CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 608

_id acadia13_043
id acadia13_043
authors Michalatos, Panagiotis; Payne, Andrew O.
year 2013
title Working with Multi-scale Material Distributions
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 43-50
doi https://doi.org/10.52842/conf.acadia.2013.043
summary At present, computer aided design (CAD) software has proven ill equipped to manage the spatial variations in material properties. Most digital design packages employ a surface modeling paradigm where a solid object is that which is enclosed by a set of boundaries (known as boundary representations or “B-rep” for short). In surface models, material representations are often treated as homogenous and discrete. Yet, natural materials are capable of structures where the variability of material within a volume is defined at a multiplicity of scales and according to various functional criteria. With the advent of new 3D printing techniques, a new possibility emerges—allowing new multi-material composite objects to be fabricated in a single build volume with a high degree of dimensional accuracy and repeatability. However, a big limitation facing complex high resolution digital fabrication comes from the software’s inability to represent or handle material variability. This paper proposes a new digital interface for working with multi-material distributions at a variety of scales using a rasterization process. Beyond the immediate benefit of precise graduated control over the material distribution within a 3D printed volume, our interface opens new creative opportunities by enabling the use of existing image processing techniques (such as filtering, mapping, etc.) which can be applied to three-dimensional voxel fields. Examples are provided which explore the potential of multi-scale material distributions.
keywords next generation technology, multi-material 3D printing, digital interfaces, voxel fields, rasterization
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:58

_id sigradi2013_205
id sigradi2013_205
authors Chiarella, Mauro; Luis Felipe González Böhme; Cristian Calvo Barentin
year 2013
title Robots: Automatización en Diseño y Construcción para la Enseñanza de Arquitectura [Robots: Automation in Design and Manufacturing for Teaching Architecture]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 439 - 443
summary Industrial robots controlled by parametric design software and visual programming environments are gaining popularity in the research and use of non-conventional construction processes in architecture. Process automation which can be personalized through variable components promises to become an industry standard with similar cost structures to current pre-fabrication industrial processes. In order to incorporate competencies from non-serial variable architectural modular design, an initial teaching initiative (Advanced Architectural Design Studio – USM) was developed in Latin América. The strategy employed is based on incorporating concepts and instruments of Construction & Design Automation for CAD/CAM processes with a Six Axis Robotic Arm (KUKA KR125/2).
keywords Robotic fabrication; Parametric modeling, Teaching architecture
series SIGRADI
email
last changed 2016/03/10 09:48

_id cf2013_118
id cf2013_118
authors Dritsas, Stylianos and Mark Goulthorpe
year 2013
title An Automated Robotic Manufacturing Process: For the Thermoplastic Panel Building Technology
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 118-129.
summary This paper presents the design-computation digital fabrication research for a thermoplastic panel technology for housing applications; a high-performance, low-cost building product based on parametric design methodology, glass fiber reinforced composite materials, and numerically controlled robotic fabrication processes. We present a highly integrated schematic design to production workflow, and discuss the potential and challenges of robotic prototyping and fabrication.
keywords Digital Fabrication, Architectural Robotics, Computer Aided Manufacturing, Building Composites, Thermoplastic Manufacturing
series CAAD Futures
email
last changed 2014/03/24 07:08

_id acadia14projects_11
id acadia14projects_11
authors Gheorghe, Andrei
year 2014
title Robotic Infiltrations
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 11-14
doi https://doi.org/10.52842/conf.acadia.2014.011
summary This research describes the outcome of the Angewandte Architecture Challenge 2013 “Robotic Infiltrations” experimental workshop in Digital Design and Fabrication Strategies. The workshop is a collaboration between the University of Innsbruck’s REX|LAB and the Institute of Architecture at the University of Applied Arts Vienna, and represents a continuation of research that explores the potential of additive digital production through the use of robotically controlled placement of phase-change polymers in the production of full scale structures.
keywords Digital fabrication and construction, Digital architectural design, Digital design education, Digital design and production, Full scale digital fabrication, Digital fabrication research, Robotic fabrication
series ACADIA
type Research Projects
email
last changed 2022/06/07 07:51

