CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 13 of 13

_id ecaade2013_249
id ecaade2013_249
authors Araya, Sergio; Zolotovsky, Ekaterina; Veliz, Felipe; Song, Juha; Reichert, Steffen; Boyce, Mary and Ortiz, Christine
year 2013
title Bioinformed Performative Composite Structures
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 575-584
doi https://doi.org/10.52842/conf.ecaade.2013.1.575
wos WOS:000340635300060
summary This ongoing investigation aims to learn from nature novel material organizations and structural systems in order to develop innovative architectural system. We developed a multidisciplinary approach, using scientific analysis and design research and prototyping. We focus on the study of a “living fossil” fish, whose armor system is so efficient it has remained almost unchanged for millions of years. We investigate its morphological characteristics, its structural properties, the assembly mechanisms and the underlying material properties in order to derive new principles to design new enhanced structural systems. We use micro computerized tomography and scanning electron microscopy to observe microstructures, parametric design to reconstruct the data into digital models and then several 3D printing technologies to prototype systems with high flexibility and adaptive capabilities, proposing new gradual material interfaces and transitions to embed performative capabilities and multifunctional potentials.
keywords Bioinformed; multi-material; composite; parametrics; performative design.
series eCAADe
type normal paper
email
last changed 2022/06/07 07:54

_id cf2013_118
id cf2013_118
authors Dritsas, Stylianos and Mark Goulthorpe
year 2013
title An Automated Robotic Manufacturing Process: For the Thermoplastic Panel Building Technology
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 118-129.
summary This paper presents the design-computation digital fabrication research for a thermoplastic panel technology for housing applications; a high-performance, low-cost building product based on parametric design methodology, glass fiber reinforced composite materials, and numerically controlled robotic fabrication processes. We present a highly integrated schematic design to production workflow, and discuss the potential and challenges of robotic prototyping and fabrication.
keywords Digital Fabrication, Architectural Robotics, Computer Aided Manufacturing, Building Composites, Thermoplastic Manufacturing
series CAAD Futures
email
last changed 2014/03/24 07:08

_id ijac201311305
id ijac201311305
authors Esquivel, Gabriel; Dylan Weiser, Darren J Hartl, Daniel Whitten
year 2013
title POP-OP: A Shape Memory-Based Morphing Wall
source International Journal of Architectural Computing vol. 11 - no. 3, 347-362
summary Recent tendencies in architecture take a unique point of view, with aesthetically novel and unnatural sensibilities emerging from a close scrutiny and study of apparently natural systems. These tendencies are being driven by mathematical and computational abstractions that transform the way we understand the matterinformation relationship. This project was inspired by Op Art, a twentieth century art movement and style in which artists sought to create an impression of movement on an image surface by means of an optical illusion. Passive elements consisting of composite laminates were produced with the goal of creating lightweight, semi-rigid, and nearly transparent pieces. The incorporation of active materials comprised a unique aspect of this project: the investigation of surface movement through controlled and repeatable deformation of the composite structure using shape memory alloy (SMA) wiring technology. The integration of composite materials with SMA wiring and Arduino automation control resulted in an architectural wall that incorporated perceptual and actual motion.
series journal
last changed 2019/05/24 09:55

