Grammar paradigm viewed through the lens of the incompleteness theorem of Gödel. Shape Grammars have been extensively researched through many lenses. Their productive systemic nature was the focus of the first papers along with more recent treatises in the field while their use in analysis of known building styles has been extensive and a proven mechanism for style analysis. It is surprising though that use of Shape Grammars in actual design in practice however has been minimal. The architectural community has not actively used the paradigm in the design of real buildings, probably because of the rigid analytical approach to style and rules, following from the academic analysis that the paradigm has been subjected to. However I propose that there is another underlying reason, other than the rigid approach to construct a Shape Grammar. The nature of the concurrent application and creation of the rules lies close to the incompleteness theorem of Gödel, that uses a multitude of Turing Machines to prove that a from a set of True Axioms -A- we will never be able to determine if all sentences are true, without having to invent new axioms, outside the initial set -A-, thus unproven in terms of their true or false nature. Negation of this possibility drives us to the conclusion that true Design can never be feature -complete and thus can never be placed in a trusted framework that we all agree or believe it to be the complete truth.
keywords Incompleteness Theorem, Incomputability of Shape Grammars
series CAAD Futures
email
last changed 2014/03/24 07:08

_id ecaade2013_192
id ecaade2013_192
authors Erdine, Elif
year 2013
title Biomimetic Strategies in Tower Design
doi https://doi.org/10.52842/conf.ecaade.2013.1.559
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 559-568
wos WOS:000340635300058
summary The paper argues that the tower needs to respond to its environment by changing from a closed building typology towards a heterogeneous, differentiated open system that can adapt to the changing conditions within and around it. This argument is supported by focusing on the analogies and principles of specific biological examples in order to propose computationally-generated self-organizing systems. The goal of analyzing these models is to integrate their structural and geometrical characteristics with the aim of overcoming high lateral loading conditions in towers, as well as elaborating on the existence of multi-functionality and integration throughout the subsystems of the tower. A series of computational models which abstract the biological properties and articulate them with a generative approach through the use of agent-based systems are implemented according to designated evaluation criteria.
keywords Tower; biomimetics; integration; differentiation; generative algorithms.
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2013_123
id caadria2013_123
authors Erhan, Halil I.; David Botta, Andy T. Huang and Robert F. Woodbury
year 2013
title Peripheral Tools to Support Collaboration: Probing to Design Collaboration Through Role-Playing
doi https://doi.org/10.52842/conf.caadria.2013.241
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 241-250
wos WOS:000351496100024
summary Peripheral devices like smart phones offer an opportunity to lower the barrier to spontaneous collection and sharing of information during distributed collaboration. We have completed development of guidelines and a framework that focuses on peripheral devices in collaboration. In order to explore the design space generated by our principles, we conducted a role-playing experiment about commissioning a building, in which an “on-site” team and a “design” team were expected to find and resolve discrepancies between requirements, design documents, and the actual site. The teams were given Styrofoam panels to act as pretend smart peripherals to invoke play and help probe the design space. We found that “reflection on action” (debriefing and subsequent brainstorming) was fruitful for ideation and theorem building about interaction, but “reflection in action” failed. Yet, reflection in action, particularly with such probes, is important to capture the “mechanics of collaboration”. Therefore, we are considering adapting improvisational theatre to our study of distributed collaboration.  
keywords Collaborative design, Design support tool, Interactive media, Role-playing, Extended cognition 
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2013_028
id ecaade2013_028
authors Fricker, Pia; Girot, Christophe and Munkel, Georg
year 2013
title How to Teach ‘New Tools’ in Landscape Architecture in the Digital Overload
doi https://doi.org/10.52842/conf.ecaade.2013.2.545
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 545-553
wos WOS:000340643600055
summary The central theme of the paper is the introduction of hands-on tools showing the integration of information technology within a postgraduate study program (MAS LA) for landscape architects. What has already become a part of the discourse in the field of architecture – generic design – is now also finding more resonance in the context of large-scale landscape architectural design. If one studies the educational backgrounds of landscape architects, however, they often do not match the same standard as those of architects. A solid background in the area of innovative use of information technology, especially computer-assisted design and CAD/CAM construction is only at a preliminary state at most universities. The critical arguments in the choice of the selected medium and the building up of a continuous digital chain stand here in the forefront. The aim is not to improve the quality of the landscape design based on the variety of the applied tools, but rather through the sensible use of the said. Reflections as well as questions of method and theory stand at the forefront of our efforts. 
keywords Design tool development; computational design research and teaching; new design concepts and strategies; parametric and evolutionary design.
series eCAADe
email
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 16HOMELOGIN (you are user _anon_217173 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002