_id ijac201310204
id ijac201310204
authors Kontovourkis, Odysseas; Marios C. Phocas, George Tryfonos
year 2013
title Prototyping of an Adaptive Structure based on Physical Conditions
source International Journal of Architectural Computing vol. 11 - no. 2, 205-226
summary Latest advances in digital architectural design enable applications of computation and fabrication strategies for the development of adaptive mechanisms. Adaptive design processes, influenced by environmental and human related conditions, are only developed partially with regard to the design, fabrication, and multi-objective performance based context. The current paper proposes an adaptive design process that investigates the design of a kinetic structure emphasizing material behaviour, embedded technology and computation. In parallel, it allows design proposals to adapt or transform with regard to geometrical configuration and structural behaviour according to external and internal influences. An adaptive hybrid structure is developed at digital and physical prototype level, where its behaviour is examined in real time under the influence of physical conditions. The development is based on a holistic design approach driven by environmental and human activity related conditions, while focusing on the application of elastic materials and embedded technology.
series journal
last changed 2019/05/24 09:55

_id acadia13_253
id acadia13_253
authors Krieg, Oliver David; Menges, Achim
year 2013
title HygroSkin: A climate-responsive prototype project based on the elastic and hygroscopic properties of wood
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 23-260
doi https://doi.org/10.52842/conf.acadia.2013.023
summary The paper presents current research into architectural potentials of robotic fabrication in wood construction based on elastically bent timber sheets with robotically fabricated finger joints. Current developments in computational design and digital fabrication propose an integrative design approach contrary to classical, hierarchical architectural design processes. Architecture related fields, such as material science, engineering and fabrication have been seen as separate disciplines in a linear design process since the Industrialization era. However, current research in computational design reveals the potentials of their integration and interconnection for the development of material-oriented and performance-based architectural design.In the first part, the paper discusses the potentials of robotic fabrication based on its extended design space. The robot’s high degree of kinematic freedom opens up the possibility of developing complex and highly performative mono-material connections for wood plate structures. In the second part, the integration of material behavior is presented. Through the development of robotically fabricated, curved finger joints, that interlock elastically bent plywood sheets, a bending-active construction system is being developed (Figure 1,Figure 2). In the third part, the system’s architectural application and related constructional performance is discussed.
keywords Robotic Fabrication; Finger Joints; Material Computation; Wood Construction; Computational Design
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:51