_id acadia23_v1_128
id acadia23_v1_128
authors Fayyad, Iman
year 2023
title Bending Cylinders: Geometries of the Anthropocene
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 128-135.
summary Over the past several decades, the conception and construction of formal complexity has disregarded the realities of material waste, costs, and accessibility. By engaging the isometric relationship between flatness and three-dimensional form, the research shown here investigates how waste-conscious approaches to geometric innovation can create new architectural languages. Specifically, the work deploys a subset of curved-crease folding that uses planar reflections referred to as sectional mirror operations to create unique forms comprised of composite cylindrical and conical surfaces (Figure 1). Whereas known studies in curved-crease folding typically explore singular (one-off, figural) compositions (Davis et al. 2013), this process develops a module aggregation strategy to suggest large inhabitable structures as both figural and field-like conditions.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id caadria2014_150
id caadria2014_150
authors Knapp, Chris; Jonathan Neslon and Michael Parsons
year 2014
title Constructing Atmospheres
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 149–158
doi https://doi.org/10.52842/conf.caadria.2014.149
summary This paper documents and critically reflects upon the design, development, fabrication, and implementation of three pavilion projects developed during 2013-14. The core investigation of this work is the production of architectural spaces characterized by a quality of enveloping, diffuse, visual and spatial atmospheres. The principal activity of the research is aimed at refining methods for software-based exploration of formal complexities and the subsequent need to control variability and efficiency in fabrication output, using Grasshopper for Rhino to develop customized definitions particular to each specific project scenario. Linking the projects together are issues of scale, resolution of effect, and intent to move from disparate assemblies of structure and skin toward composite, manifold construction techniques that address multiple concerns (gravity, bracing, affect, etc) with a minimum of assembly. A material palette common to the current vernacular of CNC-based projects such as plywood, plastics, and other sheet materials is utilised. This work is invested in extending the possibilities of the architect and architecture as a discipline, extrapolating the workflow from these successive projects to the speculative impact of the work upon emerging possibilities of architectural construction and craft.
keywords 3d modelling; Digital fabrication; Rhinoceros; Grasshopper; Tessellation
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia13_043
id acadia13_043
authors Michalatos, Panagiotis; Payne, Andrew O.
year 2013
title Working with Multi-scale Material Distributions
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 43-50
doi https://doi.org/10.52842/conf.acadia.2013.043
summary At present, computer aided design (CAD) software has proven ill equipped to manage the spatial variations in material properties. Most digital design packages employ a surface modeling paradigm where a solid object is that which is enclosed by a set of boundaries (known as boundary representations or “B-rep” for short). In surface models, material representations are often treated as homogenous and discrete. Yet, natural materials are capable of structures where the variability of material within a volume is defined at a multiplicity of scales and according to various functional criteria. With the advent of new 3D printing techniques, a new possibility emerges—allowing new multi-material composite objects to be fabricated in a single build volume with a high degree of dimensional accuracy and repeatability. However, a big limitation facing complex high resolution digital fabrication comes from the software’s inability to represent or handle material variability. This paper proposes a new digital interface for working with multi-material distributions at a variety of scales using a rasterization process. Beyond the immediate benefit of precise graduated control over the material distribution within a 3D printed volume, our interface opens new creative opportunities by enabling the use of existing image processing techniques (such as filtering, mapping, etc.) which can be applied to three-dimensional voxel fields. Examples are provided which explore the potential of multi-scale material distributions.
keywords next generation technology, multi-material 3D printing, digital interfaces, voxel fields, rasterization
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:58

_id acadia14_219
id acadia14_219
authors Moritz Dörstelmann, Moritz; Prado, Marshall; Parascho, Stefana; Knippers, Jan; Menges, Achim
year 2014
title Integrative computational design methodologies for modular architectural fiber composite morphologies
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 219-228
doi https://doi.org/10.52842/conf.acadia.2014.219
summary This paper describes how computational design methodologies can serve as an integrative tool within a multidisciplinary design project. The topic is discussed based on the design and fabrication process for modular architectural fiber composite morphologies applied and developed in the ICD/ITKE Research Pavilion 2013-14.
keywords integrative computational design, digital fabrication and construction, robotic fabrication reinforced fiber composite structures, biomimicry and biological models in design, light-weight construction, multidisciplinary design
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:58

_id ecaade2013_082
id ecaade2013_082
authors Okuda, Shinya and Bhagra, Saurabh
year 2013
title Cloud Arch
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 625-632
doi https://doi.org/10.52842/conf.ecaade.2013.1.625
wos WOS:000340635300065
summary Expanded Polystyrene foam (EPS) is a chemically inert and 100% recyclable material that is lightweight and has a good compression strength per weight ratio; however, its current construction use is mostly limited to insulation or landfill. The key concept of this paper is to develop an EPS composite to create an ultra-lightweight long-span sustainable roofing structure by integrating the minimum necessary structural tension layer with a certified fire protection system. The authors present this concept in the following four steps, 1) EPS composite structural specimen test, 2) structural optimisation of the reversed displacement model, 3) discretisation with developable surfaces and 4) CNC hotwire rapid prototyping and assembly in scaled prototypes. The Cloud Arch is an economical, material-efficient, thermally insulated, quickly assembled ultra-lightweight construction that eliminates the need for formworks for long-span structures. It can be applied to many types of column-free spaces, such as in factories, gymnasiums, markets and cafeterias.
keywords Lightweight; prototyping; composite; digital fabrication; performance.
series eCAADe
email
last changed 2022/06/07 08:00

_id acadia13_347
id acadia13_347
authors Sabin, Jenny E.
year 2013
title myThread Pavilion: Generative Fabrication in Knitting Processes
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 347-354
doi https://doi.org/10.52842/conf.acadia.2013.347
summary Advancements in weaving, knitting and braiding technologies have brought to surface high-tech and high- performance composite fabrics. These products have historically infiltrated the aerospace, automobile, sports and marine industries, but architecture has not yet fully benefitted from these lightweight freeform surface structures. myThread, a commission from the Nike FlyKnit Collective, features knitted textile structures at the scale of a pavilion. The evolution of digital tools in architecture has prompted new techniques of fabrication alongside new understandings in the organization of material through its properties and potential for assemblage. No longer privileging column, beam and arch, our definition of architectural tectonics has broadened alongside advancements made in computational design. Internal geometries inherent to natural forms, whose complexity could not be computed with the human mind alone, may now be explored synthetically through mathematics and generative systems. Textiles offer architecture a robust design process whereby computational techniques, pattern manipulation, material production and fabrication are explored as an interconnected loop that may feed back upon itself in no particular linear fashion. The myThread Pavilion integrates emerging technologies in design through the materialization of dynamic data sets generated by the human body engaged in sport and movement activities in the city.
keywords next generation technology, textiles, responsive material, knitting, data visualization, generative design, bio-data
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:59