_id ecaade2014_159
id ecaade2014_159
authors Leyla Yunis, Ond_ej Kyjánek, Moritz Dörstelmann, Marshall Prado, Tobias Schwinn and Achim Menges
year 2014
title Bio-inspired and fabrication-informed design strategies for modular fibrous structures in architecture
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 423-432
doi https://doi.org/10.52842/conf.ecaade.2014.1.423
wos WOS:000361384700042
summary Research pavilions can serve as architectural scale demonstrations for the materialization of experimental forms and structures. Pavilions seek to prove and change methods of design and construction mechanisms in order to achieve desires such as material efficiency, novel spatial qualities and performative needs. The case of the ICD/ITKE Research Pavilion 2013-14 highlights the use of fiber composites in order to achieve a core-less filament winding modular system from bio-inspired lightweight structures through robotic fabrication. This paper describes the multi-disciplinary design and construction process of this pavilion that created a structure of out 36 unique components.
keywords Bio-inspired; fiber composites; multi-disciplinary design; robotic fabrication; modular system construction
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2013_056
id caadria2013_056
authors Lim, Jason; Fabio Gramazio and Matthias Kohler
year 2013
title A Software Environment for Designing Through Robotic Fabrication – Developing a Graphical Programming Toolkit for the Digital Design and Scaled Robotic Fabrication of High Rises
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 45-54
doi https://doi.org/10.52842/conf.caadria.2013.045
wos WOS:000351496100005
summary The term “robot” was born from a play written almost a century ago. Today robotic fabrication has become an emerging topic in architectural research. As architects work with these technologies, they are challenged with writing a different kind of play: here robots are the actors and the physical materialization of a design is their performance. However current Computer Aided Design (CAD) packages do not provide native robot programming functionalities which architects require to plan and orchestrate these fabrication process. To address this limitation, a Python library for robot programming is written. It is referenced by a toolkit of custom components developed to extend a graphical programming environment commonly used for architectural design. The empirical development of these software tools takes place in the context of a design studio investigating the subject of the high rise. The tools are tested in a workflow that involves the digital design and scaled robotic fabrication of high-rise housing. This paper discusses the considerations underlying the toolkit’s design, the outcomes of its use in the studio, and its impact on the creative design process. 
keywords Robotic fabrication, Architectural model, Software tools, High rise design, Creative computational design 
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia13_311
id acadia13_311
authors Maxwell, Iain; Pigram, David; McGee, Wes
year 2013
title The Novel Stones of Venice: The Marching Cube Algorithm as a Strategy for Managing Mass-customisation
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 311-318
doi https://doi.org/10.52842/conf.acadia.2013.311
summary The Marching Cube (MC) algorithm is a simple procedural routine for the surface representation of three- dimensional scalar fields. While much has been written of the algorithm’s efficiencies and adaptive nature within the domain of computer graphics and imaging, little has been explored within the context of architectural geometry and fabrication. This paper posits a novel implementation of the MC algorithm coupled with robotic fabrication (RF) techniques, to realise an open-ended design method that approaches mass-customisation as the unique geometric distortion of a finite set of topologically consistent families of tectonic elements.The disciplinary consequences of this and similar methods that intimately couple algorithmic design techniques with robotic fabrication are discussed. These include the re-affirmation or expansion of the role of the architect as master builder that is enabled by challenging Leon Battista Alberti’s 15th Century division between design concept and building.The method and its disciplinary potentials are illustrated through the description of an installation built by the authors for the Australian Pavilion at the Venice Biennale. Clouds of Venice serves as a case study for a new integrated mode of production, one that increases the quality and number of feedback relations between design, matter and making.
keywords tools and interfaces, mass-customisation, robotic fabrication, algorithmic architecture, marching cube, digital fabrication
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:58

_id acadia14_219
id acadia14_219
authors Moritz Dörstelmann, Moritz; Prado, Marshall; Parascho, Stefana; Knippers, Jan; Menges, Achim
year 2014
title Integrative computational design methodologies for modular architectural fiber composite morphologies
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 219-228
doi https://doi.org/10.52842/conf.acadia.2014.219
summary This paper describes how computational design methodologies can serve as an integrative tool within a multidisciplinary design project. The topic is discussed based on the design and fabrication process for modular architectural fiber composite morphologies applied and developed in the ICD/ITKE Research Pavilion 2013-14.
keywords integrative computational design, digital fabrication and construction, robotic fabrication reinforced fiber composite structures, biomimicry and biological models in design, light-weight construction, multidisciplinary design
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:58

_id ecaade2013_278
id ecaade2013_278
authors Oxman, Neri; Laucks, Jared; Kayser, Markus; Gonzalez Uribe, Carlos David and Duro-Royo, Jorge
year 2013
title Biological Computation for Digital Design and Fabrication
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 585-594
doi https://doi.org/10.52842/conf.ecaade.2013.1.585
wos WOS:000340635300061
summary The formation of non-woven fibre structures generated by the Bombyx mori silkworm is explored as a computational approach for shape and material optimization. Biological case studies are presented and a design approach for the use of silkworms as entities that can “compute” fibrous material organization is given in the context of an architectural design installation. We demonstrate that in the absence of vertical axes the silkworm can spin flat silk patches of variable shape and density. We present experiments suggesting sufficient correlation between topographical surface features, spinning geometry and fibre density. The research represents a scalable approach for optimization-driven fibre-based structural design and suggests a biology-driven strategy for material computation.   
keywords Biologically computed digital fabrication; robotic fabrication; finite element analysis; optimization; CNC weaving.
series eCAADe
email
last changed 2022/06/07 08:00

_id caadria2013_076
id caadria2013_076
authors Raspall, Felix; Matias Imbern and William Choi
year 2013
title Fisac Variations: An Integrated Design and Fabrication Strategy for Adaptable Building Systems
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 55-64
doi https://doi.org/10.52842/conf.caadria.2013.055
wos WOS:000351496100006
summary The promise of robotic fabrication as an enabler for mass-customization in Architecture has been hindered by the intricate workflow required to go from parametric modelling to CNC fabrication. The lack of integration between highly-specialized proprietary software, normally required to operate the machines, and most of the design tools constitutes a major limitation. One way to tackle this constraint is by developing simple tools that directly link parametric modelling to robotic coding. Accordingly, “Fisac Variations” develops an uninterrupted digital workflow from form-generation to robotic fabrication. This innovative approach to Computer Aided Design and Manufacturing was tested by studying and reengineering a specific historic construction system -Miguel Fisac’s Bones System was used as a case study- and by enabling it to address problems of contemporary architectural agenda such as flexibility, variability and mass-customization. The proposed workflow threads form-finding, structural analysis, geometric definition, CNC code generation and digital fabrication within the same open-source computational environment. In this way, this innovative procedure aims to increase design freedom while ensuring fabrication feasibility. This paper describes background research, concept, form-finding, construction process, methodology, results and conclusions.  
keywords Parametric design, Digital fabrication and construction, Integrated design and fabrication, Mass-customization, Miguel fisac bones system 
series CAADRIA
email
last changed 2022/06/07 08:00

_id ecaade2013_128
id ecaade2013_128
authors Symeonidou, Ioanna; Hirschberg, Urs and Kaftan, Martin
year 2013
title Designing the Negative
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 683-691
doi https://doi.org/10.52842/conf.ecaade.2013.1.683
wos WOS:000340635300071
summary Designing the Negative was the title of a Master Studio that took place at the Institute of Architecture and Media of Graz University of Technology during the summer semester of 2012. Students designed and fabricated prototypes of customized concrete formwork as part of their studio assignment. The studio theme forced students to think about digital fabrication with parametric tools in a hands-on fashion. Using robotic technology and hot-wire cutting, students worked with the robot’s constraints (size of the robot’s arm, robot’s axis and tool’s restrictions) to design complex curved elements that could serve as formwork (the negative) for cast concrete elements (the positive). The students were asked to design a production strategy for their cast concrete elements as well as the application of said elements in an architectural scheme. The student projects confirmed the value of a pedagogy that takes on research-relevant questions in an interdisciplinary studio setting and engages students in a process that is best described as digital crafting: it simultaneously addressed the conceptual and technical as well as the material and tactile aspects of digital fabrication and design.
keywords Digital fabrication; customization; concrete; hot-wire cutting; parametric design.
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia13_367
id acadia13_367
authors Søndergaard, Asbjørn; Amir, Oded; Knauss, Michael
year 2013
title Topology optimization and digital assembly of advanced space-frame structures
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 367-378
doi https://doi.org/10.52842/conf.acadia.2013.367
summary This paper presents a novel method for the integrated design, optimization and fabrication of space-frame structures in an autonomous, digital process. Comparative numerical studies are presented, demonstrating achievable mass reduction by application of the method by comparison to equivalent to normative space truss designs and dimensions. As such, a principal digital fabrication and assembly scheme is developed, where an architectural design methodology relative to the described process is established, and the proposed process is demonstrated through scaled digital fabrication experiments.
keywords space-frame structures, topology optimization, robotic assembly, digital fabrication, steel
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:56