_id sigradi2013_103
id sigradi2013_103
authors Molinas, Isabel
year 2013
title El “Fuego inextinguible” de Harun Farocki: Dialéctica y Didáctica de las Imágenes Visuales en la Contemporaneidad [The "Inextinguishable Fire" of Harun Farocki: Dialectic and Didactics Visual Images in Contemporaneity]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 560 - 563
summary The Farocki´s exhibition in Fundación PROA (Buenos Aires, 2013) and the publication in Argentina of his essays produced between 1980 and 2011 (the Black Box Editor, 2013), support the relevance of the german filmmaker. In his works, the sense it reads in transit, at the edges, in the dialogue between screens and languages, and in the virtuosity detail. The purpose is to make the perception less automatic to humanize the images and bring back sense to them. In the field of Didactics Proyectual - under construction-, that artistic experience intensifies the perception and reconstructs the established repertoire of situational grammars, enabling teaching and learning experiences enriched.
keywords iovisual languages __; Rhetoric; Experience; Education; Didactics projective; Morphogenesis
series SIGRADI
email
last changed 2016/03/10 09:55

_id sigradi2013_168
id sigradi2013_168
authors Pirela Rivas, Dayana
year 2013
title Dialéctica Irresuelta de la Arquitectura en el Escenario Digital [Indecisive Dialectics of the Architecture in the Digital Stage]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 36 - 39
summary The aim of this text is to devise a flexible and thoughtful way to venture so responsibly in the plot of multiple dimensions involved in the architectural design and our contemporary reality immersed in a digital stage. We propose the integration of scans social and cultural process, from the recognition of the significant and symbolic choreography describing the bodies to inhabit the space in the architectural design process, through scenic bios architectural models.
keywords Cultural choreography; Variability; Complexity; Morphogenesis
series SIGRADI
email
last changed 2016/03/10 09:57

_id acadia13_051
id acadia13_051
authors Ramirez-Figueroa, Carolina; Dade-Robertson, Martyn; Hernan, Luis
year 2013
title Adaptive Morphologies: Toward a Morphogenesis of Material Construction
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 51-60
doi https://doi.org/10.52842/conf.acadia.2013.051
summary Architectural discourse has recently suggested a new material practice derived from advances in the field of synthetic biology. As biological organisms can now be designed and engineered for specific purposes, it is expected that, in the near future, it will be possible to program even more complex biologically based systems. One potential application is to literally grow buildings by programming cellular organisms to fabricate and deposit material into architecturally relevant patterns. Our current design methods do not anticipate the potentially challenging material practice involved in a biologically engineered architecture, where there is a loose and emergent relationship between design and material articulation. To tackle this conflict, we developed SynthMorph, a form-finding computational tool based on basic biological morphogenetic principles. A reflection is offered on its use, discussing the effect of multicellular morphogenesis on the production of shape. We conclude that such a strategy is an adaptive design method in two ways: (a) the mechanics of design using morphological constraints involve a practice of dynamic and continuous negotiation between a design intent and material emergence, and (b) the proposed design strategy hints at the production of a biologically produced architecture, which would potentially behave as an adaptive organism.
keywords complex systems, synthetic biology, self-assembly, emergence, morphogenesis, synthetic morphology
series ACADIA
type Normal Paper
email
last changed 2022/06/07 08:00

_id acadia13_447
id acadia13_447
authors Smith, Wesley; Colapinto, Pablo
year 2013
title Constructing Morphogenetic Operators with Inversive Geometry
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 447-448
doi https://doi.org/10.52842/conf.acadia.2013.447
summary We aim to expand the toolset of geometric operations available in computer modeling programs. Our work introduces novel techniques for the development of surface topologies inspired by deformations of biological membranes. Using examples from morphogenetic mechanisms, we model continuous changes in curvature and genus through innovative use of inversive geometry.
keywords inversive geometry, conformal geometry, geometric algebra, morphogenesis, surface topology
series ACADIA
type Research Poster
email
last changed 2022/06/07 07:56

No more hits.

HOMELOGIN (you are user _anon_861640 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002