_id acadia23_v3_71
id acadia23_v3_71
authors Vassigh, Shahin; Bogosian, Biayna
year 2023
title Envisioning an Open Knowledge Network (OKN) for AEC Roboticists
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary The construction industry faces numerous challenges related to productivity, sustainability, and meeting global demands (Hatoum and Nassereddine 2020; Carra et al. 2018; Barbosa, Woetzel, and Mischke 2017; Bock 2015; Linner 2013). In response, the automation of design and construction has emerged as a promising solution. In the past three decades, researchers and innovators in the Architecture, Engineering, and Construction (AEC) fields have made significant strides in automating various aspects of building construction, utilizing computational design and robotic fabrication processes (Dubor et al. 2019). However, synthesizing innovation in automation encounters several obstacles. First, there is a lack of an established venue for information sharing, making it difficult to build upon the knowledge of peers. First, the absence of a well-established platform for information sharing hinders the ability to effectively capitalize on the knowledge of peers. Consequently, much of the research remains isolated, impeding the rapid dissemination of knowledge within the field (Mahbub 2015). Second, the absence of a standardized and unified process for automating design and construction leads to the individual development of standards, workflows, and terminologies. This lack of standardization presents a significant obstacle to research and learning within the field. Lastly, insufficient training materials hinder the acquisition of skills necessary to effectively utilize automation. Traditional in-person robotics training is resource-intensive, expensive, and designed for specific platforms (Peterson et al. 2021; Thomas 2013).
series ACADIA
type field note
email
last changed 2024/04/17 13:59

_id ecaade2013_151
id ecaade2013_151
authors Weigele, Jakob; Schloz, Manuel; Schwinn, Tobias; Reichert, Steffen; LaMagna, Riccardo; Waimer, Frédéric; Knippers, Jan and Menges, Achim
year 2013
title Fibrous Morphologies
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 549-558
doi https://doi.org/10.52842/conf.ecaade.2013.1.549
wos WOS:000340635300057
summary Living organisms have evolved effective structural solutions in response to the inherent constraints of their respective environments through a process of morphological adaptation. Given the fact that the majority of natural load bearing materials are fibrous composites, the authors suggest the analysis of appropriate biological role models as a promising strategy for informing the application of fibre reinforced polymers (FRP) in architecture. In this paper the authors present a biomimetic design methodology for seamless large-scale FRP structures involving the analysis of the exoskeletons of Arthropoda with regards to structural performance criteria, the development of a custom robotic filament winding process, and the translation of biological and fabricational principles into the architectural domain through physical prototyping and the development of custom digital tools. The resulting performative material system is evaluated in a full-scale research pavilion.
keywords Biomimetics; computational design; fibre-reinforced composites; prototyping; robotic fabrication.
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2023_317
id ecaade2023_317
authors Zamani, Alireza, Mohseni, Alale and Bertug Çapunaman, Özgüç
year 2023
title Reconfigurable Formwork System for Vision-Informed Conformal Robotic 3D Printing
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 387–396
doi https://doi.org/10.52842/conf.ecaade.2023.1.387
summary Robotic additive manufacturing has garnered significant research and development interest due to its transformative potential in architecture, engineering, and construction as a cost-effective, material-efficient, and energy-saving fabrication method. However, despite its potential, conventional approaches heavily depend on meticulously optimized work environments, as robotic arms possess limited information regarding their immediate surroundings (Bechthold, 2010; Bechthold & King, 2013). Furthermore, such approaches are often restricted to planar build surfaces and slicing algorithms due to computational and physical practicality, which consequently limits the feasibility of robotic solutions in scenarios involving complex geometries and materials. Building on previous work (Çapunaman et al., 2022), this research investigates conformal 3D printing of clay using a 6 degrees-of-freedom robot arm and a vision-based sensing framework on parametrically reconfigurable tensile hyperbolic paraboloid (hypar) formwork. In this paper, we present the implementation details of the formwork system, share findings from preliminary testing of the proposed workflow, and demonstrate application feasibility through a design exercise that aims to fabricate unique components for a poly-hypar surface structure. The formwork system also offers parametric control over generating complex, non-planar tensile surfaces to be printed on. Within the scope of this workflow, the vision-based sensing framework is employed to generate a digital twin informing iterative tuning of the formwork geometry and conformal toolpath planning on scanned geometries. Additionally, we utilized the augmented fabrication framework to observe and analyze deformations in the printed clay body that occurs during air drying. The proposed workflow, in conjunction with the vision-based sensing framework and the reconfigurable formwork, aims to minimize time and material waste in custom formwork fabrication and printing support materials for complex geometric panels and shell structures.
keywords Robotic Fabrication, Conformal 3D Printing, Additive Manufacturing, Computer-Vision, Reconfigurable Formwork
series eCAADe
email
last changed 2023/12/10 10:49

_id ijac201310205
id ijac201310205
authors Sharif, Shani; T. Russell Gentry, Jeannette Yen, Joseph N. Goodman
year 2013
title Transformative Solar Panels: A Multidisciplinary Approach
source International Journal of Architectural Computing vol. 11 - no. 2, 227-246
summary This paper focuses on the applications of geometrically transformable and expandable structures with deployed "energy production" mode and retracted "wind shedding" mode to replace the fixed photovoltaic (PV) panels and racking systems currently used in buildings rooftop installations. The significance of this expandable geometric system relies on its embedded motion grammar, i.e. rotation and translation transformations, in the system. The research draws inspiration from reconfiguration of compound tree leaves in nature, and addresses issues of redesign and modeling challenges that led to digital fabrication of the prototype. Finally, the research studies the development of a multidisciplinary research from the distributed cognition point of view, and emphasizes on the role of an iterative creation, sharing and reflection method for the development of a common ground for a successful collaboration.
series journal
last changed 2019/05/24 09:55

_id sigradi2013_215
id sigradi2013_215
authors Abdelmohsen, Sherif M.
year 2013
title Reconfiguring Architectural Space using Generative Design and Digital Fabrication: A Project Based Course
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 391 - 395
summary This paper discusses a course that addresses the integration between generative design and digital fabrication in the context of reconfiguring architectural space. The objective of the course, offered for 3rd year architecture students at the Department of Architecture, Ain Shams University, Egypt, was to design and fabricate interior design elements to be installed within the department lobby. Students worked in digital and physical environments to develop 8 group projects that featured concepts of shape grammars, L-systems, fractals and cellular automata. The potential of the realized projects is discussed in terms of 3D development of systems, contextual generative design, and pedagogical objectives.
keywords Contextual generative design; Rule-based systems; Self-organizing systems; Digital fabrication
series SIGRADI
email
last changed 2016/03/10 09:47

_id ijac201310105
id ijac201310105
authors Agkathidis, Asterios and Andre_ Brown
year 2013
title Tree-Structure Canopy:A Case Study in Design and Fabrication of Complex Steel Structures using Digital Tools
source International Journal of Architectural Computing vol. 11 - no. 1, 87-104
summary This paper describes and reflects on the design and manufacturing process of the Tree-Structure canopy for the WestendGate Tower in Frankfurt upon Main, completed early 2011.The project investigated fabrication and assembly principles of complex steel structures as well as the integration of contemporary computational design, engineering, optimization and simulation techniques in a collaborative design approach. This paper focuses on the notion of modular standardization as opposed to non standard customized components. It also engages with issues relating to digital production tools and their impact on construction cost, material performance and tolerances. In addition it examines the reconfiguration of liability during a planning and construction process, an aspect which can be strongly determined by fabrication companies rather than the architect or designer.This paper is written as a reflection on the complete building process when contemporary digital tools are used from design through to fabrication. It studies both the generation of the steel structure as well the ETFE cushion skin. It reports on a collaborative project, where the main author was responsible for the canopies design, parameterization, digitalization and fabrication, as well as for the dissemination of the outcomes and findings during the design and realization process.As such it represents an example of research through design in a contemporary and evolving field.The canopy received a design award by the Hellenic Architecture Association.
series journal
last changed 2019/05/24 09:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_774419 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002